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Abstract

The Financial Market is a complex and dynamical system, and is influenced by many
factors that are subject to uncertainty. Therefore, it is a difficult task to forecast stock price
movements. Machine Learning aims to automatically learn and recognize patterns in large data
sets. The self-organizing and self-learning characteristics of Machine Learning algorithms suggest
that such algorithms might be effective to tackle the task of predicting stock price fluctuations, and
in developing automated trading strategies based on these predictions. Artificial intelligence
techniques have been used to forecast market movements, but published approaches do not

typically include testing in a real (or simulated) trading environment.

This thesis aims to explore the application of various machine learning algorithms, such as
Logistic Regression, Naive Bayes, Support Vector Machines, and variations of these techniques,
to predict the performance of stocks in the S&P 500. Automated trading strategies are then
developed based on the best performing models. Finally, these strategies are tested in a simulated

market trading environment to obtain out-of-sample validation of predictive performance.
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1. Introduction

As of 2012, a report from Morgan Stanley showed that 84% of all stock trades in the U.S.
Stock Market were done by computer algorithm, while only 16% were by human investors [10].
The explosion of algorithmic trading, or automated trading system, has been one of the most
prominent trends in the financial industry over recent decade. An automated trading system
utilizes advanced quantitative models to generate certain trading decisions, automatically submits
orders, and manages those orders after submission. One of the biggest attractions of automated
trading is that it take the emotion out of human traders since everything is systemized, also, this
technology can reduce the costs of trading and improve liquidity in the Market.

Three steps are needed in order to build a complete automated trading system. First, the
system has to have some models generating Stock Market predictions. Second, a trading strategy
that takes the model predictions as inputs and outputs trade orders needs to be specified. Last,
backtesting is essential to evaluate the trading system’s performance on historical market data and
thus determine the viability of the system. Current research has been focused largely on market
prediction accuracy, but tends to ignore the second and third steps which are very important for
building a profitable and reliable trading system.

In this paper, we first focus on forecasting stock price movements using Machine Learning
algorithms. We explore variations of basic ML algorithms such as Logistic Regression, Decision
Tree, Naive Bayes and Support Vector Machine, and also various ensemble methods to optimize
the prediction accuracy. We also look at different ways of building the dataset which algorithms
are trained on. Then we customize a trading strategy to take full advantage of the best prediction
models. Finally, we use a market simulator to backtest our proposed automated trading system
and obtain out-of-sample validation of the system’s performance as well.

The rest of this paper is organized as follows: Section 2 gives an overview of automated
trading and explains why it has been growing in such significant pace. Section 3 introduces the
Machine Learning algorithms we used in this paper and describes how they are optimized.
Section 4 explores the “individual approach” to build the prediction model while Section 5
investigates the more sophisticated “sector approach”. In Section 6 we show a customized trading
strategy and report its out-of-sample performance. Conclusions and future suggested works are

discussed in Section 7 at last.



2. Automated Trading

2.1 Overview and Terms

The Stock Market is a marketplace where shares of public companies are traded. A
company becomes public when it makes an Initial Public Offering, or commonly known as IPO,
which means that investors worldwide are able to buy and trade shares of stock in the company.
These shares represent part ownership in the company, and their prices represent what investors
believe a piece of the company, or a stock will be worth in the future. Hence, stock prices are
determined purely by supply and demand in the market.

Generally speaking, an investor has two choices: if he believes the shares of a company
will rise in value some time in the future, he can place a ‘buy’ order for the stock in the market, and
when the order is executed he owns the stock, also known as entering a long position. Then, if
more and more people believe the same way, demand for this company’s stock goes up and
therefore the stock price will increase and investors with long positions enjoy profit. Otherwise, if
more people believe the company will worth less in the future, demand drop and the stock price
will decrease and these investors will suffer lost. However, in this case, an investor who also
decide the shares of a company will depreciate in value, he can place a ‘sell’ order to short the
stock, thus enters a short position. If he already owns this company’s stock, the sell order will sell
the desired amount of his long position. If he does not own the stock previously, this is called ‘short
selling’, which means that he will borrow someone else’s stock and sell them immediately, and
when he wants to ‘buy cover’, he buys back the same amount of shares and return them to the
borrower. Therefore, short selling allows investors to profit from a price drop.

