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Abstract

We present a gaze estimation system that
detects an eye in a face image and estimates
the gaze direction by computing the position of
the pupil with respect to the center of the eye.
Our system is based on unsupervised learn-
ing. It creates a map of self-organized gray-
scale image units that collectively describe the
eye outline. QOur approach is information-
CONSErving.

1 Introduction

In the near future, standard desktop com-
puters will be equipped with cameras that
will augment traditional human-computer in-
terfaces such as keyboard and mouse. Cam-
eras pointed at the computer user can cap-
ture the user’s gaze direction, facial expres-
sion, lip movement, head orientation, etc. Be-
ing able to analyze and understand such image
sequences automatically, reliably, and in real
time has been and continues to be the topic of
exciting research that is aimed at developing
a new human-computer interface.

Our research focuses on the problem of
gaze estimation, which has previously been
approached by applying neural networks [3,
9], morphable models [8], and other tech-
niques [5]. We developed an unsupervised
learning method that is based on Kohonen’s
self-organizing maps [6, 2]. Self-organizing
feature maps have previously been used in
computer vision, for example, in image com-
presssion [1], medical image processing [10],
and face recognition [7] applications. Instead
of feature maps, we follow the “information-
conserving” approach discussed in Ref. [4]
and use gray-scale subimages as the building
blocks of our self-organized recognition sys-
tem. They are the “units” that learn to ar-
range themselves around the eye of a trial im-
age in order to estimate the eye center and
pupil position.

2 System Overview
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Figure 1: Gaze Recognition System.

Figure 1 gives an overview of the gaze recog-
nition system. Given a model and trial image
of an eye as inputs, the system computes an
estimate of the user’s gaze direction in the trial
image.

The system has two phases — an initial setup
phase and a learning phase. In the setup



phase, the system uses the model image to
create and arrange gray-scale subimages, or
units, in an elliptic pattern. The units are
then correlated with the trial image at lo-
cations that are determined in the learning
phase. The learning phase consists of a num-
ber of epochs. In each epoch, the units move
towards the trial eye. Each unit and its neigh-
borhood learn their best positions and orga-
nize themselves in a final arrangement. The
center of the final arrangement is an estimate
of the position of the eye center in the trial
image. The best-correlating pupil position in
the trial image is then determined. The lo-
cation of the pupil center with respect to the
eye center is used as an estimate of the gaze
direction and is the system output.

3 Setup Phase

In the setup phase, learning units are cre-
ated from a model image of the eye and ar-
ranged around the eye of a trial image.

3.1 Initial Arrangement of Units in

Model Image

For each subject, a model image m(x,y) of
one of the subject’s eyes is created in the setup
phase. We ask the subject to look straight into
the camera, so that the eye is imaged with the
pupil in its the center. We then determine the
coordinates (Pgm,pym) of the pupil center p,
and the parameters a,, and b,, that describe
an ellipse
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fitted around eye, where x = (1,0), ¥y = (0, 1)
are unit vectors, r is the vector between pupil
center and any point on the ellipse and 6 is
the angle between r and the x-axis.

The image regions at the outline of the el-
lipse are then organized into n units. The unit
centers are placed along the outline of the el-
lipse at equally spaced intervals. The image
regions that surround these centers are used

as the model units. The image region con-
taining the pupil is used as a gray-scale pupil
model.

Figure 1 shows a model image, an image,
where every other unit center is shown as a
white dot, and an image that contains the
pupil model and arrangement of model units,
which overlap each other. One of the units is
shown in white.

3.2 Initial Arrangement of Units in Trial
Image

The model units are rearranged to form a
larger ellipse, so that an overlay of this new ar-
ragement onto the trial image would surround
the eye in the trial image, as shown in Fig. 1.
The trial image dimensions are used to deter-
mine how much the model units are spread
out in the initial arrangement. In particular,
the ellipse parameters a and b of the new ar-
ragement are chosen to be 40% of the width
and height of the trial image, respectively.

