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Abstract

I study how shocks propagate in a credit network economy. I build a model of an economy in which

trade in intermediate goods is �nanced by supplier credit. The credit linkages between �rms propagate

liquidity shocks and generate a multiplier e�ect on aggregate output. I construct a proxy of inter-

industry trade credit �ows by combining �rm-level balance sheet data and industry-level input-output

data, with which I calibrate the model. I use a structural factor approach to estimate shocks to US

industrial production (IP) industries from 1997-2013. Taking into account the credit linkages between

these industries, I �nd that most aggregate volatility in IP was driven by idiosyncratic productivity shocks

and aggregate liquidity shocks. During the Great Recession, three-quarters of the drop in aggregate IP

was due to an aggregate liquidity shock, and the remainder can be accounted for by idiosynractic liquidity

shocks to a few systemically important industries. I provide microevidence in line with the model's key

mechanism.
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Introduction

The origins of aggregate �uctuations are of essential interest to modern macroeconomics, as rea�rmed by

the recent �nancial crisis and ensuing recession. A large literature has sought to explain the role of �nancial

factors in the context of the �nancial accelerator mechanism, relying on representative agent assumptions

in which a creditor lends to a borrower. This, however abstracts from the credit relationships amongst

heterogeneous borrowers and lenders that characterizes most advanced economies. Yet the credit linkages

between �rms may propagate �rm-level shocks across the economy. The literature has therefore overlooked a

potentially important source of aggregate �uctuations, and is in need of a framework for evaluating whether

the credit relationships between non-�nancial �rms play a role in the business cycle.

To this end, I build a tractable model of a credit network economy in which trade in intermediate

goods is �nanced by supplier credit. I show analytically how the trade credit linkages between non-�nancial

�rms generate aggregate �uctuations from �rm-level shocks, and show that the mechanism is quantitatively

important. I combine �rm-level balance sheet data and industry-level input-output data to construct a proxy

of supplier credit �ows at the industry-level. I use this proxy to calibrate my model, and quantitatively analyze

how the aggregate impact of idiosyncratic shocks depends on the structure of the credit network. I then use

a structural factor approach to estimate the shocks which hit the US manufacturing and mining sectors over

the period 1997-2013. Second, I use the model to shed light on the origins of aggregate �uctuations in the US

by decomposing observed movements in industrial production (IP) into components arising from four types

of shocks: aggregate productivity, idiosyncratic productivity, aggregate liquidity, and idiosyncratic liquidity

shocks.

In so doing, I make two contributions to the literature. First, I show that the credit network of an economy

is an important source of aggregate �uctuations that has been overlooked by the literature. Second, I use the

model to shed light on the origins of aggregate �uctuations in the US by decomposing observed movements

in industrial production (IP) into components arising from four types of shocks: aggregate productivity,

idiosyncratic productivity, aggregate liquidity, and idiosyncratic liquidity shocks.

I �nd that the �uctuations in aggregate IP were driven primarily by idiosyncratic productivity shocks

and aggregate liquidity shocks. During the Great Recession, productivity shocks seemed to have played little

role; rather, three-quarters of the peak-to-trough drop in aggregate IP can be attributed to an aggregate

liquidity shock. I also �nd that credit linkages played a quantitatively important role in propagating the

liquidity shocks, generating at least 17 percent of observed aggregate volatility. In addition, I show that

idiosyncratic liquidity shocks to the three most systemically important IP industries accounted for between

9 and 27 percent of the drop in aggregate IP during the recession.

The credit linkages that I model take the form of trade credit between suppliers of intermediate goods and

their customers. Most inter-�rm trade in intermediate goods or services, when �nanced externally, is �nanced

by the supplier of the goods in the form of trade credit, which refers to delayed payment terms.1 Trade credit

1A large empirical literature documents the pervasiveness of trade credit. Typically 15 days to 3 months. Typical TC contract
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is the single most important source of short-term external �nance for �rms, accounting for more than half

of �rms' short-term liabilities and more than one-third of their total liabilities in most OECD countries.2 In

the US, accounts payable was three times as large as bank loans and �fteen times as large as commercial

paper outstanding, on the aggregate balance sheet of non-�nancial corporations in 2012.3 All of these facts

point to the presence of strong credit linkages between non-�nancial �rms.

An important feature of trade credit is that it leaves suppliers exposed to the liquidity problems of their

customers. A notable example of this is the US automotive industry in 2008, when the Big Three automakers

(Chrysler, Ford, and GM) faced a serious shortage of liquidity. While Ford did not require a bailout, it

requested one from the US Congress on behalf of its competitors, fearing that a bankruptcy by Chrysler or

GM would transfer the liqudity shortage to their common suppliers, as the money owed to them could not

be paid until they exited bankruptcy. This episode suggests that when �rms play a dual role of supplier and

creditor, a shock may not only a�ect trade directly, but also the availability of liquidity to �nance the trade.

There is growing evidence to suggest that this intuition is empirically relevant. A number of studies -

including Boissay and Gropp (2012), Jacobson and von Schedvin (2015), and Raddatz (2010) - have found

that �rm- and industry-level trade credit linkages propagate liquidity shocks from �rms to their suppliers.

In spite of this evidence, the macroeconomic implications of trade credit have been largely overlooked in

the literature. I therefore develop a framework for understanding how inter-�rm trade and credit interact in

response to credit conditions.

I consider an economy in which �rms are organized in a production network and trade intermediate goods

with one another. Each intermediate good is produced using labor and other intermediate goods. There is

one period, divided into two parts: at the beginning of the period contracts are signed and at the end of the

period, production takes place and contracts are settled. Limited enforcement problems require �rms to pay

for their inputs (labor and intermediate goods) at the beginning of the period as cash-in-advance payments,

which places a liquidity constraint on each �rm. Firms can obtain liquidity from each of their suppliers in

the form of a trade credit loan: the �rm can can defer part of its payment to a supplier until the end of the

period, after its revenue is realized. To obtain this loan, each �rm can pledge a fraction of its receivables to

its supplier. Therefore, the cash-in-advance payments that a �rm can obtain from its customers depend on

the value of its customers' receivables.

The liquidity constraint faced by each �rm introduces a wedge between the marginal cost and marginal

bene�t of each input, representing the distortion in the �rm's optimal input use due to the constraint. A

tighter constraint implies a higher wedge. Importantly, because the tightness of a �rm's constraint depends

on the cash-in-advance it obtains from customers, each wedge is an equilibrium object which depends on the

value of customers' goods, and the �rm's credit linkages with others. This endogenous relationship between

the wedges and the prices of downstream goods is crucial to how the economy behaves in response to shocks.

is 2/10 net 30.
2See IMF (2005).
3Flow of funds. The dry-up of TC during the GR was comparable to that of bank lending [see picture in Appendix]:

peak-to-trough decline was about 25%.
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A �rm-level liquidity shock propagates to other �rms in the network via two channels. First is the standard

input-output channel which has been the focus of studies such as Acemoglu et al. (2012) and Bigio and La'O

(2013): the shocked �rm cuts back on production, reducing the demand faced by its suppliers and reducing

the supply of its good to its customers.

But the credit linkages between �rms implies that there is a new channel of propagation - which I call

the credit linkage channel - in which the shock directly a�ects the cash-in-advance payment received by the

�rm's suppliers. When the shocked �rm cuts back on production, the price of its good rises, which increases

the collateral value of its receivables. Able to obtain a higher trade credit loan (per unit of output) from its

suppliers, the �rm reduces the cash-in-advance payments it makes upstream. With less cash, the suppliers are

more liquidity constrained, and they may themselves be forced to further cut back on their own production.

If these suppliers cut back on production, they reduce their demand for labor, amplifying the aggregate e�ect

of the shock. This turns out to be a powerful mechanism by which the credit linkages between �rms can

generate large changes in aggregate output as shocks are transmitted upstream.

In the second part of the paper, I evaluate the quantitative and empirical relevance of the mechanism.

I �rst construct a proxy of inter-industry trade credit �ows by combining �rm-level balance sheet data

from Compustat with industry-level input-output data from the Bureau of Economic Analysis. With this, I

produce a map of the credit network of the US economy at the three-digit NAICS level of detail, with which

I can evaluate my model. I calibrate the model to match the input-output matrices of the US and my proxy

of inter-industry trade credit �ows. I also allow for substitutability between cash-in-advance payments and

bank credit, so that �rms can partially o�set a loss in customer payments with increased bank borrowing.

I calibrate this parameter to match �rm-level evidence from Omiccioli (2005) of how much Italian �rms

collateralize their trade credit for bank borrowing. A quantitative analysis suggests the credit network is

likely to be a signi�cant source of aggregate �uctuations, accounting for between 18 and 31 percent of the

drop in aggregate output in response to an aggregate liquidity shock.

I then take the model to the data to how much of observed �uctuations in output can be attributed

to the credit network of the economy, using a structural factor approach similar to that of Foerster et al.

(2011). I use quarterly, industry-level output data from the FRB's Industrial Production (IP) Indexes, and

industry-level employment data from the BLS's Quarterly Census of Employment and Wages over the sample

period 1997:Q1- 2013:Q4, to estimate the shocks which hit IP industries.

In estimating shocks, most of the literature takes one of two extreme positions: all �uctuations are

assumed to be driven by changes in productivity only, or by changes in liquidity only. I make a weaker

assumption and allow for both types of shocks to minimize estimation bias. In the model, productivity and

liquidity shocks have di�erential e�ects on an industry's output and employment, which allows the model to

separately identify the two types of shocks from the output and employment data. I therefore use the model

to estimate each type of shock, �ltering the e�ects of credit and input-output linkages in propagating shocks

across industries. I then use factor methods to decompose each of these shocks into aggregate and industry-

level components. Thus, I estimate four types of shocks: aggregate and idiosyncratic liquidity shocks, and
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aggregate and idiosyncratic productivity shocks. A variance decomposition of aggregate IP shows that the

credit network of these industries accounts for one-�fth of aggregate IP volatility.

Much of the previous literature has relied on aggregate productivity shocks to drive the business cycle. Yet

by many accounts, this has been an unsatisfactory explanation due to the lack of direct evidence for shocks.

This paper shows, however, that when one takes into account the credit linkages between non-�nancial �rms

in the economy, the role of aggregate productivity shocks is minimal. On the contrary, aggregate liquidity

shocks seem to play a vital role the business cycle. Indeed, the importance of shocks emanating from the

�nancial sector to real economy as a whole is well-documented. Thus, this paper suggests that a large

fraction of aggregate �uctuations are perhaps driven by shocks from the �nancial sector emanating to the

real economy.

The rest of the paper is organized as follows. The next section reviews some of the literature to which this

paper is related. Part I introduces the model. The �rst part of the model considers a simple version in which

the structure of the production network is a supply chain. I derive analytical results using a stylized version

of the full model. In the next part, I generalize the production network structure. Part II is a quantitative

analysis. I describe the proxy of trade credit �ow, the calibration, and quantiative results. In Part III, I

perform my empirical analysis, and discuss the results.

Literature Review

(In progress).

This paper relates to several strands of the literature. There is a large literature on the role of �nancial

frictions in macroeconomics. Studies such as Bernanke and Gertler (1995), Bernanke et al. (1999), and

Kiyotaki and Moore (1997b) evaluate the link between �nancial factors and the real economy. Most of this

literature abstracts from heteregeneous agents models. Also, there has been little attention given to the

credit relationships between non-�nancial �rms. I consider a �nancial accelerator mechanism in the context

of a network model and show that ampli�es its e�ects.

A growing literature looks to network e�ects as a multiplier mechanism which can generate aggregate

�uctuatinos from idiosyncratic shocks. Much of this literature builds on the multi-sector RBC model of Long

and Plosser (1983). Most notably, these include Acemoglu et al. (2012), Shea (2002), Dupor (1999), Horvath

(1998), Horvath (2000), and Acemoglu et al. (2015). These studies all focus on the role of input-output

linkages between �rms. Input-speci�city in the production of intermediate goods prevents �rms from easily

switching suppliers or customers in response to productivity shocks. Gerenally, these models rely on certain

structural propeorties of a network in which idiosyncratic shocks to �rms in economy do not average out.

Systemically important �rms, who take a central role inthe network, propagate shocks across other �rms in

the network generating movements at the aggregate level of the economy. However, most of this literature do

not model how trade in intermediate goods is �nanced. Indeed, most abstract away from �nancial frictions.

A notable work to which this paper is most closely related is that of Bigio and La'O (2013), who examine
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the role of �nancial frictions in the context of an input-output network. They �nd that the input-output

structure is important in determining the aggregate impact of a �rm-level liquidity shock. However, they do

not explicitly model any credit relationships between �rms; the tightness of a �rm's constraint, and therefore

the distortion it causes, is �xed exogenously. In contrast, I explicitly model these credit relationships,

endogenizing each �rm's liquidity constraint., I show that there is an important interaction between trade

linkages and how trade is �nanced. As a result, I show that the structure of the credit network is also

important in determining the aggregate impact of a liquidity shock. In addition, Delli Gatti et al. (2007)

examine the �nancial accelerator mechanism in the context of an evolving credit network. Theirs is largely

quantitative approach.

There is a growing literature on the importance of trade credit. Most of the literature is empirical and

looks a micro-evidence that trade credit is important for �rm-level outcomes and the transmission of shocks.

Burkart and Ellingsen (2004) try to explain why trade credit exists when there are �nancial intermediaries

who specialize in lending. Many theorize, and �nd evidence in support for, the notion that suppliers have

some informational/monitoring advantage over banks that allows them to lend to a customer when a bank

won't, such as Petersen and Rajan (1997). A number of studies have looked at how trade credit relationships

transmit �nancial distress across trading �rms. For example, Boissay and Gropp (2013) �nd evidence that

�rms pass over a �fth of their liquidty shocks to their �rms via their trade credit linkages: an increase in the

default probability by one �rm increases its supplier's chance of defaulting by .2%. Raddatz (2010) shows

that, even controlling for input-output linkages, greater intensity of trade credit use linking two industries

increases their correlation in output growth. Jacobson and von Schedvin (2015) both use �rm-level data to

show that �rms pass a signi�cant fraction of their liquidity shocks to their suppliers via trade credit lending.

Finally, Barrot (2015) examines data on trucking �rms in France and �nds that delayed payment terms are

associated with greater �nancial distress. This literture does not address the aggregate implications of trade

credit.