The participants in the Stock Market is heterogeneous, meaning there are many different
types of investors, each with different return goals and risk-taking levels. Individual investors,
institutional investors such as mutual funds, ETFs, and hedge funds, and computer trading
algorithms all compete in the same market with the same goal: profit from making the right bet on
future stock prices, buy low sell high or the opposite accordingly.

All investors, especially computer trading algorithms, need to specify two things: trading
frequency and the “universe” they trade on. Trading frequency refers to how often one makes a
trading decision. For human investors their trading frequency may be more flexible, though an

investor like Warren Buffett is likely to trade in very low frequency, and a day trader places many



orders everyday to seek intraday profit. For automated trading systems, because of their
systematic nature, the trading frequency needs to be specified by their developers before even
designing the them. Trading frequency has very wide range: from once a lifetime, which means
buy and hold forever, to once every nanosecond for High-Frequency Trading algorithms. As a
result, model selection or strategy design can be very different depends on trading frequency.

A universe is the range of stocks an investor chooses to trade on. For example, an
investor whose universe is “global market” means that he does not limit his stock-picking to any
geographic constraints. A universe can also be the U.S. Stock Market, the S&P 500, or just one
sector within the S&P 500. The Standard & Poor’s 500 Index (S&P 500) is one of the most
commonly used benchmarks for the overall U.S. Stock Market. It is an index of 500 stocks chosen
for market size, liquidity and industry grouping, among other factors. The S&P 500 is meant to
reflect the risk/return characteristics of the U.S. large cap universe [16]. SPY is the ticker of the
first and most popular ETF in the U.S. whose objective is to duplicate as closely as possible the
total return of the S&P 500 [14]. So investors who want to buy the U.S. market can buy the SPY
ETF.

Moreover, the S&P 500 can be broken down into different sectors including Consumer
Discretionary, Consumer Staples, Energy, Financials, Healthcare, Industrials, Information
Technology, Materials and Ultilities [36]. The automated trading system proposed in this paper
uses the S&P 500 universe, and in particular the Energy, Information Technology and Utilities
sectors. The system trades on a daily frequency, and a buy-and-hold strategy on SPY acts as a

benchmark to compare our system'’s performance.

2.2 Motivation

The biggest advantage of algorithmic trading is that it makes trading more systematic.
Human investors are very emotional. One can experience euphoria of having a position go right,
or can experience the “fight or flight” reaction when a position is losing money. Not only that this
type of reactions shut down the parts of the brain responsible for logic and reasoning [2], but also
one can become more greedy or fearful and therefore loses his trading discipline. Having a
discipline, or a trading plan, is very important to achieve profit and consistent profit in the Stock
Market. However, there is no such plan that can generate positive returns all the time, and when
facing these temporarily drawdowns, emotional factors described above can easily destroy the

trading discipline. Therefore, because trading plan is followed systematically, an automated trading
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system minimizes emotions throughout the trading process, ensures that discipline is maintained
through volatile market conditions, and allow us to achieve consistency.

The other advantage of algorithmic trading over human traders is the ability to backtest the
strategy. Backtesting refers to applying a trading system to historical data to verify how a system
would have performed during the specified time period. It helps the system developers learn how
a trading strategy would performed in certain situations in the past, and is likely to perform in the
future. It also provides the opportunity to optimize a trading strategy [26], by tweaking model
parameters over each iteration. The predictive power of backtesting rests on the important
assumption that the statistical properties of the price series are unchanging, so that the trading
rule that were profitable in the past will be profitable in the future [5]. However, such assumption is
subject to invalidated risk, like changes in the macroeconomic prospect, fundamental of the
company or structure of the financial market. Also, dividing historical data into in-sample and
out-of-sample sets during backtesting can provide traders a practical and efficient means for
evaluating the system [13]. In-sample data can be used to optimize the trading strategy, but it is
important to then evaluate the system on clean out-of-sample data to determine its viability and
eliminate overfitting.

Moreover, an automated trading system can time the market well, which is extremely hard
for human investors. The legendary investor Warren Buffett has a famous quote: “We simply
attempt to be fearful when others are greedy and to be greedy only when others are fearful.” This
is one form of an attempt to time the market when applying to every day trading. When people are
greedy, prices are overvalued thus a trader should sell the stock, and vice versa. But it is
extremely hard to consistently identify when people are being greedy or fearful, as Buffett himself
also said “our favorite holding period is forever”, which is a warning of do not try to time the
market. On the other hand, another form of timing the market is what High-Frequency Trading
firms does: find arbitrage opportunities and trade them within microseconds. At this frequency, it is
impossible for human to do so. However, automated trading systems can do a better job timing
the market, and even do so in a multi-tasking way, which means that a system can time thousands
of stocks simultaneously. This is why HFT firms all use computerized trading algorithms, and with
consistent good financial time-series forecasting, or sentiment analysis (analysing news articles or

tweets), trading systems can also do a decent job at identifying greeds and fears in the market.