4 Learning Phase

Since the system does not know the posi-
tion or size of the eye in the trial image, we
expect the initial arragement of model units
to poorly describe the eye in the trial image.
A learning phase therefore follows, in which
the units organize themselves and move into
positions that better describe the eye in the
trial image.

4.1 Self-Organization of Units

Within £ epochs, the model units organize
themselves into a final arrangement that de-
scribes the eye in the trial image. In each
epoch, each of the n model units is chosen
as the center of a neighborhood of p units
that collectively learn better descriptions of
the trial image.

The neighborhood centers are selected se-
quentially in clockwise order starting with
unit 0, which is the rightmost unit in the ar-
rangement. Unit ¢ has a neighborhood of units



(i — p/2) mod n,..., (i + u/2) mod n. The
results of the learning process of unit ¢ and
its neighboring units are immediately encor-
porated into the unit arrangement, so that
any unit j that is processed after unit ¢ in the
same epoch, i.e., 0 <7 < 7 < n—1, and its
neighborhood make use of the newly learned
unit arrangement. Similarly, at the beginning
of an epoch, unit 0 and its neighborhood use
the unit arrangement obtained in the previous
epoch from the learning process of unit n — 1
and its neighborhood.

In each epoch, the learning process of a cen-
ter unit ¢ and its neighborhood consists of sev-
eral steps. First, a line through the center c; of
unit ¢ and the image center and 3 test points
on this line are determined that are equally
spaced with distance Ad from each other. Out
of the (3 test points, 80% are chosen to lie be-
tween the center c; and the image center. The
remaining 20% are taken on the line starting
at center c¢; and going outwards, and spaced
at the same intervals Ad.

At each test point p, unit ¢ is then corre-
lated with the underlying subimage ¢ of the
trial image, such that the center c; is matched
with test point p, and the subimage ¢ has the
same size as unit . The normalized correla-
tion coefficient

T(i,t) — AZZ(ZL’,y)t(ZL’,y) - ZZ(Iay) Zt(I,y)

;0
(2)
is used, where A is the number of pixels in

unit i, o; = \/Azi(x,y)2 - (Zi(x,y))z, and
o1 = JAS t(z,9)? — (S t(x,y))®. The test

point ppes;t with the highest correlation coef-
ficient among the (§ coefficients is determined
and its distances d(Ppest, Cx) to the centers ci
of all units k£ that are in the neighborhood of
unit ¢ are computed.

The position ¢ of a trial unit is shifted to-
wards phest by a fraction f(G,n) of distance

d(pbesta ck)a i~e~a
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is the neighborhood kernel, which is a function
of the kernel-width parameter G that is up-
dated in each epoch by G = (1 — )G,
where 7y is the decay factor, and 7, the differ-
ence of unit indices 7 and k. The learning-
rate « is also updated in each epoch by
a"") = (1 — y)a. Note that the center
unit ¢ always moves towards best matching
test point ppest by a fraction f(G,n) = 1/v2
of the distance d(ppest,c;), while the units
in 7’s neighborhood move by smaller fractions.

Figure 2 shows the fraction f(G,n) as a
function of n for a given kernel width G. It il-
lustrates that the fraction f(G,n) is large for
a small 7, i.e, if index k£ of a neighbor unit
is close to 7, and small for a large n, i.e, for
neigbors further away. Closer neighbors are
stronger influenced by unit ¢’s move than dis-
tant neighbors. The size of parameter G de-
termines how fast fraction f(G,n) falls off to
zero when 7 increases.
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Figure 2: Function f(G,n), as defined in

Eq. 4, shown as a function of the index dif-
ference 71 of neighoring units, and for a neigh-
borhood size of ;1 = 20 and kernel-width pa-
rameters G = 3.14 and G = 10.

The parameters n,&, u, 3,a,G,y of the
learning process are carefully chosen such that



after & epochs the units have converged into a
final arrangement that describes the eye in the
trial image well. Our measure of success is the
quality of the eye center estimate that we can
obtain from this final arrangement.