A growing empirical literature tries to evaluate the origins of aggregate �uctuations by measuring the

contribution of idiosyncratic versus aggregate shocks. Taking head from the network literature, a few have

incorporated input-output linkages as a mechanism by which idiosyncratic shocks may account for larger

portion of �uctuations. Broadly speaking, there are two approaches: a more structural approach (e.g. Horvath

(2000)) and a more statistical approach. Foerster et al. (2011) and Stella (2014) bridge these approaches using

structural and factor approaches together; they account for the e�ects of input-output linkages in propagating

idiosyncratic shocks. My empirical approach follows the same methodology. However, the presence of credit

linkages between �rms implies a greater role for liquidity shocks in driving the business cycle. I show that

not accounting for the credit linkages created by trade credit underestimates the importance of idiosyncratic

shocks, and over-attributes aggregate volatility to aggregate productivity shocks. I also explicitly estimate

the contribution of the production and credit networks US industrial production in generating aggregate

volatility.
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Part I

Model

In Part I, I introduce and analyze the model. This section has two has two parts. For ease of exposition,

it is instructive to �rst consider the special case of a vertical production network. I refer to this as the stylized

model. The analytical tractability of this case permits closed-form expressions for aggregate output. In the

second part, I generalize the network structure.

1 Stylized Model: Vertical Production Structure

1.1 Economic Environment

There is one time period, consisting of two parts. At the beginning of the period, contracts are signed. At

the end of the period, production takes place and contracts are settled. There are three types of agents: a

representative household, �rms, and a bank. There are M goods, each produced by a di�erent �rm. (Here

the productive unit could similarly be called an industry, which is comporised of a continuum of competitive

�rms). Each good can be consumed by the household or used in the production of other goods.

1.2 Representative Household

1.2.1 Preferences

The representative household has utility over the consumption and disutility over labor, and provides la-

bor competitively to the market. It has preferences over consumption and labor given by U(C,N). The

household's total consumption C is Cobb-Douglas over the M goods, and N denotes labor.

C =

M∏
i=1

cβii

For this stylized model, I assume the utility function takes the form

U(C,N) = log C −N

Later I will generalize the preferences. Let w denote the competitive wage earned from working, and πi the

pro�t earned by �rm i. The household chooses how much to work and how much of each good to consume

to maximize its utility subject to the following budget constraint.
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C = wN +

M∑
i=1

πi (1)

1.2.2 Optimality

The household's optimality condition is given by

V ′(N)

U ′(C)
= w (2)

This equates the competitive wage with the marginal rate of substitution between labor and consumption.

1.3 Firms

There are M �rms who each produce a di�erent good. Suppose for now that �rms are arranged in a supply

chain, where each �rm produces an intermediate good for one other �rm. The last �rm in the chain produces

the consumption good, which it sells to the household. Firms are indexed by their order in the supply chain,

with i = M denoting the producer of the �nal good.

Firms are price-takers.4 The production technology of �rm i Cobb-Douglas over labor and intermediate

goods.

xi =

z
ηi
i n

ηi
i for i = 1

zηii n
ηi
i x

(1−ηi)ωi,i−1

i−1 for i > 1

Here, xi denotes �rm i's output, ni its labor use, and xi−1 its use of good i− 1. Parameter zi denotes �rm

i's total factor productivity, ηi the share of labor in its production, and ωi,i−1 the use of good i − 1 in �rm

i's production. Let ps denote the price of good s. The value of the sales from �rm s to �rm c is then psxcs .

The input-output structure of the economy can be summarized by a matrix Ω of intermediate good shares

ωij .

4 Equivalently, one can think of each �rm as comprised of a continuum of perfectly competitive producers.
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Ω ≡



ω11 ω12 ω13 · · · ω1M

ω21 ω22 ω23

ω31 ω32 ω33

...
. . .

ωM1 ωMM


=



0 0 0 · · · 0

ω21 0 0

0 ω32 0
...

. . .

0 ωM,M−1 0


This matrix describes the structure of the production network. Note that only one sub-diagonal is non-zero,

re�ecting the vertical structure of the network. In the quantitative analysis, I allow for a general network

structure.

Note also that the production network is de�ned only by technology parameters. As we will see, the

presence of �nancial frictions will distort inter-�rm trade in equilibrium. Hence, Ω describes how �rms would

trade with each other in the absence of frictions.

1.3.1 Firm Liquidity and Borrowing

In this section I discuss the limited enforcement problems that create a need for ex ante liquidity. The

household cannot force any debt repayment. Therefore, �rm i must pay the full value of wage bill, wni, up

front to the household before production takes place. In addition, each �rm i must pay for its intermediate

goods purchases, pi−1xi−1 up front to its supplier. This introduces a need for ex ante liquidity, as �rms are

required to have some funds at the beginning of the period before any revenue is realized.

Each �rm can obtain liquidity from two sources: the bank in the form of a cash loan bi, and its supplier in

the form of a trade credit loan τi−1. By lending τi−1, �rm i−1 is forgoing a cash-in-advance payment. The net

payment that �rm i−1 receives from its customer at the beginning of the period is therefore pi−1xi−1− τi−1.
Firm i's liquidity constraint on its input purchases takes the form

wni + pi−1xi−1 − τi−1︸ ︷︷ ︸
net CIA payment to supplier

≤ bi + pixi − τi︸ ︷︷ ︸
net CIA received from customer

This constraint states that the amount of cash that �rm i is required to have in order to employ ni units

of labor and purchase xi−1 units of intermediate good i − 1, is bounded by the amount of cash that �rm

i can collect at the beginning of the period. Note that trade credit appears on both sides of the liquidity

constraint: a loan from its supplier increases �rm i's liquidity, but a loan to its customer reduces its liquidity

by reducing the cash-in-advance payment it collects. There is therefore a one-to-one relation between the

amount of cash-in-advance a �rm can collect from its customer and the size of the trade credit loan it gives

its customer.

In addition, limited enforcement problems place limits on the amount of credit each �rm can obtain from

the bank and supplier. I now discuss each of these in turn.
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Bank lending: Each �rm chooses how much to borrow from the bank, subject to a limited enforcement

problem. Firm i can obtain the loanbi from the bank at the beginning of the period by pledging a fraction Bi

of its total end-of-the-period revenue pixi, and a fraction 1− α of its accounts receivable τi+1, where α ≤ 1.

Thus, �rm i faces a bank borrowing constraint of the form

bi ≤ Bipixi + (1− α)τi

Parameters Bi and α provide an exogenous source of liquidity to each �rm, and represent the severity of

the agency problem between �rm i and the bank. I will later show that α parameterizes the degree of

substitutability between bank credit and cash-in-advance payments from customers. Since bi is chosen by

�rm i these bank borrowing constraint will bind in equilibrium as each �rm obtains the maximum bank loan

possible.

Trade credit: Each �rm i chooses the size of the trade credit loan τi−1 it obtains from its supplier. But

a limited enforcement problem between �rms places a limit on the size of this loan. In particular, �rm i

can pledge a fraction θi of its end-of-the-period output to repay its supplier. Then the trade credit loan is

bounded by the collateral value of �rm i's output

τi−1 ≤ θi,i−1pixi

The precise limited enforcement problem which produces this borrowing constraint is described in detail in

the Appendix. In equilibrium, the �rm takes the maximum loan that the supplier will allow, and so the

borrowing constraint binds. This pins down the trade credit loan from supplier i − 1 at τi−1 = θi,i−1pixi.

Note that the size of the loan to �rm i depends on the price pi of its good. (Hence, changes in the collateral

value of good xi will change the amount of cash-in-advance that supplier i− 1 can collect.)

The structure of the credit network between �rms can be summarized by the matrix of θij 's.

Θ ≡



θ11 θ12 θ13 · · · θ1M

θ21 θ22 θ23

θ31 θ32 θ33
...

. . .

θM1 θMM


=



0 0 0 · · · 0

θ21 0 0

0 θ32 0
...

. . .

0 θM,M−1 0


Henceforth, I refer to this matrix as the credit network of the economy. As we will see, the structure of this

network will play an important role in determing the aggregate impact of idiosyncratic shocks.

Liquidity constraints: Given �rm i's bank borrowing and liquidity sharing with other �rms, we can

now re-write �rm i's cash-in-advance constraint.

wni + pi−1xi−1 ≤ χipixi (3)
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where

χi ≡
bi
pixi

+
τi−1
pixi

+ 1− τi
pixi

The variable χi denotes the tightness of �rm i's liquidity constraint. Notice that χi is decreasing in
τi
pixi

, the

amount of i's output sold on credit: the more credit that i gives its customer, the less cash it collects at the

beginning of the period. We can replace τi using i+ 1's binding supplier borrowing constraint, to re-write χi.

χi = Bi + θi,i−1 + 1− αθi+1,i
pi+1xi+1

pixi
(4)

Equation (4) shows that χi is an equilibrium object; it is an endogenous variable which depends on the

revenue of �rm i and �rm i + 1. Hence, changes in the price of its customer's good a�ect the tightness of

�rm i's liquidity constraint. Note also that the dependence of χi on prices pi and pi+1 means that changes

a shock will have general equilibrium e�ects on each χi.

This a key di�erence with Bigio and La'O (2013), in which the tightness of each �rm's liquidity constraint

is an exogenous parameter. Here, the endogeneity of χi will be a critical determinant of how the system

responds to shocks. In addition, χi depends on �rm i's backward linkage with its supplier i−1 via θi,i−1, and

its forward linkage with its customer via θi+1,i. In the quantitative analysis, I will explore the implications

of changes any industry's ability to extend trade credit to its customers.

1.3.2 Firm Problems

I now examine each �rm's problem and optimality conditions. Firm i chooses its input purchases to maximize

its pro�ts, subject to its liquidity constraint.

maxni,xi−1 pixi − wni − pi−1xi−1

s.t. wni + pixi−1 ≤ χipixi

where χi is given by (4).

The solution of each �rm's given in detail in the Appendix. Firm i's optimality condition equates the

ratio of expenditure on each type of input with the ratio of their share of production.

wni
pi−1xi−1

=
ηi

ωi,i−1(1− ηi)

This condition pinds down the ratio of expenditure on each input. Notice that this condition is independent

of the tightness of i's constraint χi. Since the liquidity constraint is on �rm i's total expenditure on both
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inputs, it does not distort the �rm's optimal choice of expenditure on labor versus the intermediate good.

However, the constraint will limit the �rm's total expenditure on both inputs.

If �rm i's liquidity constraint is not binding in equilibrium, then it simply maximizes its pro�t function.

Its optimal level of expenditure on each input is determined by a condition which equates the marginal cost

of the input with its marginal revenue product. The �rm's expenditure on labor is therefore given by

wni = ηipixi , pi−1 = ωi,i−1(1− ηi)
pixi
xi−1

If, on the other hand, the constraint is binding in equilibrium, then the amount of liquidity χipixi that �rm

i has limits how much the �rm can spend on both inputs. In particular, �rm i's expenditure on labor and

good i− 1 is given by

wni =
χi
ri
ηipixi , pi−1 =

χi
ri
ωi,i−1(1− ηi)

pixi
xi−1

I show in the Appendix that �rm i's liquidity constraint (3) binds in equilibrium if and only if χi < ri,

where ri ≡ ηi + ωi,i−1(1 − ηi) denotes �rm i's returns-to-scale. Combining the two cases (constrained and

unconstrained) yields

w = φiηi
pixi
ni

, pi−1 = φiωi,i−1(1− ηi)
pixi
xi−1

(5)

where φi ≡ min
{

1, χiri

}
is strictly less than one if and only if �rm i's liquidity constraint is binding in

equilibrium. (5) says that, if binding, the liquidity constraint inserts a wedge φi < 1 between the marginal
cost and marginal bene�t of each input. A tighter liquidity constraint (lower χi) corresponds to a larger
wedge, and lower output. Hence, φi represents the distortion on �rm i's employment and production decision
due to the liquidity constraint.

Importantly, the wedge is endogenous to the model. This is clear when we replace χi in φi.

φi = min

{
1,

1

ri

(
Bi + θi,i−1 − αθi+1,i

pi+1xi+1

pixi

)}
The distortion to each �rm's labor use is endogenously determined by the price of the downstream good pi+1

and the �rm's forward and backward credit linkages, θi+1,i and θi,i−1. The credit relationships between �rms

also imply that the wedges φi are interdependent. To see this, �rst recall �rm i + 1's optimality condition

for its intermediate good (5),

pi = φi+1ωi+1,i(1− ηi+1)
pi+1xi+1

xi
(6)

This says that the �rm i+ 1 chooses its level of intermediate good use xi to equate the marginal cost of the
good pi with the marginal revenue product, times times the wedge φi+1 created by its liquidity constraint.
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Re-arranging this and replacing pi+1xi+1

pixi
in (6) yields φi as an increasing function of φi+1.

φi = min

{
1,

1

ri

(
Bi + θi,i−1 − αθi+1,i

1

φi+1ωi+1,i(1− ηi+1)

)}
The positive relationship between φi and φi+1 is a consequence of the fact that �rms collateralize their
revenue to borrow from suppliers. A tighter constraint of �rm i+ 1 implies that every �rm upstream of i+ 1
also has a tighter constraint.

1.4 Equilibrium

I close the model by imposing labor and goods market clearing conditions:

N =

M∑
i=1

ni , C = Y ≡ xM

De�nition of Equilibrium: An equilibrium is a set of prices {piiεI , w }, quantities xi, ni, τiiεI that

i) maximize the representative household's utility, subject to its budget constraint

ii) maximize each �rm's pro�ts subject to its cash-in-advance, bank borrowing, and supplier borrowing

constraints

ii) clear goods markets and the labor market.

Let ω̃i ≡
∏M
j=i+1 ωj,j−1 denote �rm i's share in total intermediate good use, and η̃i ≡ ηiω̃i denote �rm i's

share of labor in aggregate output. Let Ȳ denote the equilibrium aggregate output that would prevail in a

frictionless economy (à la Acemoglu et al. (2012)), given by

Ȳ ≡
M∏
i=1

η̃η̃ii z
ω̃i
i

Ȳ is log-linear in each �rm's productivity zi and depends on technology parameters ηi and ωi,i−1 for all i.

This is equivalent to an Acemoglu et al. (2012) economy in which �rms are organized in a vertical production

network and face no �nancial constraints.

In the Appendix, I show that for my economy, a closed-form expression for equilibrium aggregate output

Y is given by

Y = Ȳ Φ (7)

where Φ is an aggregation of each �rm's labor wedge
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Φ ≡
M∏
i=1

φ
∑i
j=1 η̃j

i

Thus, equilibrium aggregate output is log-linear in each �rm's labor wedge, and equals Ȳ if and only if φi = 1

for all i - i.e. if no �rm's liquidity constraint is binding in equilibrium.5 Φ̄ captures the aggregate liquidity

available to all �rms in the economy for trade in inputs. Therefore, (7) says that equilibrium aggregate

output is constrained by the aggregate liquidity in the economy at the beginning of the period. Notice that

through η̃j , �rms who are further downstream have a higher share of total employment through the use of

intermediate goods, and therefore have a higher impact on aggregate liquidity.