2.3 Past Approaches

In the domain of using machine learning techniques to forecast stock market movements,
Financial Time Series Forecasting with Machine Learning Techniques: A Survey [17] provides a
cohesive overview of recent developments: Out of 46 publications this survey covers, 21 of them
use Artificial Neural Network based technology. 10 of them explore evolutionary or optimisation
techniques and the rest combine different algorithms into hybrid systems. 31 of them use a daily
frequency, and 35 of them only use market index as the target. For evaluation methods, majority
of them use only forecast errors as the evaluation metric, and only three papers test their models
in a real, or simulated trading environment, where one needs to concern with margin
requirements, trading cost and risk exposure.

Stickel [31] tries to predict individual analyst’s forecast of corporate earning using the
change in the mean consensus forecast of other analysts. Huang [12] and Lu’s papers mainly
focus on establishing Support Vector Machine models, or enhancing them with new training
algorithms to forecast major stock index. In particular, Lu [21] implements a regression model of
SVMs called Support Vector Regression, with the help of Vapnik’s epsilon insensitivity loss
function. In The Performance of Several Combining Forecasts for Stock Index [34], Wang and Nie
implements a SVM-based forecasts model, which combines the Grey model, BP neural networks
and SVM, to predict the ShangHai Stock Index. Li [18] provides a different approach: he uses a
Naive Bayesian machine learning approach to classify the information content of forward-looking
statements. He claims the Bayesian learning algorithm is better than a traditional dictionary-based
approach, in terms of the correlations between the predicted tones of forward-looking statements

and current earnings.



3. Machine Learning Methods

3.1 Brief Introduction

Alan Turing, one of the greatest computer scientists in human history and father of artificial
intelligence, in his paper “Computing Machinery and Intelligence” [33] asks this famous question:
“Can machines think?” Until today, we as human still don’t know the answer to this question, but
variations of it has been answered. One of them is: Can machines learn? The answer is yes,
supervised or unsupervised. And Machine Learning is the field of study which studies how
machines learn.

According to Wikipedia, Machine Learning is a subfield of computer science that evolved
from the study of pattern recognition and computational learning theory in artificial intelligence [35].
Arthur Samuel, a pioneer in artificial intelligence, defined machine learning as a “field of study that
gives computers the ability to learn without being explicitly programmed” [30]. Tom Mitchell, who
teaches at Carnegie Mellon University and is a prominent figure in the field of machine learning,
defines it as “the study of computer algorithms that improve automatically through experience”
[25]. In this book, Professor Mitchell provides a formal definition: A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P is its
performance at tasks in T, as measured by P, improves with experience E [25].

This interdisciplinary field has given birth and provided the theoretical foundation to the
“Big Data” boom. One application of machine learning is “Data Mining”, which uses enormous
historical data sets to improve decisions. Examples include turning medical records into medical
knowledge, or turning consumer transaction histories into targeting promotion advertisements.
The other application is to develop softwares that we cannot program by hand, such as
autonomous driving or speech recognition. Moreover, Deep Learning, which is again an
interdisciplinary field of machine learning and cognitive science, has made huge progress on
imitating human brain activities. AlphaGo, which is the first computer program to beat a 9-dan
human world Go champion, is a product of deep learning techniques.

There are many aspects of algorithmic trading, such as High-Frequency Trading,
Statistical Arbitrage and Financial Time Series Forecasting. In this paper, we focus on the
forecasting realm, and examine what can machine learning algorithms achieve, not playing the

game of chess, but the game of forecasting stock prices.



3.2 Basic Models & Variations
3.2.1 Logistic Regression

Logistic regression was developed by statistician David Cox in his 1958 paper [8]. Itis a
special case of generalized linear model, and thus analogous to linear regression. The idea is to
estimate the conditional probability of a binary response based on one or more predictor variables
by using the cumulative logistic distribution.