4.2 Eye Center Estimation

To estimate the eye center in the trial im-
age, the units are paired by indices, so that
unit ¢ is paired with unit (i + n/2) mod n),
for 0 < i < n/2. The pairs will lie approxi-
mately opposite to each other in the final unit
arrangement. So averaging the midpoints be-
tween the centers of all unit pairs results in
an estimate of the eye center in the trial im-
age. Note that the number n of units is large,
so inconsistencies in the learned unit arrange-
ment due to a small number of unit pairs do
not have a notably adversary effect on the es-
timate.

4.3 Pupil Estimation

The pupil model obtained from the model
image is used to find the pupil position in the
trial image. The pupil is compared to various
regions of the trial image that are surrounded
by the final unit arrangement using the nor-
malized correlation coefficient, as defined in
Eq. 2).

Since the pupil model is taken when the
subject looks straight into the camera, the
pupil appears smaller in a trial image that cap-
tures the subject looking to the left or right.
The model pupil may therefore not correlate
highly with the trial pupil. The model pupil is
therefore transformed into templates of vari-
ous sizes that are then correlated with the trial
image [4]. The template choice depends on the
distance of the test position to the eye center
in the trial image. For example, if the subject
looks all the way to its left, we found that the
best matching pupil template is a transforma-
tion of the pupil model that is subsampled in
its width to 2/3 of the original width of the

pupil model.

5 Experimental Results

We tested our system on a 450 MHz Pen-
tium II PC running Linux. Our database con-
tains a total of 5200 eye images. It includes
13 Asian and Caucasian, male and female sub-
jects. Each person was asked to look straight
into the camera so that a model image could
be taken. Then the subjects were asked to
change their gaze direction. Three different
lighting directions were tested. The eyes and
pupils are imaged at various sizes in the trial
images. Table 1 shows the values for the learn-
ing parameters chosen in our experiments.

Table 1: Initial Parameter Values

Parameter Initial Value
number of units n 100
unit width/height 0.5
number of epochs & 10
number of tests 3 60
neighborhood size p 10
kernel width G 10
learning rate « 1/V2
decay v 0.25

Figure 3 shows the model images of our
13 subjects, one trial image per subject, and
the corresponding learned unit arrangements.
The trial images displayed are chosen to illus-
trate the variety of images in our database. It
includes images of left and right eyes, blink-
ing eyes, and eyes that are looking into various
directions.

We also tested our system model and trial
images of different people. Our preliminary
results indicate that the gaze direction can be
detected, as long as the eyes of the people in-
volved look similar. So we may not need to
create a model image of each user, but can
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Figure 3: Learning results: Examples of
model and trial images and their correspond-
ing learned arrangement of the gray-scale
units.

offer a set of images from which the user can
chose a similar looking eye.

We found that the location of the pupil is
easier to recognize for eyes with brown irises
than for eyes with blue, grey or green irises,
because the normalized correlation coefficient
is invariant to the uniform variations in shad-
ing that may appear of brown irises, but not to
nonuniform scale changes that occur in lighter
irises.

Our system can be used to track the cen-
ter of an eye and the position of a pupil with
respect to this center in videos. Figure 4
shows the results of tracking the pupil’s dis-
tance from the eye center over time. The se-
quence includes a few frames during which the
subject blinked while moving his eye.

6 Summary and Conclusions

We have developed an information-con-
serving, unsupervised learning approach to
the problem of estimating the gaze direction
of a person. Our method has been success-
fully applied to estimate the gaze directions
of male and female, Asian and Caucasian sub-
jects. The center of a subject’s eye is deter-
mined by averaging the eye center estimates
derived from gray-scale model units that learn
to arrange themselves around the eye. Even if
some units do not match the test image, the
large number of units make the eye center es-
timate reliable.
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Figure 4: Tracking results: For each frame in the video sequence, the pupil’s distance from the
eye center is shown. The sequence includes a blink that starts at frame 73. At frame 74, the eye
is almost closed and at frame, 80 the eye is completely open again.
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