1.4.1 Equilibrium Characterization

To summarize the equilibrium, the cash-in-advance constraints faced by �rms induces a wedge on their

production, which depends on the tightness of their constraints. But in a setting where �rms share liqudiity

via trade credit, these wedges depend endogenously on the prices of downstream goods and the structure of

the credit network. In the next section, I explore the implications of this endogenous relationship between

wedges and prices for how aggregate output responds to �rm-level shocks.

At this stage, it is worth discussing how this economy compares to that of Bigio and La'O (2013). The

novelty of Bigio and La'O (2013) is to show how wedges aggregate in an input-output network. However, in

Bigio and La'O (2013), all payments between �rms are settled at the end of the period after production takes

place. As a result, there is no role for trade credit; and χi and φi are �xed exogenously. As I show in the

next section, the endogeneity of the wedges means that the economy behaves qualitatively very di�erently in

response to local shocks.

1.5 Aggregate Impact of Firm-Level Shocks

In this section, I examine the response of aggregate output to �rm-level liquidity and productivity shocks.

1.5.1 Liquidity Shocks

I model a liquidity shock to �rm i by a change in Bi, the fraction of �rm i's revenue that the bank will

accept as collateral for the bank loan. Consider a marginal fall in Bi given by d Bi. This is a reduced-form

way to capture an adverse shock to �rm i's bank which a�ects the ability of �rm i to obtain credit for

purchasing inputs.6

5Note that although Y is log-linear in each φi, it is not globally log-linear in χi. (This is re�ected in the kink in φi at
χi = ri.) Why is Y not globally log-linear in χi? The liquidity constraint creates a kink in the policy function for employment
ni at the point at which the liquidity constraint is no longer binding, i.e. at χi = ri . This kink carries over to Y in aggregation.
The kink implies: i) Y is not di�erentiable with respect to φi at φi = 1; ii) the left derivative of Y with respect to χi is strictly
positive at χi = ri, and the right derivative is zero; iii) Y is not globally log-linear in χi.

6In the general network model in the following section, each �rm sells some portion of its output directly to the household.
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The fall in Bi directly a�ects the amount of cash �rm i can raise at the beginning of the period. The

closed-form expression for χi (4) shows that the fall in Bi causes �rm i's liquidity constraint to tighten.

dχi
dBi

= 1 > 0

If �rm i's liquidity constraint is binding in equilibrium, then the tighter liquidity constraint forces the �rm

to cut back on production, as it no longer has su�cient beginning-of-the-period funds to �nance its original

input purchases. This is represented by an increase in �rm i's labor wedge, i.e. a decrease in φi. Since the

drop in �rm i's output is a contraction in the supply of good i, the price pi of the good rises.

On the other hand, if �rm i's liquidity constraint is not binding (i.e. if χi < ri), then the marginal drop

in liquidity does not a�ect �rm i's its output.

dφi
dBi

=

 1
ri
> 0 if χi < ri

0 otherwise

In the absence of any linkages with other �rms, the e�ects of the shock would be contained to �rm i. However,

the �rm is linked to other �rms via input-output linkages ωcs and credit linkages θcs, which transmit the

shock to other �rms. Indeed, there are two channels by which the shock propagates to other �rms, which I

now discuss in turn.

The �rst channel, which I call the standard input-output channel, arises from the input-output linkages

between �rm i and the other �rms in the production network, and is the standard channel analyzed in the

input-output literature, including Acemoglu et al. (2012) and Bigio and La'O (2013). This channel has two

separate e�ects on �rms upstream and downstream of �rm i. The reduction in �rm i's output increases the

price pi of good i. This acts as a supply shock to the customer downstream (�rm i + 1), who is now faced

with a higher unit cost of its intermediate good. In response, �rm i+ 1 cuts back on its use of both good i

and labor.7 Its output falls, and the price of its owns good pi+1, rises. This, in turn, acts as a supply shock

to �rm i + 2, and so on. Thus, as a result of the shock to �rm i, all �rms downstream experience a supply

shock to their intermediate goods, and cut back on labor as a result.

In this way, the initial liquidity shock to �rm i is propagated both upstream and downstream by the

input-output linkages between �rms. The e�ect of the shock on aggregate output is ampli�ed because each

time that a �rm reduces its output, it cuts back on its employment. The resulting fall in labor demand

reduces the wage and therefore reduces the household's demand for the consumption good (and aggregate

In this setting, one could alternatively interpret the fall in Bi as a failed payment by �nal consumer. In either case, these are
idiosyncratic shocks to the �rm's liquidity, and are not well-represented by a change in its productivity or technology.

7Firm i + 1's optimality condition for its use of intermediate good i implies that a higher pi will cause the �rm to reduce
xi+1

xi
in response to the increase marginal cost of the good. This amounts to reducing xi, its use of the intermediate good. The

other optimality condition pins down the ratio of expenditure on each input, implying that the fall in xi also causes the �rm to
reduce its employment ni.
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output). Thus, by propagating the shock from �rm to �rm, the input-output linkages cause a greater fall in

aggregate demand for labor, thereby amplifying the initial e�ect of the shock on aggregate output.

Note that this channel is ultimately driven by the input speci�city in each �rm's production technology,

as each downstream �rm is unable to o�set the supply shock by substituting away from using good i in their

production, and each upstream �rm is unable to o�set the demand shock by �nding other customers for its

good.

In addition to the standard input-output channel, there is a new channel of propagation, which I call the

credit linkage channel, in which the shock directly a�ects the cash-in-advance payments received by the �rm's

suppliers. This channel refers to the endogenous response in the wedges φj to the shock. To understand how

it works, recall that �rm i collateralizes its receivables in order to borrow from its supplier. The fall in �rm

i's output results in a rise in the price of its good pi.

τi−1 = θi,i−1pixi

This rise in price increases the collateral value of �rm i's output, allowing it to obtain a higher trade credit

loan, per unit of output, from its supplier. This means that the supplier, �rm i− 1, receives a lower cash-in-

advance payment per unit of output.8 Thus, with less cash on-hand, �rm i − 1 is now faced with a tighter

liquidity constraint itself. (Recall that χi−1 is decreasing in pi.)

χi−1 ≡ Bi−1 + θi−1,i−2 + 1− αθi,i−1
pixi

pi−1xi−1
(8)

More precisely, there are three e�ects on χi−1, the tightness of i− 1's constraint. First, the increase in pi

reduces χi−1 due to the lower cash-in-advance payment received from �rm i, as discussed above. Second, the

fall in �rm i's output reduces the ratio xi
xi−1

due to the decreasing returns to xi−1 (since ωi,i−1(1− ηi) < 1).

And third, the fall in i's demand reduces the price pi−1 of good i−1. Each of these e�ects reduces the amount

of cash that �rm i− 1 has per unit of its revenue, and so the shock to i unambiguously tightens �rm i− 1's

liquidity constraint. Notice from (8) that these e�ects are increasing in i − 1's downstream credit linkage

θi,i−1. Thus, there is a role for the structure of the credit network in determining how these liquidity shocks

propagate amongst �rms. I will examine this role further when I return to the general network structure

later.

Faced with a tighter constraint, �rm i − 1 may have to further cut back on its output, represented by a

rise in its wedge (i.e. a fall in φi−1). If it does indeed further cut back production, than it also cuts back on

employment. This reduces the demand for labor faced by the household, which in turn reduces the wage it

8Recall that higher TC means less CIA, reducing the liquidity of the creditor (supplier)
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earns. In this manner, the initial e�ect of the shock is ampli�ed. In addition, �rm i − 1 in turn passes the

shock on to its own suppliers and customers via both channels. This is discussed in the next section.

Note the role that α plays in mitigating the transmission of the shock via the credit linkage channel. The

higher that 1−α is, i.e. the more that �rm i−1 can collateralize its trade credit τi,i−1, the less that χi−1 falls

in response to the shock to i. Although i− 1 receives a smaller cash-in-advance payment from its customer,

it can collateralize a higher fraction of its trade credit to obtain more credit from the bank. This reduces

the loss in liqudity that it su�ers due to the smaller cash payment. Therefore, α parameterizes the degree to

which each �rm can substitute lost cash-in-advance payments for a higher bank loan. The value of α does

not e�ect the qualitative results of the model, but may have a quantitative e�ect.

Importantly, the two channels of propagation interact to amplify the impact of the initial shock to �rm

i, illustrated in the diagram below. The input-output (credit linkage) channel is represented by blue (red)

arrows. The e�ects begin with line (1), when the intial liquidity shock to �rm i triggers demand and supply

e�ects to other �rms in the network via the standard input-output channel. The initial impact of the shock

is ampli�ed by the input-output linkages between �rms. In the absence of the credit linkage channel, the

aggregate e�ect of the shock would be limited to this top line.

However, that each �rm's wedge is reacts endogenously to the initial shock through changes in collateral

value implies that the aggregate impact of the shock is actually much larger. Indeed, the fall in φi causes

�rm i−1 to receive less cash-in-advance, pushing down φi−1. This is equivalent to a second liquidity shock to

�rm i− 1, causing it to further reduce production. This extra drop in �rm i− 1's output again propagates to

other �rms in the network via input-output linkages, causing a larger drop in aggregate output, represented

by line (2). In turn, �rm i − 1's reduced cash payment to its supplier yields yet more supply and demand

e�ects, and so on, causing the initial e�ect of the shock to be ampli�ed as it is transmitted upstream.

1) Bi ↓ =⇒ ↓ φi =⇒ drop in demand for all j < i , drop in supply for all j > i =⇒ Y falls
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⇓

2) ↓ φi−1=⇒ drop in demand for all j < i− 1 , drop in supply for all j > i− 1 =⇒ Y falls

⇓

3) ↓ φi−2=⇒ drop in demand for all j < i− 2 , drop in supply for all j > i− 2 =⇒ Y falls

...

In this manner, the credit linkages between �rms trigger the standard input-output channel at every level

of production, increasing the total demand/supply e�ects faced by each �rm. Thus, a �rm-level liquidity

shock to in my model is isomorphic to an aggregate liquidity shock to all �rms in a model with �xed wedges,

e.g. Bigio and La'O (2013). I explore this point in further detail in the quantitative analysis.

1.5.2 Impact of Firm-Level Shock on Aggregate Output

I now formalize the network e�ects of the shock on aggregate output. Recall from (7) that equilibrium

aggregate output is log-linear in each �rm's wedge

log Y = log Ȳ + log Φ̄

Then the elasticity of aggregate output with respect to �rm i's bank borrowing Bi is given by

d log Y

dBi
=
d log Φ̄

dBi

Ȳ depends only on technology parameters and the productivity of each �rm. The liquidity shock to i therefore

a�ects aggregate output only via Φ̄, which represents the aggregate liquidity available to all �rms. Indeed,

if no �rm's liquidity constraint binds in equilibrium, then a marginal change in any �rm's liquidity has no

impact on any �rm's output.

In the Appendix, I show that the e�ect of Bi on aggregate liquidity can be decomposed as follows

d log Φ̄

dBi
=

M∑
j=1

v̄j
d log φj
dBi

(9)

The terms
d log φj
dBi

capture how the liquidity shock to �rm i a�ects the wedge of every other �rm j in the

network. As such, it represents the credit linkage channel of propagation. The terms v̄j map these changes
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in each �rm's wedge into aggregate output, and are given in the Appendix.

v̄j =

j∑
k=1

η̃k

v̄j represents the e�ect of the standard input-output channel of propagation, capturing how an increase in

the wedge of one �rm j a�ects aggregate output via the demand and supply e�ects to all other �rms, and

depends on the share of labor in aggregate output of each �rm.

Proposition 1:
d log φj
dBi

≥ 0 and is weakly increasing in θij for all �rms i and j.

Proof: See Appendix.

Proposition 1 states that a drop in �rm i's liquidity Bi causes other �rms j to experience an adverse

liquidity shock as well, and that the size of this e�ect is increasing in the downstream credit linkages between

�rms, as I discussed in the description of the credit linkage channel. A corollary of this proposition shows

how this in turn a�ects aggregate output.

Corollary: d log Y
dBi

≥ 0 and is weakly increasing in θjk for all �rms i, j, and k.

Proof: This follows from Proposition 1 and (7)

In the absence of the credit linkage channel, i.e. if the wedges φj were �xed as in Bigio and La'O (2013),

we would have
d log φj
dBi

= 0 for all j 6= i, and (9) would reduce to v̄i. However, since
d log φj
dBi

≥ 0 for all j, the

endogenous response of the wedges ampli�es the aggregate impact of the shock. In addition, the size of this

ampli�cation depends on the structure of credit linkages between the �rms, θij .

Proposition 1 and its corollary constitute the main theoretical result of the paper: �rm-level shocks are

ampli�ed by the credit network of the economy. Intuitively, stronger credit linkages imply that in response

to increases in collateral value, suppliers increase their lending by more, and therefore receive less cash-

in-advance; as a result, aggregate liquidity dries up faster in response to shocks. Firms have to cut back

on employment and production by more, amplifying the impact of the shock on aggregate output. Notice

also that the aggregate impact of a �rm-level shock depends on its location in network: shocks to di�erent

�rms will propagate di�erently depending on the input-output and credit linkages between �rms. Indeed,

how central the shocked �rm is in both the production and credit networks of the economy will ultimately

determine a shock's aggregate impact.
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1.5.3 Productivity Shocks

Now consider a productivity shock to �rm i, represented by a fall in i's total factor productivity (TFP) zi.
What is the e�ect on aggregate output? Recall the closed-form expression (7) for aggregate output

Y = Ȳ Φ

where

Ȳ ≡
M∏
j=1

η̃
η̃j
j z

ω̃j
j Φ ≡

M∏
j=1

φ
∑j
k=1 η̃k

j

I claim that Φ is independent of zi. To see this, �rst recall that φM = min{1, χMrM }, where χM = θM,M−1+BM
and rM ≡ ηM + (1− ηM )ωM,M−1 are independent of all zi. Next, recall that φM−1 = min{1, χM−1

rM−1
}, where

χM−1 = θM,M−1 +BM + 1− α θM
φMωM,M−1(1− ηM )

Thus, φM−1 is also independent of all zi. Continuing recursively, it follows that all wedges φj are independent
of TFP zi. Intuitively, changes in a �rm's TFP do not a�ect the severity of agency frictions between the �rm
and its creditors, and therefore they do not a�ect the tightness of its liquidity constraint.

Since zi enters only in Ȳ , we have

d log Y

d zi
=
ω̃i
zi

Recall that ω̃i ≡
∏M
j=i+1 ωj,j−1 represents �rm i's share in total intermediate good use. A fall in �rm i's

productivity a�ects its demand for intermediate goods and its supply of good i. This is the standard input-
output channel at work. However, productivity shocks don't a�ect the wedges φj . Therefore, the credit
network plays no role in propagating productivity shocks.