If we have a binary output variable Y, and we want to model the conditional probability
P(Y=1|X=x) as a function of a vector x. Notice that log p(x) is a linear function of x, which has an
unbounded range, but a easy modification, the logistic transformation log p/(1-p) is bounded.
Therefore, the logistic regression model is

R plx)
T

= fot+x-f
(1)

And solving for p, gives a form of the sigmoid function.

1

plylx) = 13 o-GornB)

(2)

Sigmoid

1
f(x)zm

Figure 1: The logistic, or sigmoid, function.

Two variations of logistic regression are implemented for the purpose of this paper.

Logistic regression with a ridge penalty is used for the individual approach, and the lasso logistic
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regression is used for the sector approach. The applications will be discussed in greater detail

later.

Ridge regression minimizes

Zﬂl:(l’f _Z.ﬁ’;xi;) +}LZ'3I.3
e | 3)

Where N is the number of observations, y, is the response at observation i, x; is the vector

of independent variables at observation i, §; are the coefficients of the original logistic regression,

and lambda is the positive regularization parameter, also known as the ridge penalty. The second
term shrinks the coefficients to prevent any one of the them being too large and cause overfitting.

Similarly, the lasso regularization [32] minimizes

N b

Z (J’:‘ - z J'?J'xl'f) + }‘Zlﬁfl

o ’ 4)
Instead of having the square term, the absolute value term is known as a L,-norm penalty.

By increasing lambda, the lasso penalty also force the coefficients to shrink, but in this case they

tend to be truncated at 0. Therefore, the lasso regularization can work as a feature selection

process.

Trace Plot of coefficients fit by Lasso

df
2 5 10 18 2426 28 29 30 31 32

107! 102 1072 104
Lambda

Figure 2: Example of the lasso logistic regression selecting meaningful coefficients
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3.2.2 Decision Tree

A decision tree is a hierarchical data structure implementing the divide-and-conquer
strategy, whereby the local region is identified in a sequence of recursive splits in a smaller
number of steps [1]. Therefore, a decision tree is composed of internal decision nodes and
terminal leaves, see figure 3. Given an input, at each node, a test is applied and one of the
branches is taken depending on the outcome. This process starts at the root and is repeated

recursively until a leaf node is hit, at which point the value written in the leaf constitutes the output.

Sunny Overcast Rain

!

High Normal Strong Weak
No Yes No Yes

Figure 3: An example of a decision tree determining whether one can play outdoor sports based on weather

In the case of a decision tree for classification, namely, a classification tree [4], the
goodness of a split is quantified by an impurity measure. One example of such measure is the Gini

index [4], which has the formula:

1- Z P (i)
' (5)
Where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A pure node, which is a node with just one class, has Gini
index 0, otherwise the Gini index is positive. If a node is not pure, then the instances should be
split again to decrease impurity, and there are multiple possible attributes on which we can split.
Among all, we look for the split that minimizes impurity after the split because we want to generate

the smallest tree.
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However, a deep tree with many leaves still tends to overfit and therefore its test accuracy
is often far less than its training accuracy. In contrast, a shallow tree can be more robust, that its
training accuracy could be more close to that of a test set [3]. The decision tree model we use in
this paper is trimmed by minimize leaf size, that is, each leaf has at least a number of observations

we set, and more observations per leaf means less leaves and shallower tree.

3.2.3 Naive Bayes

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying
Bayes’ theorem with naive independence assumptions between the features. In other words, a
Naive Bayes classifier assigns a new observation to the most probable class, assuming the
features are conditionally independent given the class value [25].

The Naive Bayes classifier is,

Vyg = arg r&:_ial:::P{r-J. ) H P(a;|v)
' (6)

Where v, denotes the target value output by the Naive Bayes classifier, P(v,) is the prior,
or class probability and the last term is the sample likelihood, which tess us how likely our sample
a, is if the parameter of the distribution takes the value v..

Therefore, Naive Bayes classifies data in two steps: the training step, which uses the
training data to estimate the parameters of a probability distribution, the prior probability and the
sample likelihood. Then, the prediction step is, for any unseen test data, the method computes the
posterior probability of that sample belonging to each class, and this data is classified as the class
with the largest posterior probability.

In this paper, we pre-assume that the data comes from a normal distribution, which makes
sense for stock returns [5] as they are generally randomly distributed with a mean of zero.
Therefore, the Naive Bayes model estimates a separate normal distribution for each class by
computing the mean and standard deviation of the training data in that class.