Because liquidity shocks directly a�ect �rm wedges while productivity shocks do not, productivity and

liquidity shocks will have di�erential e�ects on a �rm's output and employment. In Part III, I will use these

di�erential e�ects to separately identify liquidity and productivity shocks from the data.

1.5.4 Summary of Theoretical Analysis

To summarize, three main insights emerge from the model. First, when �rms are suppliers of intermediate

goods as well as the creditors who �nance the transactions of these goods, �rm-level shocks can endogenously

generate large changes in the aggregate liquidity available for trade in intermediate goods. This creates a

multiplier e�ect which ampli�es the aggregate e�ects of �rm-level shocks. Second, the aggregate impact of

these shocks depends on structure of the credit network, i.e. how �rms borrow from and lend to one another.

But what precisely is the role of the credit network? Until now, the structure of the networks was assumed

to be a straight line, shedding little light on its exact role in generating aggregate �uctuations. And is this

mechanism quantitatively relevant? To answer these questions requires a model incorporating more features
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of the economy which can be taken to the data. To this end, I return to the general network framework in

the next section.

2 General Model

I now return to the general production network structure summarized by

Ω ≡



ω11 ω12 ω13 · · · ω1M

ω21 ω22 ω23

ω31 ω32 ω33

...
. . .

ωM1 ωMM


Recall that each of the M goods can be consumed by the household or used in the production of other goods.

Firm i's production function is again Cobb-Douglas over labor and intermediate goods.

xi = zηii n
ηi
i

 m∏
j=1

x
ωij
ij

1−ηi

Here, xi denotes �rm i's output and xij denotes �rm i's use of good j. Since ωij denotes the share of j in i's

total intermediate good use, I assume
∑M
j=1 ωij = 1, implying that each �rm has constant returns to scale.

2.1 Household

The representative household has GHH preferences given by

U(C, N) =
1

1− γ

(
C − 1

1 + ε
N1+ε

)1−γ

, C ≡
M∏
i=1

cβii

where ε and γ respectively denote the Frisch and income elasticity of labor supply. Quantitatively similar

results will hold for preferences which are additively separable in aggregate consumption C and labor N .

The household maximizes its utility subject to (1), the household budget constraint. This yields optimality

conditions equating the ratio of expenditure on each good with the ratio of their marginal utilities, and

equating the competitive wage with the marginal rate of substitution between aggregate consumption and

labor.
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pici
pjcj

=
βi
βj

, N1+ε = C

2.2 Firm Liquidity

Each �rm's liquidity constraint takes the same form as in the stylized model, with the exception that each

�rm has M suppliers and M customers instead of just one of each. Firm i is required to pay its wage bill

wni and its intermediate good purchases psxis from each supplier s in advance. It receives a loan bi from the

bank and a trade credit loan τis from each supplier.

wni +
M∑
s=1

(psxis − τis)︸ ︷︷ ︸
net CIA payment to suppliers

≤ bi + pixi −
M∑
c=1

τci︸ ︷︷ ︸
net CIA received from customers

Each �rm faces a borrowing constraint each of its suppliers, to which it can pledge fractions θis of its revenue

in return for the loans. The borrowing constraints take the form

τis ≤ θispixi

The credit network can be summarized by the matrix

Θ =



θ11 θ12 θ13 · · · θ1M

θ21 θ22 θ23

θ31 θ32 θ33
...

. . .

θM1 θMM


Each �rm can also borrow bi from the bank by pledging Bi of its revenue and 1 − α of its accounts

receivable
∑M
c=1 τci, so that its bank borrowing constraint takes the form

bi ≤ Bipixi + (1− α)

M∑
c=1

τci

α < 1 parameterizes the substitutability of cash-in-advance payments and bank credit. If i's customer c

reduces its cash-in-advance payment to i by one dollar, then i experiences a net loss in liquidity of α dollars;

it looses 1 dollar in cash, but is able to borrow 1−α more dollars from the bank. Thus, it is able to partially

substitute the lost cash payment with more bank credit. α = 1 corresponds to the case when the two are not

substitutable, and α = 0 to the case when they are fully substitutable. The choice of α will have an e�ect of

22



the quantitative predictions of the model, which I discuss later on.

Each �rm chooses the size of the loan to obtain from each creditor, so that the borrowing constraints

bind in equilibrium. Plugging the binding borrowing constraints into �rm i's liquidity constraint yields a

constraint on i's total input purchases

wni +

M∑
s=1

psxis ≤ χipixi

where χi denotes the tightness of i's liquidity constraint.

χi = Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
pcxc
pixi

Note that χi is again an equilibrium object, depending on the prices customers' goods pc and forward credit

linkages θci for all c.

TABLE SUMMARIZING DEFINITIONS OF PARAMETERS AND EQ. VARIABLES

2.3 Firm Optimality Conditions and Market Clearing

Firms choose labor and intermediate goods to maximize pro�ts subject to their liquidity constraint. This

yields optimality conditions of the same form, equating the ratio of expenditure on each good with the ratio

of their marginal revenue products.

wni
pjxij

=
ηi

(1− ηi)ωij
Again, the liquidity constraint of �rm i inserts a wedge φi between the marginal cost and marginal revenue

product of each input

ni = φiηi
pi
w
xi xij = φi (1− ηi)ωij

pi
pj
xi (10)

where the wedge depends on the tightness of i's consraint and its returns-to-scale.

φi = min

{
1 ,

χi
ri

}
, ri ≡ ηi + (1− ηi)

M∑
j=1

ωij (11)

Note that the wedge is still an equilibrium object, depending on collateral value of each customer's output

and forward credit linkages. Endogenous wedges imply equilbrium will take same form, and will respond in

qualitatively same way as previously.

Market clearing conditions for labor and each intermediate good are given by
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N =

M∑
i=1

ni xi = ci +

M∑
c=1

xci

The richness of the model a�orded by the general network structure and household preferences will allow

me to take the model to the data and examine quantitatively the role of the credit network in generating

aggregate �uctuations. The equilibrium conditions take the same form as in the stylized model, and the

economy will behave in qualitatively the same way in response to shocks as in the stylized model. However,

the general network structure precludes a closed-form solution.

2.4 Relationship Between Firm In�uence and Size

A well-known critique of standard input-output models such as Acemoglu et al. (2012) is that a su�cient

statistic for a �rm's in�uence is its share of total sales in the economy. In other words, the size of a �rm as

measured by its share of aggregate sales is su�cient to determine the aggregate impact of a shock to sector

i, and one does not need to know anything about the underlying input-output structure of the economy.

All relevant information is captured by the sales share. As a result, an idiosyncratic shock to any �rm is

isomporphic to an aggregate TFP shock weighted by each �rm's share of total value-added. This feature

makes it di�cult to claim that the origin of aggregate �uctuations is idiosyncratic rather than aggregate

shocks, using this class of frictionless models.

Bigio and La'O (2013), however, show that this isomorphism breaks down when the economy has fric-

tions. In particular, the impact on economic aggregates of an idiosyncratic shock to sector i depends on

the underlying input-output structure of the economy, and cannot be summarized by the sector's share of

aggregate sales.

My model shows that when the constraints faced by �rms depends endogenously on their credit relation-

ships and the prices of downstream goods, knowing the input-output structure of the economy is no longer

su�cient to measure the aggregate impact of a shock to a sector or �rm i. How a liquidity shock propagates

to other �rms depends on the credit linkages between them. Therefore, to know how shocks propagate in my

economy, one needs to know the underlying structure of credit linkages between �rms. Thus, the aggregate

impact of an idiosyncratic shock depends on the structure of the input-output network, and the structure of

the credit network.

2.5 Solving the General Model

The equilibrium of the general model is the solution to system of M2 + 5M + 2 nonlinear equations in the

same number of unknowns, listed in the Appendix. For any set of model parameters
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{{
zi, Bi, ηi, βi, {θij , ωij}jεI

}
iεI
, α, ε, γ

}
there is a unique solution to the system. Since the model is one period, the behavior of the system in response

to shocks can be modeled by comparative statics. In particular, I am interested in the change in the economy

that results form a perturbation of one or more of the model parameters {Bi, zi}iεI , representing liquidity

and productivity shocks, respectively. I therefore log-linearize the system of nonlinear equations around a

point {B∗i , z∗i }. In the quantitative analysis, I calibrate this point (and the remainder of the parameters), to

match data for the US economy. I thus obtain a log-linear approximation for the response of the equilibrium

variables to �rm-level liquidity and productivity shocks.

It is worth clarifying one point about productivity shocks. It turns out from the Cobb-Douglas spec-

i�cation of �rm production functions that the equilibrium is already log-linear in each zi. Therefore, the

log-linearized response of the equilibrium variables to a change in zi is independent of the level of zi. There-

fore, I do not need to calibrate the parameters {zi}iεI to approximate a response in the economy to a

productivity shock. Indeed, when one log-linearizes the equilibrium system around {B∗i , z∗i }, z∗i drops out of
the log-linear equations.

Part II

Quantitative Analysis

Having established analytically that the credit network of the economy can amplify �rm-level shocks, I now

ask whether this mechanism is quantitatively signi�cant for the US, and examine more carefully the role that

the structure of the credit network plays. But before these questions can be addressed, I need disaggregated

data on trade credit �ows in order to calibrate the credit network of the US economy.

Unfortunately, data on trade credit �ows at any level of detail is scarce. While accounts payable and

receivable are generally observable at the �rm-level from Compustat, �ows of trade credit between �rm- or

industry-pairs is not. In order to overcome this paucity of data, I construct a proxy of industry-level trade

credit �ows from industry-level input-output data and �rm-level balance sheet data, which I now describe.

3 Mapping the US Credit Network

The purpose of this section is to construct a proxy for trade credit �ows τij between industries i and j, from

which I can later calibrate the structural parameters θij .
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3.1 Data

To build my proxy, I use two sources of data: input-output tables from the Bureau of Economic Analysis

(BEA) and Compustat North America over the sample period 1997-2013. The BEA publishes annual data

on commodity use by industry (Uses by Commodity Table) at the three-digit level of the North American

Industry Classi�cation System (NAICS). At this level, there are 58 industries, exlcuding the �nancial sector.

From this data, I observe annual trade �ows between each industry-pair, which corresponds to pjxij in my

model for every industry pair {i, j}. The BEA also publishes an annual Direct Requirements tables at the

same level of detail, which indicate for each industry the amount of a commodity that is required to produce

one dollar of that industry's output. These values are quite stable over my sample period. In constructing

my proxy, and also in calibrating the model later, I use the input-output tables of the median year in my

sample, 2005.

Compustat collects balance-sheet information annually from all publicly-listed �rms in the US. The avail-

able data includes each �rm's total accounts payable, accounts receivable, cost of goods sold, and sales in

each year of the sample. Therefore, while I cannot identify from whom each �rm receives trade credit or to

whom it extends credit, I observe the total stock of trade credit and trade debt that it has in any year.

3.2 Constructing the Proxy

To construct the proxy of trade credit �ows, I partly follow the strategy of Raddatz (2010). I begin with

the observation that a trade credit loan from supplier to customer is typically a fraction of the value of the

sale from supplier to customer. In other words, a fraction of the sale is made on trade credit. This has been

documented empirically in various studies including Petersen and Rajan (1997). I therefore assume that the

trade credit from industry j to industry i is proportional to the value of the sale.

τij = qijpjxij

Here, qij denotes the fraction of i's purchase from j made on trade credit. The value of the total purchase

pjxij is directly observable from the BEA input-output tables. So to construct the proxy for τij , it remains

to construct an estimate of qij for each industry-pair.

For each �rm in the sample, I want a measure of its cost of goods sold (COGS) �nanced with accounts

payable (AP) in each year t, which I call its payables �nancing (PayFin) at time t. Since a �rm may repay

its accounts payable irregularly, simply taking the ratio APt
COGSt

may in part re�ect a spuriously high or low

repayment of its accounts payable in that year. Therefore, I take a take a moving average of AP to smooth

it over time. Thus, I compute �rm f 's payables �nancing at time t as
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PayFinf,t =
.5 (APf,t−1 +APf,t)

COGSf,t

I do this only for years in which there is data for both AP and COGS for each �rm. I obtain a �rm-level

measure of payables �nancing by taking the median of PayFinf,t across time, to minimize e�ect of outliers

and get a representative �rm-level estimate of the average COGS �nanced with trade credit. Then to get

an industry-level measure of payables �nancing, I take the median of PayFinf across all �rms f in each

three-digit level NAICS industry. In this way, I obtain a measure of payables �nancing for each of my

industries.

Raddatz (2010) uses this industry-level measure of PayFin to construct qij . However, since he only uses

AP data, he must impose that qij = qik for all j, k. In other words, he assumes that each industry �nances

the same fraction of purchases with trade credit, across all of its suppliers. This is a fairly strong assumption

that he is forced to make due to the paucity of data on trade credit. However, I improve on this proxy by

making use of additional data on accounts receivables to obtain a more precise and industry-pair-speci�c

measure of qij .

In particular, I construct an industry-level measure of the fraction of total sales made on credit to cus-

tomers, which I call the industry's receivables lending (RecLend), using each �rm's accounts receivable (AR)

and sales each year.

RecLendf,t =
.5 (ARf,t−1 +ARf,t)

Salesf,t

I then aggregate across time and across �rms in each industry to obtain an industry-level measure of receiv-

ables lending.

The measure PayFini tells me how much trade credit each industry i receives from all of its suppliers

collectively; it does not tell me how this breaks down across each of its suppliers. Similarly, RecLendi tells

me how much trade credit each industry i gives to all of its customers collectively; it does not tell me how

this breaks down across each of its customers. Therefore, to construct qij the fraction of industry j's sales to

industry i made on trade credit, I take a weighted average of PayFini and RecLendj . In the next section, I

consider two weighting schemes and compare their aggregate accuracy. My baseline proxy uses weights given

by each industry's total sales.

q̂ij = bijPayFini + bjiRecLendj , bij ≡
pixi

pixi + pjxj

Therefore, a larger industry will carry more weight in determining the trade credit �ows to and from it.

Alternative weighting schemes, such as equal weights to both cusomer and supplier, do not signi�cantly alter

the results. Given my proxy q̂ij , inter-industry trade credit �ows are then proxied as

τ̂ij = q̂ijpjxij

27



3.3 Choosing a Proxy

In this section, I consider an alternative weighting scheme for building the proxy q̂ij and compare it with my
baseline weighting scheme. Let FB(PayFini, RecLendj) denote the baseline weighting function for building
q̂ij , in which weights are assigned each argument according to the size of each industry.

FB(PayFini, RecLendj) =
pixi

pixi + pjxj
PayFini +

pjxj
pixi + pjxj

RecLendj

The alternative I consider is FA, in which I assign equal weights to the arguments.

FA(PayFini, RecLendj) =
1

2
PayFini +

1

2
RecLendj

FB and FA are equivalent when all industries have the same revenue. To the extent that there is greater
variation in the size of industries, the two weighting schemes will produce di�erent proxies for qij . Since the
variation in the observed size distribution of industries is non-negligable, I need a metric by which to choose
between FB and FA.

Recall that the measures PayFini and RecLendi respectively measure how much of their cost of goods
sold �rms in industry i �nance with accounts payable, and how much of their sales are made on trade credit.
Then by construction, industry-level measures of the stock of accounts payable and accounts receivable are
given by

APDatai ≡ PayFini
M∑
s=1

psxis ARDatai ≡ RecLendi
M∑
c=1

pixci

Recall that industry sales psxis are directly observed from the BEA input-output tables of the median year of
my sample, 2005, for all industries i and s. Then APDatai and ARDatai are the time-aggregated, industry-level
measures of accounts payable and accounts receivable measured in the data using Compustat and the BEA
input-output tables. On the other hand, the analogous measures implied by each proxy P ε {B, A} are given
by

APProxy Pi =

M∑
s=1

FP (PayFini, RecLends)psxis ARProxy Pi =

M∑
c=1

FP (PayFinc, RecLendi)pixci

How well a proxy matches the aggregate accounts payable and receivable in the data can be measured by the
sum of the di�erences in aggregate measures in the data versus those implied by the proxy.

D ≡ |APDatai −APProxy Pi |+ |ARDatai −ARProxy Pi |

It turns out that using FB produces a smaller value for D than using FA. To see this, �rst note that
|PayFini − FP (PayFini, RecLends)| and |RecLendi − FP (PayFinc, RecLendi)| will be smaller on average the
larger that industry i (i.e. for industries with high revenue). This is because there is a greater weight placed
on PayFini and RecLendi when industry i is larger than its counterparty. On the other hand, |PayFini −
FA(PayFini, RecLends)| and |RecLendi − FA(PayFinc, RecLendi)| will be the same on average, regardless of
industry i's size. Also notice that D is simply the weighted sum of |PayFini − FP (PayFini, RecLends)| and
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|RecLendi−FP (PayFinc, RecLendi)|, weighted by the size of industries. Thus, it follows that D is smaller for
FB than for FA.

Put di�erently, because D is a weighted sum of |PayFini − FP (PayFini, RecLends)| and |RecLendi −
FP (PayFinc, RecLendi)|, and weights are given by by the revenue of industry i, then to make D small, we
want to make |PayFini−FP (PayFini, RecLends)| and |RecLendi−FP (PayFinc, RecLendi)| small for industries
with larger revenue. Using FB achieves this. For this reason, I choose FB as the baseline and proceed using
this proxy.

4 Calibration

With proxy for trade credit �ows at hand, I calibrate the general model of Section 6 to match data on

the US economy. My calibration strategy involves using the BEA input-output tables to calibrate technology

parameters, and my proxy to calibrate the �nancial parameters. In this section, I describe this strategy in

detail.

4.1 Technology Parameters

I calibrate technology parameters ηi and ωij to match the BEA input-output tables of the median year

in my sample, 2005. At the three-digit level, I have 58 industries after exlcuding �nancial industries. From

�rm i's optimality conditions (10), we can write the �rm's total expenditure on inputs as

wni +

M∑
j=1

pjxij =

ηi + [1− ηi]
M∑
j=1

ωij

φipixi

= φipixi

where the second equality holds due to the constant returns to scale of i's production technology. This implies

that

φi =
wni +

∑M
j=1 pjxij

pixi
(12)

The right-hand side of (12) is directly observable from the BEA's Direct Requirements table. Therefore I

calibrate φi to match industry i's direct requirements of all commodities and labor.

Looking through the lense of the model, the observed input-output tables re�ect both technology pa-

rameters and distortions created by the liquidity onstraints. My calibration strategy respects this feature.

In particular, I calibrate technology parameters using �rm i's optimality conditions for each input and my

calibrated φi's
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ηi =
wni
φipixi

ωij =
pjxij

(1− ηi)φipixi

Again the ratios wni
pixi

and
pjxij
pixi

are directly observable from the Direct Requirements tables for every industry

i and j.

GRAPHIC OF PRODUCTION NETWORK

4.2 Financial Parameters

I calibrate the parameters θij , representing severity of agency problems between industry j and i, to

match my proxy of inter-industry trade credit �ows τ̂ij . Industry i's binding borrowing constraints pin down

its level of borrowing from each of its suppliers j.

θij =
τij
pixi

Industry i's total revenue pixi is directly observable from the Uses by Commodity tables. (Recall that I use

the input-output tables for year 2005). I then use this and my proxy for trade credit τ̂ij to calibrate θij .

To calibrate Bi, the parameters re�ecting the severity of agency problems between each industry and the

bank, recall the de�nition of φi given by (11), which depends on the technology parameters (calibrated as

described above) and the tightness χi of each industry's liquidity constraint, where

χi = Bi +

M∑
s=1

θis + 1−
M∑
c=1

θci
pcxc
pixi

(13)

The total revenue of each industry pixi is observable from the Uses by Commodity tables, and φi and θis for

all s were calibrated as described above. I therefore use (13) and (11) to back out Bi for each industry.

4.2.1 Calibrated Credit Network

Figure 1 plots the calibrated matrix Θ, which represents the credit network of the US economy at the

three-digit NAICS level of detail. The matrix is relatively sparse in areas in which indistries do not engage in

much trade. Also �rms within the same industry are lend to and borrow from one another more intensively,

as represented by the red diagonal.

To identify which industries take a more central role in the credit network, I de�ne the credit out-degree

(CODi) and credit in-degree (CIDi) of industry i as

CODi ≡
M∑
c=1

θci CIDi =

M∑
s=1

θis
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These two measures respectively measure how much trade credit an industry provides the rest of the economy,

and how much it receives from the rest of the economy.. An industry with a high credit out-degree (credit

in-degree) makes a high fraction of its total sales (intermediate goods purchases) on credit, ceteris paribus.

A few industries take particularly central positions in the credit network of the US: the technical services

and oil and gas extraction industries provide the rest of the economy with a lot of credit, while the oil and

gas auto manufacturing absorb a large amount of credit from the rest of the economy. Figure 2 plots the

distribution of the credit out- and in-degrees of the US.

While there is signi�cantly more variation in the credit out-degrees of industries (standard deviation

.0671) than the credit in-degrees (standard deviation .0228), the distribution of the former is skewed right.

4.3 Remaining Parameters

It remains to calibrate the Frisch and income elasticity parameters ε and γ, and α which parameterizes

the substitutability of cash-in-advance payments and bank credit. I follow the standard literature and set

ε = 1 and γ = 2. Omiccioli (2005) examines how �rms collateralize their trade credit for bank borrowing for

a sample of Italian �rms, and �nds that the median �rm in the sample collateralizes about 20 percent of its

accounts receivable. I therefore set 1− α = .2, or α = .8.

5 Quantitative Results

With my model calibrated to match the US economy, I am in a position to examine the quantitative

response of the economy to industry-level and aggregate productivity and liquidity shocks. I �rst ask how

much aggregate �uctuations does the credit network of the US economy generate?
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Figure 2:
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Total With credit linkage channel
Shut-O�

Pct. Fall in Y 3.80 2.61

5.1 Aggregate Liquidity Shock

In order to answer this, I perform the following exercise. Suppose that the economy is hit with a one

percent aggregate liquidity shock: each industry i's liquidity falls by one percent. By how much does aggregate

output Y fall?

To the guage the maximium e�ect that the credit network can generate, I �rst compute the fall in Y for

α = 1. This corresponds to the case in which industries cannot substitute lost cash-in-advance payments for

more bank credit. The propagation of liquidity shocks is strongest for this case. I then allow for subsitutability

by setting α to its baseline calibrated value of .8, in order to have a more conservative estimate of the aggregate

impact of the shock.

5.1.1 Results for α = 1

I �nd that, under this speci�cation, aggregate output falls by 3.99 percent. This is represents a large

aggregate e�ect of the shock. To assess how much of this drop in aggregate output is generated by the

propagation of shocks via the credit network, I perform the same exercise, shutting down the credit linkage

channel. I leave the detailed technical explanation of how I do this to the Appendix. The intuitive explanation

is as follows. Recall that in the model, changes to �rm i's wedge φi come either from the direct liquidity

shock B̃i to �rm i, or from shocks to other �rms being transmitted to i via its credit linkages. In shutting

down the credit linkage channel, I impose that changes in the wedges come only from direct liquidity shocks

to each �rm. In this way, the credit linkages play no role in propagating shocks. With the credit linkage

channel shut down, I compute the response in aggregate output to the same aggregate shock, and compare

it to the baseline case. The results are summarized in Table 1.

The e�ect of the credit linkages in propagating the shocks throughout the network increase the response

in aggregate output to the shock by 1.38 percentage points. Put di�erently, the credit network accounts for

31.4 percent of the �uctuation in aggregate output in response to an aggregate liquidity shock. These are

quantitatively signi�cant results, suggesting that the credit network of the US can play an important role in

generating aggregate �uctuations in GDP from liquidity shocks.

Which industries are most vulnerable to the aggregate liquidity shock? Put di�erently, which experience

the largest drop in output?

Figure 3 plots the �ve most vulnerable and �ve least vulnerable industries. Note that auto manufacturing
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Figure 3:
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Total With credit linkage channel
Shut-O�

Pct. Fall in Y 3.15 2.61

is one of the most vulnerable industries. (Will expand on this).

5.1.2 Results for for α = .8

Next, I perform the same exercise for with α = .8, allowing for substitutability between bank credit and

cash-in-advance payments. Table 2 reports the results.

Even in this more conservative case, the aggregate impact of the shock is quite large: Y falls by 3.15

percent. Although the ampli�cation generated by the credit network falls substantially, it is still quantitatively

relevant. The credit linkages between industries produce a larger drop in Y by .54 percentage points. Put

di�erently, the credit network of the US accounts for 17.1 percent of the drop in GDP in response to the

aggregate liquidity shock. Therefore, even allowing for �rms to substitute lost payments with increased bank

borrowing does not substantially diminish the e�ect of credit linkages in generating aggregate �uctuations.

The remainder of the paper uses α = .8.
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Figure 4:
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5.2 Industry-Level Liquidity Shocks

Next, I ask which industries are most systemically important in the economy, and how this relates to their

position in the credit network. I measure the systemic importance of industry i by the elasticity of aggregate

output with respect to its liquidity Bi.
9 A higher elasticity implies that an industry-level liquidity shock to

i has a larger impact on aggregate output.

Figure 4 shows a bar graph of the �ve most and �ve least systemically important industries in the US. The

blue bars show the elasiticity of aggregate output with respect to each industry's liquidity, or the percentage

drop in Y following a 1 percent drop in Bi.

The red bars show the contribution of the full credit network to each elasticity, which is computed by

subtracting the drop in Y that occurs with credit linkage channel shut o�, from the total drop in Y . To

shut o� the credit linkage channel, I impose that each industry's wedge φi changes only in response to a

direct liquidity shock to that industry, and not endogenously through credit linkages with other industries.

This gives the drop in aggregate output that would occur in the absence of credit linkages, i.e. if the wedges

of industries did not respond endogenously to changes in prices. This is explained in more detail in the

Appendix. In this way, I numerically measure by how much the industry-level shock is ampli�ed by the

credit network.

Two results emerge from this exercise. First, the model implies that an industry-level liquidity shock can

have a strong impact on US GDP. For example, although the technical services industry accounts for only

9Recall that in the general model precludes analytical expressions for this elasticity. I therefore compute these numerically.
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.069 percent of US GDP, a one percent liquidity shock this industry causes a fall in GDP of .19 percent,

due to its input-output and credit linkages with other industries. This is an enormous response in aggregate

output. In the absence of any linkages, the elasticity of GDP to this industry's liquidity would be equal

to its share of GDP; i.e. GDP would fall by only .069 percent in response to this shock. Therefore, the

network e�ects generated by input-output and credit linkages greatly amplify the aggregate impact of the

industry-level shock.

Second, the credit network of the US plays a quantitatively signi�cant role in amplifying these industry-

level shocks. On average, between one �fth to one half of the fall in GDP in response to an industry-level

shock is due to the role of credit linkages in propagating the shock across the network. Consider again a one

percent liquidity shock to the technical services industry. In the absence of credit linkages, US GDP would

fall by only .16 percent in response this shock. Therefore, the credit network accounts for about one �fth of

this industry's systemic importance. (The remainder of the ampli�cation is then caused, of course, by the

input-output linkages).

5.3 Systemic Importance and the Credit Network

How does an industry's position in the credit network relate to its systemic importance? Put di�erently,

how does the systemic importance of an industry depend on its role as a provider of liquidity to the rest

of the economy? Figure 5 shows a scatter plot of each industry's systemic importance (as measured by the

elasticity of Y with respect to its liquidity) and its credit out-degree, with a �tted least-squares line. Recall

that the credit out-degree of an industry measures its centrality in the credit network: an industry with a

higher credit out-degree provides more trade credit to the economy as a whole.

The plot indicates that there is a strong positive relationship between the credit out-degree of an industry

and its systemic importance. The correlation between the two measures is 0.6. On average, a one standard

deviation increase in an industry's credit out-degree corresponds to an increase of 0.13 percentage points in

the elasticity of Y with respect to its liquidity, or 0.59 standard deviations. Put di�erently, a one percent

liquidity shock to an industry will reduce GDP by 0.13 percentage points more than the same shock to an

industry which provides less credit to the economy by one standard deviation. Therefore, there is a strong

association in the model between an industry's systemic importance and how important that industry is in

providing credit to the rest of the economy.

How does the structure of the credit network a�ect an industry's systemic importance? It turns out that an

industry is systemically more in�uential if its suppliers provide a lot of trade credit to the rest of the economy.

For instance, take the auto manufacturing industry, for which aggregate output has a liquidity-elasticity of

.0722. Its most important supplier, metal manufacturing, has a credit out-degree of .1257. Increasing this

credit out-degree by two standard deviations, or .134210, and holding all else constant, increases the systemic

in�uence of auto manfucturing by .002 percetage points, or 2.8 percent. Similar results hold for most other

10To to do this, I increase \theta_{ci} by ___ for each c\epsilonM, where i corresponds to metal manufacturing.

36



Figure 5:
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industries. On average, increasing the credit out-degree of i's most important supplier increases i's systemic

in�uence by ___ percentage points. This is a quantitatively signi�cant e�ect, indicating that the aggregate

impact of an industry-level shock to industry i depends strongly on how much liquidity i's main suppliers

provide to the rest of the economy.