Moreover, we use the ROC Curve analysis to optimize our Naive Bayes classifier. A
Receiver Operating Characteristic (ROC) curve shows true positive rate versus false positive rate

(equivalently, sensitivity versus 1-specificity) for different thresholds of the classifier output [23].
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Figure 4: An example of ROC curve and its optimal threshold

ROC curve in general is used to compare performances across different classifiers, by
comparing each classifier’s AUC (area under curve) of its ROC curve. But in this case, we use the
ROC curve to find the threshold that maximizes the classification accuracy for the Naive Bayes

classifier. To do this, we find the slope S by:

Cost(P|N) — Cost(N|N) N
—_ * —_—

"~ Cost(N|P)— Cost(P|F) P

(7)
Where Cost(N|P) is the cost of misclassifying a positive class as a negative class, vice
versa, and P = TP+FN and TN+FP. The optimal operating point is found by moving the straight
line with slope S from the upper left corner of the plot down and to the right, until it intersects with

the ROC curve, and the optimal threshold is the one associated with this operating point.

3.2.4 Support Vector Machine

Support Vector Machine, which was introduced by Vapnik [7], maps the data into a higher
dimensional input space and constructs an optimal separating, often linear hyperplane in this
space. For separate classes, the optimal hyperplane maximizes a margin surrounding itself, which

creates boundaries for the positive and negative classes, in a binary case. SVM imposes a penalty
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on the length of the margin for every observation that is on the wrong side of its class boundary
when classes are inseparable.

Max. Margin
Hyperplanes

y Positive samplesf\j
N o ® ’/
.

/

L

Optimal
s 9 0o Hyperplane

Negative samples

N
- X

Figure 5: an example of a Support Vector Machine in a separable case

In addition to performing linear classification, SVMs can efficiently perform a nonlinear
classification using the “kernel trick”, which implicitly maps the inputs into higher-dimensional
feature spaces. Without going into details, the SVM model in this paper uses the radial basis
kernel, and the Matlab function automatically find an optimal scale value for the kernel function
[24].

3.3 Ensemble Methods

Each Machine learning algorithms we discussed above has many parameters to optimize
for and also many ways to perform the optimization. The “No Free Lunch” Theorem states that,
there is no single learning algorithm that in any domain always induces the most accurate learner
[38]. Also, each learning algorithm dictates a certain model that comes with a set of assumptions.
This inductive bias leads to error if the assumptions do not hold for future data. In other words,
learning is an ill-posed problem, and with finite data, each algorithm converges to a different
solution and fails under different circumstances [1]. Therefore, these problems raise the incentive
to explore models that composes of multiple base-learners that complement each other by

combining them. The idea is that, there may always be another learner that is more accurate, and
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by suitably combining multiple base-learners, overall accuracy can be improved. In general, this
approach is called the Ensemble Method.

We explore two ideas of ensemble method in this paper. The first one is Voting, which is
the simplest way to combine multiple classifiers.

¥ = Z widj; . where w; = G,z wy =1
i

' (8)

Where w; is the weight of each base-learner and d; is the classified output of each learner
given a data point. In our case, all base-learners are given equal weight, and the votes are
combined linearly by simply adding them up. The final decision is made based on the majority of
the votes.

The second ensemble takes the idea of the Random Subspace Method [11], which
randomly chooses different input representations from the original data input, and then combines
classifiers using different input features. This has the effect that different learners will look at the
same problem from different points of view and will be robust. It can also help reduce the curse of
dimensionality because each input data set is fewer dimensional.

Other common ensemble methods that are not examined in this paper includes
Error-Correcting Output Codes [9] (ECOC), Bagging, and Boosting [27].
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4. Prediction Model: Individual Approach

4.1 Methodology

The first method to develop a stock price prediction model is what we called an individual
approach, which means that the model uses historical performance of a stock itself to predict its
future price movements. The idea is that, looking at how the stock historically moves in N-day
windows, there are patterns useful to predict the future price given a new N-day window. Notice
that this approach ignores important factors such as general market information and performances
of competing companies, but we believe this simplified model can provide a good starting point
and a benchmark for comparison with complex models later.