The reason for this was elucidated by the analytical results of the stylized model, and can be understood

in two steps. Suppose industry i experiences a liqudity shock to Bi, and suppose that its most important

supplier is industry j. First, the liquidity shock to i acts as a supply shock to each of its M customers,

which increases the price of these customers' goods. This increase in price increases the collateral value of

each customer's output. Second, since industry j also supplies goods to these M industries, the increase in

collateral value means that j collects cash-in-advance becomes more constrained. Industry j then passes this

shock to to the rest of the economy, and so on. The stronger that industry j's downstream credit linkages

are with other industries, i.e. the higher its credit out-degree, the stronger this e�ect is, and the greater the

aggregate impact of the shock to Bi. The mechanics of this is explained in detail in the Appendix using the

log-linearized equations.

5.4 Summary of Quantitative Analysis

The quantitative analysis showed that i) the credit linkages between US industries play a quantitatively

signi�cant role in amplifying aggregate and industry-level liquidity shocks, even when allowing for substi-

tutability between bank credit and cash payments; ii) the aggregate impact of an industry-level liquidity shock

depends on the structure of the credit network; and iii) the systemic importance of an industry depends on

37



how important for the economy its suppliers are in providing credit.

Therfore an understanding of the role that credit linkages play in propagating idiosyncratic shocks in-

troduces a new notion of the systemic importance of �rms or industries based on their place in the credit

network. The e�ects of these linkages are quantitatively important. Therefore, by overlooking the importance

of credit linkages between non�nancial �rms, the literature has missed an important determinant of what

makes an industry or �rm systemically important.

5.5 Aggregate Productivity Shock

Part III

Empirical Analysis

Now that I have established the role that the credit network plays in propagating shocks, and shown that

it can play a quantitatively signi�cant role in generating �uctuations in aggregate output by amplifying

liquidity shocks, I turn to the empirical analysis. I ask, in light of the credit linkages we observe between

industries in the US, what role did the credit network of the US play during the Great Recession? How

much of observed aggregate volatility can be accounted for by liquidity versus productivity shocks? Have

idiosyncratic or aggregate shocks played a more important role in US business cycles? The answers to

these questions depends on the nature and magtinude of the shocks that hit the economy over this period.

Therefore, to answer these questions, I �rst need to estimate shocks.

My empirical strategy follows a structural factor analysis approach, similar to that of Foerster et al. (2011),

on US industrial production industries at the three-digit NAICS level. In all, I allow for four types of shocks:

aggregate liquidity and productivity shocks, and industry-level (idiosyncratic) liquidity and productivity

shocks. This approach involves a two-step procedure for estimating each type of shock. First, I use the

model to back-out the liquidity and productivity shocks which hit each industry each quarter, using data on

each industry's output growth and employment growth. Second, I use dynamic factor methods to decompose

these shocks into an aggregate component and an industry-level component. I then feed these estimated

shocks into the model to estimate the role of each type of shock, and the credit network of US manufacturing

industries, in generating observed aggregate volatility.

6 Estimation of Shocks
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6.1 Data

From the Federal Reserve Board's Industrial Production Indexes, I observe the growth rate in output of all

manufacturing and mining industries at the three-digit NAICS level, at the quarterly frequency. There are 23

such industries at this level of detail. From the Bureau of Labor Statistics' Quarterly Census of Employment

and Wages, I observe the number of workers employed by all industries at the three-digit NAICS level.11 For

each dataset, I take 1997 Q1 -2013 Q4 as my sample period. I seasonally-adjust and de-trend each series.

Looking through the lense of the model, these observed quarterly �uctuations may be driven by:

1. Industry-level liquidity or productivity shocks

2. Aggregate liquidity or productivity shocks

3. Credit and input-output linkages which propagate these shocks

The answers to my questions of interest depend on the relative importance of each of these in driving

�uctuations. Since my calibrated model tells me how much industry j's output or employment changes in

response to a liquidity or productivity shock to i, I use the model to control for the e�ect of credit and

input-output linkages in propagating shocks across industries. To identify aggregate versus industry-level

components of the estimated shocks, I use standard dynamic factor methods. The only remaining challenge

is to identify how much �uctuations are driven by changes in productivity versus changes in liquidity.

Most of the literature takes one of two extreme positions on the source of �uctuations: they are assumed

to be driven either entirely by productivity shocks (as in Foerster et al. (2011) and Acemoglu et al. (2012))

or entirely by liquidity shocks (as in Bigio and La'O (2013)). By making use of both employment and output

data, I make a weaker assumption and allow for both types of shocks. In the next section, I �rst describe

how I back-out shocks using this data and my model. I then discuss how my model is able to separately

identify liquidity and productivity shocks from the data on output and employment.

6.2 Identi�cation of Liquidity Shocks versus Productivity Shocks

What allows the model to identify productivity shocks and liquidity shocks separately? In other words, how

does the model attribute an observed fall in industry i's output xit and employment nit to a liquidity shock

rather than productivity shock? In the model, productivity and liquidity shocks have di�erential e�ects on

labor and employment. Liquidity shocks work by changing industry wedges, which a�ects the amount of

labor a �rm can employ and the amount of output it can produce. TFP shocks, on the other hand, don't

11Hours worked is not directly available at this level of industry detail and this frequency. However, I will check that hours
worked and number workers employed are correlated at lower frequencies and lower levels of industry detail.
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a�ect wedges, but directly a�ect the the amount of labor employed per unit of output produced. The model

uses these di�erential e�ects to identify the source of �uctuations in observed output and employment.

To see this, recall the production functions, optimality conditions for labor use, and de�nition of the

wedges. First, the employment and output of an industry are linked by the industry production function

xit = zitn
ηi
it

(∏M
s=1 x

ωis
ist

)1−ηi
. Therefore, a change in the TFP of industry i is given by

z̃it = x̃it − ηiñit − (1− ηi)
M∑
s=1

ωitx̃ist

The constant returns-to-scale of industry i's production function implies that if an observed change in industry

i's output x̃it from period t−1 to t exceeds that of nηiit

(∏M
s=1 x

ωis
ist

)1−ηi
, then there must have been an increase

increase in i's TFP such that z̃it > 0.

Industry i's optimality condition for labor equates the ratio of its wage bill to revenue with labor's marginal

product, times the wedge, i.e. wni
pixi

= ηiφi. In log-changes from period t− 1 to t, this can be written as

w̃t + ñit − p̃it − x̃it = φ̃it

This says that an observed change in industry i's ratio of labor expenditure to revenue from time t− 1 to t,

must have come from a change in the �rm's wedge φ̃it from t− 1 to t.

Finally, recall the de�nition of industry i's wedge.

φi = min

{
1,

1

ri

(
Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
φc(1− ηc)ωci

νci

)}
This implies that a change in industry i's wedges must be driven by changes in liquidity, either directly shock

to Bi, or through credit linkages via φc. In this way, the model attributes a change in the ratio of industry

i's wage bill to revenue to a liquidity shock. In a later section, I discuss the extent to which the model's

predicted liquidity shocks are correlated with some industry-level measures of credit spreads, an indication

of changes in liquidity conditions computed from an independent dataset.

Because the model can track how a liquidity shock or productivity shock to one industry spills over to

other industries via their credit and input-output linkages, the model can back out exactly how much of a

change in an industry's output and employment is coming from spillover e�ects versus a direct shock, and

can identify the industry which was shocked. In this manner, for any combination of 2M observations x̃it

and ñit, the model exactly identi�es the sequence of liquidity and productivity shocks B̃it and z̃it faced by

each industry between periods t− 1 and t.
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6.3 Using the Model to Back Out Shocks from the Data

Recall that equations ()-() are a system of log-linear equations describing the (�rst-order approximated)

elasiticity of each equilibrium variable to the liquidity Bi and productivity zi of each industry i. Suppose

that the static model is extended to be a repeated cross-section. Then equations ()-() describe the evolution

of the equilibrium variables that occurs each period in response to liquidity and productivity shocks, to a

�rst-order approximation. I obtain a closed-form solution for this evolution, which is derived in the Appendix.

Let Xt and Nt denote theM -by-1 dimensional vectors of industry output and employment growth at time

t, x̃it and ñit, respectively. And let Bt and zt similarly denote the M -by-1 dimensional vectors of industry

liquidity and productivity growth (i.e. shocks) at time t, B̃it and z̃it, respectively. The closed-form solutions

for Xt and Nt yield

Xt = GXBt +HXzt

Nt = GNBt +HNzt

These respectively describe how each industry's output and employment changes each period in response to

the liquidity and productivity shocks to every industry. Here, the M -by-M matrices GX , GN , HX and HN

are functions of the economy's input-output and credit networks Ω and Θ, and capture the e�ects of the

input-output and credit linkages in propagating either type of shock across industries, as was described in

the theoretical analysis. The elements of these matrices depend only on the model parameters, and therefore

take their values from my calibration.

I construct Xt and Nt for US industrial production industries (at the three-digit NAICS level) from the

output and employment data described above. Let X̂t and N̂t denote these observed �uctuations. I then

have a system of 2M equations in as many unknowns for each quarter, and can invert the system to back-out

shocks Bt and zt each quarter from 1997 Q1 to 2013 Q4.

Bt = G−1N

(
N̂t −HNzt

)

zt = Q−1X̂t −Q−1GXG−1N N̂t

where

Q ≡ HX −GXG−1N HN

Thus, I construct liquidity and productivity shocks as the industry-level �uctuations in output and em-

ployment, �ltered for the e�ects of credit and input-output linkages in propagating them from industry to

industry.
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Figure 6:
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Figure 6 shows the time series of the estimated liquidity and productivity shocks which hit the US auto

manufacturing industry each quarter over the sample period.

From the �gure, we can see that the changes in auto manufacturing's liquidity and productivity both

�uctuate moderately around zero for most of the sample period. Between 2007 and 2009, the liquidity

available to this industry took a sharp drop for a number of consecutive quarters, reaching up to a 25 percent

decline. Over this period, the industry's output and employment experienced a large drop attributable to

changes in the labor wedge of the industry. Given the credit linkages, the model is able to trace how much of

the drop in th ewedge is due to a direct liquidity shock to auto manufacturing versus shocks to other industries

being transmitted to it. The blue line plotted in the �gure re�ect the direct liquidity shocks experienced each

quarter by the industry.

In addition, the TFP of the industry seems to have not �uctuated greatly over this recessionary period; in

fact, it increased slightly. These features broadly hold across most industries in industrial production. The

aggregate e�ects of these features and their interpretation will be discussed in subsequent sections.

6.4 Dynamic Factor Analysis

Next, I decompose the changes in industry liquidity and productivity, Bt and zt, into an aggregate and
industry-level shock. I assume that each may be described by a common component and a residual idiosyn-
cratic component.

Bt = ΛBF
B
t + ut
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zt = ΛzF
z
t + vt

Here, FBt and F zt are scalars denoting the common factors a�ecting the output and employment growth
of each industry, respectively, at quarter t. I interpret these factors as aggregate liquidty and productivity
shocks, respectively. The M -by-1 vectors ΛB and Λz denote the factor loadings, and map the aggregate
shocks into each industry's liquidity and productivity shocks. Together, ΛBF

B
t and ΛzF

z
t comprise the

aggregate components of Bt and zt.

The residual components, ut and vt, unexplained by the common factors, are the idiosyncratic or industry-

level shocks a�ecting each industry's liquidity and productivity growth. I assume that
(
FBt , ut

)
and

(
FBt , ut

)
are each serially uncorrelated, FBt , ut, F

z
t , and vt are mutually uncorrelated, and the variance-covariance

matrices of ut and vt, Σuu and Σvv, are diagonal.

I suppose further that the factors follow an AR(1) process such that

FBt = γBF
B
t−1 + ψBt

F zt = γzF
z
t−1 + ψzt

Here, ψBt and ψzt are independently and identically distributed. Hence, I have two dynamic factor models;

one for the liquidity shocks Bt and one for the productivity shocks zt.

Use standard methods to estimate the model. To predict the factors, I use both a one-step prediction

method and Kalman smoother. The Kalman smoother yields factors which explain more of the data. Since

it utilizes more infortmation in predicting the factors, I use this method as my baseline. All subsequent

reported results used the factors predicted using a Kalman smoother.

Figures 7 and 8 plot the time series for the estimated liquidity shocks and their aggregate components,

and similarly for productivity shocks, for the auto manufacturing industry over the full sample period. The

aggregate component explain most of the liquidity shocks su�ered by auto manufacturing. By comparison,

idiosyncratic productivity shocks explain a larg fraction of the changes in the industry's TFP. Indeed, it turns

out that idiosyncratic productivity shocks and an aggregate liquidity shock explain most of the volatility in

aggregate output over the full sample. These features are fairly representative of those in other industries.
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Figure 7:
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Figure 8:
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7 Empirical Results

I now present and discuss the empirical results using the shocks estimated in the previous sections.

7.1 Aggregate Volatility Over Full Sample Period

In this section, I use the shocks estimated in the previous section to estimate how much of observed volatility

in aggregate industrial production from 1997Q1:2013Q4 can be explained by each type of shock. In addition,

I estimate the contribution of the credit network of the US industrial production industries to aggregate

volatility. What follows is a brief summary of the procedure; a more detailed description is given in the

Appendix.

7.1.1 Shocks and Aggregate Fluctuations

Let the variance-covariance matrix of industry output growth Xt be denoted by ΣXX . In addition, let s̄

denote the M -by-1 vector of industry shares of aggregate output during the median year of my sample, 2005.

Since these shares are close to constant across the quarters in my sample, the volatility of aggregate industrial

output - henceforth aggregate volatility - can be approximated by σ2, where

σ2 ≡ s̄′ΣXX s̄

The factor model described above implies the following identities for the variance-covariance matrices of

output growth Xt and those of the shocks Bt and zt.

ΣXX = GXΣBBG
′
X +HXΣzzH

′
X

ΣBB = ΛBΣBFFΛ′B + Σuu Σzz = ΛzΣ
z
FFΛ′z + Σvv

The fraction of observed aggregate volatility generated by aggregate liquidity shocks can be computed as the

ratio of volatility generated by the aggregate component of Bt to σ
2.

s̄′GX
(
ΛBΣBFFΛ′B

)
G′X s̄

σ2

I estimate the above variance-covariance matrices ΣBB and Σzz using the estimated liquidity and productivity

shocks Bt and zt. Similarly, I estimate the variance-covariance matrices of the factors and idiosyncratic shocks

using the predicted factors from my factor esimtation, imposing that Σuu and Σvv are diagonal matrices.
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Table 1: Composition of Agg. Vol.: 1997Q1:2013Q4
Fraction of Agg. Vol.

Explained

Productivity Shocks .210

Agg. Component .066

Idios. Component .144

Liquidity Shocks .790

Agg. Component .654

Idios. Component .136

The results of this analysis are summarized in Table (). I �nd that, for the full sample period 1997Q1:2013Q4,

aggregate volatility in industrial production is about 0.19%12, and is driven primarily by idiosyncratic pro-

ductivity shocks and an aggregate liquidity shock.

The results indicate that aggregate volatility is driven primarily by an aggregate liquidity shock and

idiosyncratic productivity shocks. (How would this compare if excluded Great Recession?). When I allow

for an aggregate liquidity shock, there appears to be only a minor role for aggregate productivity shocks in

generating aggregate �uctuations, accounting for only about 7 percent. Nevertheless, productivity shocks

still play an important role. In particular, idiosyncratic productivity shocks account for nearly 15 percent

of aggregate volatility. Note that idiosyncratic productivity shocks do not average out precisely because of

the input-output linkages connecting industries. Together, idiosyncratic productivity shocks and aggregate

liquidity shocks account for nearly 80 percent of aggregate volatility.

7.1.2 Role of Credit Network

Next, I evaluate the role of the credit network of industrial production in aggregate volatility. Recall from the

quantitative analysis that the credit network ampli�es shocks by transmitting them across industries. How

much of the observed aggregate volatility in industrial production can be accounted for by the credit network

amplifying the estimated shocks? The results are summarized in Table (). Overall, the credit network

accounts for nearly one-�fth of aggregate volatility. Put di�erently, in the absence of the credit linkage

channel of propagation, aggregate volatility from 1997-2013 would be 17 percent lower. As was discussed in

12This is roughly in line with the �ndings of Foerster et al. (2011). If I compute growth rates and aggregate volatility using
the same scaling conventions as they, I �nd aggregate volatility to be about 9.35 compared to their 8.8 for 1972-1983 and 3.6
for 1984-2007. The higher volatility that I get comes from including the Great Recession in my sample period.
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Table 2: Contribution of Credit Network
Contribution of
Credit Network

E�ect of Prod. Shocks .019
On Agg. Vol.

E�ect of Liq. Shocks .211
On Agg. Vol.

Total Agg. Volatility .171

the theoretical analysis, the credit network primarily propagates liquidity shocks. Indeed, most of the e�ect

of the credit network is in amplifying the aggregate liquidity shock.

7.1.3 Discussion

In summary, the main results of this analysis are that, when taking into account the credit linkages between

industries,

1. Aggregate productivity shocks do not play an important role in aggregate �uctuations in industrial

production

2. Aggregate volatility is driven primarily by idiosyncratic productivity shocks and aggregate liquidity

shocks

3. The credit network of the economy plays an important role in amplifying �uctuations in aggregate

output

How does this compare to the �ndings of studies? Foerster et al. (2011) show that, when accounting for the

e�ects of input-output linkages in propagating shocks across industries, the role of aggregate productivity

shocks in driving the business cycle is diminished; more of aggregate volatility in IP can be explained by

industry-level productivity shocks. Nevertheless, they still �nd a quantitatively large role for aggregate

productivity shocks. On the other hand, my analysis shows that when one takes into account the credit

linkages between non-�nancial �rms in the economy, the role of aggregate productivity shocks is minimal.

On the contrary, aggregate liquidity shocks seem to play a vital role the business cycle. Indeed, the importance

of shocks emanating from the �nancial sector to real economy as a whole is well-documented.
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7.2 Great Recession

In this section, I perform an accounting exercise to evaluate how much of the peak-to-trough drop in aggregate

industrial production during the Great Recession each type of shock can explain. To perform this accounting

exercise, I do the following. I �rst restrict the sample to the time in which the peak-to-trough decline in

aggregate IP occurred: 2007Q4: 2009Q2. For each quarter during this period, I use the estimated shocks to

decompose the drop in aggregate IP into components arising from each type of shock. For each quarter, this

yields a breakdown of the quarterly decline in aggregate IP across each shock. I then take a weighted sum of

these breakdowns across quarters. I weight each quarterly breakdown by the fraction of the peak-to-trough

decline in aggregate IP accounted for by each quarter. This yields a weighted average breakdown, describing,

on average, how much of the total peak-to-trough decline in aggregate IP that occurred during the Great

Recession can be accounted for by each type of shock.

I �nd that both aggregate and idiosyncratic productivity shocks were on average slightly positive during

this period. As such, changes in productivity did not contribute to the decline in aggregate IP during the

recession. On the contrary, the observed movements in aggregate IP can be accounted for by liquidity shocks.

I �nd that 73 percent of the drop in aggregate IP is due to an adverse aggregateliquidity shock. This is natural

given the �nancial crisis that occurred during the beginning of the recession.

Of the remaining 27 percent not explained by the aggregate liquidity shock, idiosyncratic liquidity shocks

to the three most systemically important industries can account for a sizable fraction. Idiosyncratic shocks to

the petroleum manufacturing, chemical manufacturing, and mining industries account for between one-third

and all of the remaining decline in aggregate IP, despite comprising only about 25 percent of aggregate IP. This

suggests that idiosynratic liquidity shocks to a few systemically important industries played a quantitatively

signi�cant role during the Great Recession.

8 Conclusion

In this paper, I showed that the credit network of an economy can be an important source of aggregate

�uctuations. The credit linkages between �rms can propagate the e�ects of liquidity shocks from �rms to

their suppliers, amplifying teh e�ect of the shock on aggregate output. I showed that the credit network

played an important role in generating aggregate volatility in US industrial production. When accounting

for the credit linkages between industries, aggregate �uctuations seem to be primarily driven by an aggregate

liquidity shock and idiosyncratic productivity shocks.These results help to address a fundamental question

in macroeconomics concerning the origins of aggregate �uctuations.

Appendix
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A1. Agency Problem

�

A2. Simple Model Solution

Solved in closed-form recursively, starting with the �nal �rm in the chain, �rm M.

Firm M

Recall that �rm M collects none of its sales from the household up front (does not give the household any

trade credit, \tau_M=0). Then its problem is to choose its input purchases, loan from the bank, and the

trade credit loan from M-1, to maximize its pro�ts, subject to its cash-in-advance, supplier borrowing, and

bank borrowing constraints.

maxnM ,xM−1,bM ,τM−1
pMxM − wnM − pM−1xM−1

s.t. wni + (1− τi−1)pi−1xi−1 ≤ bi + τi−1 + pMxM − τM

bM ≤ (BM + (1− α) τM ) pMxM

τM−1pM−1xM−1 ≤ θM,M−1pMxM

Recall that the �rm does not collect any cash-in-advance from the household, so that its trade credit

τM = pMxM . Also recall that its borrowing constraints () and () bind in equilibrium, so that the problem

can be rewritten

maxnM ,xM−1,τM pMxM − wnM − pM−1xM−1

s.t. wnM + pM−1xM−1 ≤ χMpMxM

where

χM = θM,M−1 +BM

Notice that because τM = pMxM , χM is given by exogenous parameters.

If �rm M is unconstrained in equilibrium, then the optimality conditions equate the marginal cost of each

type of input with the marginal revenue.
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w = ηM
pMxM
nM

(14)

pM−1 = ωM,M−1(1− ηM )
pMxM
xM−1

(15)

Firm M's expenditure in inputs is then

wnM + pM−1xM−1 = (ηM + ωM,M−1(1− ηM )) pMxM (16)

Let rM ≡ ηM + ωM,M−1(1 − ηM ) denote �rm M's returns-to-scale. Then �rm 3 is then unconstrained in

equilibrium if and only if its expenditure at its unconstrained optimum is less than its liquidity at this

optimum.

rMpMxM < χMpMxM (17)

i.e.

χM > rM

If �rm M is constrained in equilibrium, then its binding liquidity constraint pins down its level of output.

The only choice left to make is how much labor to hire nM versus how much intermediate goods xM−1 to

purchase, given its level of output xM . Because χM is independent of M's choice of nM and xM−1, the

problem of maximizing pro�ts subject to the binding liquidity constraint is equivalent to minimizing its

expenditure nM + xM−1 subject to producing xM . Thus, it solves the following cost-minimization problem.

minnM , xM−1
wnM + pM−1xM−1

s.t. xM = zηMM nηMM x
ωM,M−1(1−ηM )
M−1

Then �rm M's optimality condition equates the ratio of expenditure on each input with the ratio of each

input's share in production.

wnM
pM−1xM−1

=
ηM

ωM,M−1(1− ηM )
(18)

Using this, we can rewrite M's binding liquidity constraint as

wnM

(
1 +

ωM,M−1(1− ηM )

ηM

)
= χMpMxM (19)

Rearranging yields
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w = ηM
χM
rM

pMxM
nM

Combining () with its analog () in the unconstrained case, we can see that

• if χM > rM (i.e. if �rm i is unconstrained in equilibrium)

w = ηM
pMxM
nM

• otherwise

w = ηM
χM
rM

pMxM
nM

These two cases imply that we can write

w = φMηM
pMxM
nM

(20)

where

φM ≡ min
{

1,
χM
rM

}
φM represents the distortion in �rm M's optimal labor usage due to its liquidity constraint. Financial

frictions introduce wedge between �rm's marginal bene�t and cost of production. The wedge between these

two objects is increasing in the tightness χM of M's constraint, and decreasing in the returns-to-scale of �rm

M's production function.

Firm M-1

Given �rm M's solution, we can proceed to �rm M-1's problem.

maxnM−1,xM−2,τM−2
pM−1xM−1 − wnM−1 − pM−2xM−2

s.t. wnM−1 + pM−2xM−2 ≤ χM−1pM−1xM−1

where

χM−1 = θM,M−1 +BM + 1− α τM
pM−1xM−1

The binding borrowing constraint implies
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χM−1 = θM,M−1 +BM + 1− α θMpMxM
pM−1xM−1

And () and () imply that pMxM
pM−1xM−1

= 1
φMωM,M−1(1−ηM ) . Therefore,

χM−1 = θM,M−1 +BM + 1− α θM
φMωM,M−1(1− ηM )

Since φM is given by (), this is a closed-form expression for χM−1. Note that, since φM depends on χM ,

χM−1 is an increasing function of χM ; this interdependence of liquidity constraints comes from the trade

credit relationship between M and M-1.

Given χM−1, the solution to �rm M-1's problem take the same form as that of �rm M. (Note that χM−1

does not depend directly on M-1's choice of nM−1 versus xM−2. Therefore, when constrained in equilibrium,

M-1 will solve the analogous cost-minimization problem as M to maximize pro�ts.) The liquidity constraint

places a wedge φM−1 between the marginal bene�t of hiring labor and the marginal cost

w = φM−1ηM−1
pM−1xM−1
nM−1

Given the above expressions for χM−1 and χM , the the wedge φM−1 = min1, χM−1

rM−1
is a closed-form expres-

sion.

Equilibrium: Each other �rm's problem is symmetric. Continuing recursively, I obtain the closed-form

solution for each �rm. To summarize, I have, for each �rm i

w = φiηi
pixi
ni

where

φi = min{1, χi
ri
} and χi = Bi + θi + 1− θi+1

1

φi+1ωi,i−1(1− ηi)

Market clearing conditions are given by

C = Y ≡ xM , N =

M∑
i=1

ni

Given these expressions, the task is to write each ni as a function of aggregate output xM , starting with

�rm M-1. From the �rm optimality conditions, we have the following three expressions:

wnM−1 = φM−1ηM−1pM−1xM−1, wnM = φMηMpMxM , pM−1xM−1 = wnM
ωM,M−1(1− ηM )

ηM

Combining these yields nM−1 as a function of xM .
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wnM−1 = φMφM−1ηM−1ωM,M−1(1− ηM )pMxM

Continuing recursively, we can write ni as a function of xM , for each i (LEFT OFF HERE)

wni = pMxM

M∏
j=i

φj

M−1∏
j=i

ωj+1,j(1− ηj)

 ηi

The household's preferences and optimality conditions imply

w =
V ′(N)

U ′(xM )
= xM

Let good M be the numeraire. Combining () with () yields a closed-form expression for each �rm's labor use.

ni = ηi

M∏
j=i+

ωj,j−1(1− ηj)φj

Recall that the production functions imply that aggregate output can be written

Then () and () yield a closed-form expression for aggregate output.

�

A3. Production In�uence Vector

v̄ =



v1 v2 v3 · · · vM

0 v1 v2

0 0 v1
...

. . .

0 0 0 v1


1Mx1

v_i=η̃i captures downstream propagation (supply e�ects). But misses upstream demand e�ects. Total

e�ect is sum
∑i
j=1 vi

v′ =

η1 M∏
k=2

(1− ηk)ωk,k−1 · · · ηj
M∏

k=j+1

(1− ηk)ωk,k−1 · · · ηM

 =

�
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A4. Proof of Proposition 1

Proof: From () (chi de�ntion) and () (phi interdependence),

φi = min

{
1,

1

ri

(
Bi + θi,i−1 − θi+1,i

1

φi+1ωi+1,i(1− ηi+1)

)}

It follows that

dφi−1
dBi

=

 1
ri

αθi,i−1

φiωi,i−1(1−ηi) > 0 if φi−1 < 1

0 otherwise

d φj
dBi

= 0 ∀ j > i and
dφj
dBi

=
1

ri
> 0 for j = i

Putting these cases together, we can write
d log φj
dBi

for any j.

d log φj
dBi

=


1
ri
> 0 if j = i

1
φj

1
rj

θkj
φkωkj(1−ηk)

d φk
dBi
≥ 0 ∀ k if j < i

0 otherwise

It follows that
d log φj
dBi

≥ 0 and d
d θij

(
d log φj
dBi

)
≥ 0.

�

A5. Solution Procedure in General Model

Claim: solution procedure takes same form in general model as in stylized.
Firm i's problem is to maximize pro�ts subject to its liquidity constraint.

maxni,{xis}sεI pixi − wni −
M∑
s=1

psxis

wni +

M∑
s=1

psxis ≤ χipixi

where χi denotes the tightness of i's liquidity constraint.
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χi = Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
pcxc
pixi

If �rm i is unconstrained in equilibrium, i . Consider the case when i is constrained in equilibrium. For
pro�t maximization to be equivalent to minimizing its expenditure subject to producing xi, we must have
that χi is independent of i's choice of ni and xis for each s (or that �rm i does not internalize these e�ects).
First, suppose that χi is independent of this choice. I will later verify that this indeed the case.

Firm i's solution takes the same form as in the simple version of the model. The equilibrium system of
M2 + 5M + 2 nonlinear equations (for every i and j)

xi = zηii n
ηi
i

 m∏
j=1

x
ωij
ij

1−ηi

φi = min

{
1 ,

1

ri

(
Bi +

M∑
s=1

θis + 1−
M∑
c=1

θci
pcxc
pixi

)}
M∑
i=1

cβii = N1+ε

ni = φiηi
pi
w
xi xij = φi (1− ηi)ωij

pi
pj
xi

pici
pjcj

=
βi
βj

p1 = 1

N =

M∑
i=1

ni xi = ci +

M∑
c=1

xci

M2 + 5M + 2 unknowns

{
{ni, ci , xi, {xij}jεI , φi, pi}iεI , N, w

}
I now verify that χi is independent of i's choice of ni and xis for all s. Note that

pcxc
pixi

=
pcxc
pixci

pixci
pixi

=
θci

φc (1− ηc)ωci
νci

where the second equality follows from �rm c's optimality condition for intermediate good i, and from the
de�nition of νci. The term

1
φc(1−ηc)ωci represents the inverse of �rm c's demand for good i, and is independent

of i's choice of ni versus xis. The term νci represents �rm c's share of i's total output, and is determined by
each customer c's optimal behavior. Thus, �rm i's choice of intermediates vs labor doesn't (directly) a�ect
χi. This veri�es the conjecture that, when constrained, pro�t maximization is equivalent to expenditure
minimization.
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�

Use of I-O tables and Compustat data

�

A6. Log-Linearized System

Stars are point around which system is approximated. Calibrated equilibrium values.

For all i and j

In order: �rm i's optimality condition for input j, �rm i's optimality condition for labor, de�nition of wedge

phi_i, household optimality condition for consumption of each good, market clearing for good i, production

function for �rm i, household budget constraint, labor market clearing condition, household optimality for

labor versus aggregate consumption.

p̃j + x̃ij = φ̃i + p̃i + x̃i w̃ + ñi = φ̃i + p̃i + x̃i φ̃i =

φ̃i
c

if φi < 1

0 otherwise

φ̃i
c

=
Bi
riφi

B̃i +
α

riφi

M∑
c=1

θciνci
φc(1− ηc)ωci

φ̃c −
α

riφi

M∑
c=1

θciνci
φc(1− ηc)ωci

ν̃ci

p̃i + c̃i = p̃j + c̃j x̃i =

(
pic
∗
i

pix∗i

)
c̃i +

∑
c

(
pix
∗
ci

pix∗i

)
x̃ci x̃i = z̃i + ηiñi + (1− ηi)

∑
s

ωisx̃is

w̃ =
∑
i

βi (c̃i + p̃i)
∑
i

(
n∗i
N

)
ñi = 0 (1 + ε) Ñ =

∑
i

βic̃i

�

A7. Counterfactual

Recall the de�nition of φi

φi = min

{
1,

1

ri

(
Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
pcxc
pixi

)}
Replace pcxc

pixi
with �rm c's optimality conditions for good i yields

φi = min

{
1,

1

ri

(
Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
φc(1− ηc)ωci

νci

)}
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Log-linearizing φi yields

φ̃i =


(

B∗
i

r∗
i
φ∗
i

)
B̃i +

α
r∗
i
φ∗
i

∑M
c=1

(
θci

φ∗c (1−ηc)ωci

)
φ̃c if φ∗

i < 1

0 otherwise

Thus, in the full model wedges respond endogenously to direct liquidity shocks Bi and to changes in its

customers' wedges φc through the credit linkage channel. This second term captures the propagation due to

the credit linkages between �rms. In performing my counterfactual, I compute the response in GDP to athe

aggregate liquidity shock B_tilde=.01 for all i, and then do the same by after imposing

φ̃i =


(
B∗
i

r∗i φ
∗
i

)
B̃i if φ∗i < 1

0 otherwise

This latter exercise gives me the model's response without propagation via the credit network. Then the

marginal contribution to the change in GDP of including the credit linkages is given by the di�erence in ...

�-

A8. E�ect of Credit Linkages in General Model

Appendix: E�ect of Credit Linkages in General Model. In the model the trade credit parameters θcs show

up only in the wedges φi. Therefore, to see e�ect of credit network in propagating liquidity and productivity

shocks, it su�ces to show how φi responds to shocks to other industries. Recall

φi = min

{
1,
χi
ri

}
where

χi = Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
pcxc
pixi

= Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
pcxc
pixci

xci
xi

Let νci ≡ xci
xi

represent the share of c in i's total revenue. Substituting c's optimality condition for good i in

for pcxc
pixci

yields

χi = Bi +

M∑
s=1

θis + 1− α
M∑
c=1

θci
φc(1− ηc)ωci

νci

The response in φi to some shock can be summarized by the log-linearized expression for φi.
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φ̃i =

φ̃i
c

if φi < 1

0 otherwise

where

φ̃i
c

=
Bi
riφi

B̃i +
α

riφi

M∑
c=1

θciνci
φc(1− ηc)ωci

φ̃c −
α

riφi

M∑
c=1

θciνci
φc(1− ηc)ωci

ν̃ci

and

ν̃ci = x̃ci − x̃i

This expression says that industry i's wedge can change either from direct liquidity shock to i (given by B̃i),

changes in the wedges of customers (given by φ̃i) through credit linkages θci, or changes in the composition

of industry i's sales (given by ν̃ci for all customers c), also through credit linkages.

Consider �rst a liquidity shock to industry j, given by B̃j < 0. How does this a�ect φi, and how does

this e�ect depend on i's credit linkages with j? From (), we can see that there are two e�ects. First, the

shock reduces φj , so that φ̃j < 0. This pushes φi down. Second, because i has M customers, xji falls by

more than xi falls. Therefore, j's share of i's output νji falls, and ν̃ji < 0. This pushes φi up. The stronger

is j's downstream credit linkage θji with i, the stronger are both of these e�ects.

But there is a more indirect way by which φi changes in response to B̃j < 0. The initial fall in φi is

transmitted to each of i's customers c as a supply shock, causing all c to cut back on output. Then the fall in

pcxc causes φc to fall, as the amount of credit c is giving per unit of its revenue is lower. Since all industries

are interconnected, industry c is also industry i's customer. As a result, the fall in φc causes φi to fall via

the credit linkage from i to c. This fall in φi e�ect is increasing in i's downstream linkage with c θci. Thus,

the greater θci for all c, i.e. the larger i's credit out-degree, the more that φi will respond to the shock to j,

and the larger will be the aggregate impact.

Now consider an adverse productivity shock to industry j, given by z̃j < 0. This shock a�ects neither

φj nor φi directly. However, it has an indirect a�ect on φi through the composition of i's sales νji. In

particular j's share of i's total output νji falls, and so ν̃ji < 0. This reduces the amount of trade credit per

dollar of revenue that i is giving its customers, and so i's wedge increases: φ̃i > 0. This e�ect is increasing

in i's downstream credit linkage with j, θji. Therefore, stronger credit linkages mitigate the impact of the

productivity shock. This e�ect is not present in the stylized model, because νji = 1 for j = i+ 1 and 0 for all

other j; there is no change in the composition of i's sales. Nevertheless, this mitigation e�ect is quantitatively
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small, as discussed in the quantitative analysis.

�

A9. Aggregate Volatility

Recall that the growth in industry output can be written as a function of the industry liquidity and pro-
ductivity shocks. Recall that Xt is a vector of the percentage change x̃it in each industry's output at time
t.

Xt = GXBt +HXzt

And the shocks Bt and zt, in turn, are composed of an aggregate and idiosyncratic components.

Bt = ΛBF
B
t + ut FBt = γBF

B
t−1 + ιBt

zt = ΛzF
z
t + vt F zt = γzF

z
t−1 + ιzt

Then letting ΣXX denote the variance-covariance matrix of Xt (and similarly for the other variables), we
have

ΣXX = GXΣBBG
′
X +HXΣzzH

′
X

ΣBB = ΛBΣBFFΛ′B + Σuu

Σzz = ΛzΣ
z
FFΛ′z + Σvv

where Σuu and Σvv are diagonal matrices.
Aggregate manufacturing output at time t is de�ned as Σixit. Let s̄t denote the vector of industry shares

of aggregate output at time t. Then the growth of aggregate output at time t is given by

s̄tXt

Suppose that industry shares don't �uctuate much over time, so that s̄t ≈ s̄ for all t. Then growth in aggregate
output at time t can be approximated by s̄Xt. Then the variance of aggregate output, i.e. aggregate volatility
in the economy, is approximately given by

σ2 ≡ s̄′ΣXX s̄ = s̄′GXΣBBG
′
X s̄+ s̄′HXΣzzH

′
X s̄

Then the contribution of aggregate liquidity shocks to aggregate volatility is given by

s̄′GX
(
ΛBΣBFFΛ′B

)
G′X s̄

σ2

And the aggregate volatility generated by the credit network in propagating aggregate liquidity shocks is
then given by

where GNoTC maps Bt into Xt when the credit linkage channel is shut-o�. Similar expressions can
be derived for the contribution to aggregate volatility of idiosyncratic liquidity shocks, and aggregate and
idiosyncratic liquidity shocks.

59



References

[1] Acemoglu, Daron, Ufuk Akcigit, and William Kerr (2015), �Networks and the Macroeconomy: An
Empirical Exploration�, Unpublished.

[2] Acemoglu, Daron, Vasco Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2012), �The Network
Origins of Aggregate Fluctuations�, Econometrica, 80(5): 1977-2016.

[3] Atalay, Enghin (2014), �How Important Are Secotral Shocks�, Unpublished.

[4] Bai, Jushan and Serena Ng (2002), �Determining the Number of Factors in Approximate Factor Models�,
Econometrica, 70(1): 191-221.

[5] Barrot, Jean-Noel (2015), �Trade Credit and Industry Dynamics: Evidence from Trucking Firms�, Jour-
nal of Finance.

[6] Barrot, Jean-Noel and Julien Sauvagnat (2014),�Input Speci�city and Propagation of Idiosyncratic
Shocks in Production Networks�, Unpublished.

[7] Basu, Susanto and John Fernald (1999), �Why is Productivity Procyclical? Why Do We Care?� Federal
Reserve Board of Governors, International Finance Discussion Papers, 638

[8] Bernanke, Ben and Mark Gertler (1995), �Inside the Black Box: The Credit Channel of Monetary Policy
Transmission�, Journal of Economic Perspectives, 9(4), 27-48

[9] Bernanke, Ben, Mark Gertler, and Simon Gilchrist (1999), �The Financial Accelerator in a Quantitative
Business Cycle Framework�,

[10] Bigio, Saki and Jennifer La'O (2013), �Financial Frictions in Production Networks.� Unpublished.

[11] Boissay, Frederic (2006) �Credit Chains and the Propagation of Financial Distress�, Working Paper Series
573, ECB.

[12] Boissay, Frederic and Reint Gropp (2012), �Payment Defaults and Inter�rm Liquidity Provision�, Review
of Finance, 17(6), 1853-1894.

[13] Burkart, Mike and Tore Ellingson (2004), �In-Kind Finance: A Theory of Trade Credit�, American
Economic Review, 94(3), 569-590.

[14] Cardoso-Lecourtois, Miguel (2004), �Chain Reactions, Trade Credit, and the Business Cycle�, Economi-
etric Society 2004 North American Summer Meetings 331.

[15] Conley, Timothy and Bill Dupor (2003), �A Spatial Analysis of Sectoral Complementarities�, Journal of
Political Economy, 111(2), 311-352.

[16] Cunat, Vicente (2006), �Trade Credit: Suppliers and Debt Collectors and Insurance Providers�, Review
of Financial Studies, 20(2), 491-527.

[17] Delli Gatti, Domenico, Mauro Gellagati, Bruce Greenwald, Alberto Russo, and Joseph E. Stiglitz (2007),
�The Financial Accelerator in and Evolving Credit Network�, Journal of Economic Dynamics and Control,
34(9), 1627-1650.

60



[18] Di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean (2014), �Firms, Destinations, and Ag-
gregate Fluctuations�, Econometrica, 82(4), 1303-1340.

[19] Dupor, Bill (1999), �Aggregation and Irrelevance in Multi-Sector Models�, Journal of Monetary Eco-
nomics, 43(2), 391-409.

[20] Fisman, Raymond and Inessa Love (2003), �Trade Credit, Financial Intermediary Development, and
Industry Growth�, Journal of Finance, 58(1), 353-374.

[21] Foerster, Andrew T., Pierre-Daniel Sarte, and Mark W. Watson (2011), �Sectoral versus Aggregate
Shocks: A Structural Factor Analysis of Industrial Production�, Journal of Political Economy, 119(1),
1-38.

[22] Gabaix, Xavier (2011), �The Granular Origins of Aggregate Fluctuations�, Econometrica, 79(3), 733-772.

[23] Gilchrist, Simon and Egon Zakrajsek (2012), �Credit Spreads and Business Cycle Fluctuations�, Ameri-
can Economic Review, 102(4), 1962-1720.

[24] Horvath, Michael (1998), �Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent
Sectoral Shocks�, Review of Economic Dynamics, 1(4), 781-808.

[25] Horvath, Michael (2000), �Sectoral Shocks and Aggregate Fluctuations�, Journal of Monetary Economics,
45(1), 69-106.

[26] International Monetary Fund (2005), �International Financial Statistics�, CD-ROM.

[27] Jacobson, Tor and Erik von Schedvin (2015), �Trade Credit and the Propagation of Corporate Failure�,
Econometrica, 83(4), 1315-1371.

[28] Kalemli-Ozcan, Sebnem, Se-Jik Kim, Hyun-Song Shin, Bent E. Sorensen, and Sevcan Yesiltas (2013),
�Financial Shocks in Production Chains�, Unpublished.

[29] Kiyotaki, Nobuhiro and John and Moore (1997a) �Credit Chains�, Unpublished.

[30] Kiyotaki, Nobuhiro and John Moore (1997b) �Credit Cycles�, Journal of Political Economy, 105(2),
211-248.

[31] Long, John B. and Charles I. Plosser (1993), �Real Business Cycles�, Journal of Political Economy, 91(1),
39-69.

[32] Love, Inessa, Lorenzo A. Preve, and Virginia Sarria-Allende (2007), �Trade Credit and Bank Credit:
Evidence from Recent Financial Crises�, Journal of Financial Economics, 83(2), 453-469.

[33] Meltzer, Allan (1960), �Mercantile credit, monetary policy, and size of �rm�, Review of Economics and
Statistics, 42, 429-37.

[34] Petersen, Mitchell A. and Raghuram G. Rajan (1997), �Trade Credit: Theories and Evidence�, Review
of Financial Studies, 10(3), 661-691.

[35] Raddatz, Claudio (2010), �Credit Chains and Sectoral Comovement: Does the Use of Trade Credit
Amplify Sectoral Shocks?�, Review of Economics and Statistics, 92(4), 985-1003.

61



[36] Shea, John (2002), �Complementarities and Comovements�, Journal of Money, Credit, and Banking,
34(2), 412-433.

[37] Stella, Andrea (2015) �Firm Dynamics and the Origins of Aggregate Fluctuations�, Journal of Economic
Dynamics and Control, 55(), 71-88.

62