Some details about implementing this model needs to be addressed. First, we want to
make this a classification problem instead of a regression problem because we can use probability
models like logistic regression to control the “confidence level” of the predictions and moreover, it
is not necessary to predict the right price as long as we get the direction right. To see this, let’s
assume a regression problem setting and suppose a stock with price $100 and $101 for today and
tomorrow. Two models give different predictions of $99 and $110 for tomorrow. The first one is
close to the true price but it would suggest a sell and we lose money, while the second one,
though has higher error, gets the right direction and we would profit from it. Second, we use daily
returns instead of prices when building the dataset. Since most price series are geometric random
walks, it violates the econometrics requirement that the expected value of error in a regression
needs to be zero.but the returns are usually randomly distributed around a mean of zero [5].

On top of logistic regression, we added a ridge penalty to prevent overfitting. A ridge
penalty can be used in logistic regression to improve the parameter estimates and to diminish
out-of-sample error, by imposing a restriction on the parameters.

By tweaking lambda we can restrict any one of the estimated coefficients to be too large.
To see why this would help our model, suppose we want to predict tomorrow’s return by using
returns from last seven days. The coefficient for yesterday’s return would be significantly larger
than the rest of them, because yesterday is the most relevant to today. However, one parameter
being dominate significantly increase the chance to overfit, that is, the model would give too much
weight on yesterday while we want to consider the whole week. By applying the penalty, we can

prevent this situation from happening and give more weights to the “further back” parameters.
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4.2 Data

The data we use is web scraped from Yahoo Finance, which contains adjusted closing
price for all the stocks in S&P 500 from Jan 2,2014 to Feb 1, 2016. We did not go further back
because prices more than 2 years old is likely to be irrelevant. Adjusted closing price is the daily
closing price, which is the last trading price before market closes at 4 pm, adjusted for dividends

and stock splits. It there was a non-trading day for any stock, | put the adjusted close from the

previous day.

The following table demonstrate how the dataset looks like by showing an example of two

observations.
X Y
RAl RAZ RA} e RAN YvANJrl
RAZ RA} RA4 A RANA] YAN+2

Table 1: Example of two observations in the individual approach training set

Where R,, is the return of stock A from day 1 to day 2. Y ., is a binary response variable,

which equals to 1 if the return of stock A at day N+1 is positive and 0 otherwise. By constructing

the dataset this way, we use the returns of the stock itself from day 1 to day N to predict its sign of

return at day N+1, so N represents how far we want the model to look back. As a result, a logistic

regression model that runs on this dataset will have the characteristics of an autoregression.
For this paper, we pick N=4 based on running an iteration from two to ten and choosing

the N with the best in-sample performance. There are five trading days in a week, so it makes

sense to say that looking back a week gives a somewhat optimal performance. we would use this

value of N throughout this paper. Though it may not be optimal when applying for the models

using the sector approach, we believe that it is still a reasonable choice.
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4.3 Results

4.3.1 Evaluation Metric

There are two ways that we use in this thesis to evaluate the performance of a prediction
model. The first one is what we call the “true rates”, and the second one follows a traditional
statistical approach, that is, we conduct a hypothesis test to see whether the true rates are
significantly different than random guessing.

For probabilistic model like logistic regression, the model may not make a prediction for
every observation because we can define threshold for its confidence level. For example, we may
only count those predictions of Y equals 1 with probability higher than 0.6. Therefore, we only care
about the “true positive rate”, which calculates out of the times that the model predicts “up” given a
threshold, how many times did the stock price actually went up. Similarly, we define “true negative
rate” and “true rate”, which is just a weighted average of both positive and negative rates.

Each stock in the S&P 500 has its own trained model and a set of three true rates defined
above. Then, to valuate statistical significance, we conduct a t-test with a null hypothesis that the
true rates are from a Gaussian distribution with mean equals to 0.5, which represents just random
guessing. If we can successfully reject the null hypothesis, we have evidence that our model’s

prediction performs better than random guessing at a 5% significance level.

4.3.2 True Rates for Individual Approach

For each stock, the logistic regression model is trained on the first 80 percent and test on
the rest 20 percent. For the application of building an automated trading system that would work
on future unseen data, we don’t care about how small the training error gets, but we want to see
whether the prediction accuracy on the test set can get significantly better than random guessing.
The following tables show the average true rates over all the stocks for both logistic regression

and ridge logistic regression with different thresholds.
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Logistic Regression Ridge Logistic Regression
Threshold | TP TN TR TP N TR
05 0.5002(0.0552) 0.5118(0.1051) | 0.5067(0.0421) | 0.5032(0.0590) | 0.5086(0.0560) | 0.5050(0.0362)
055 0.5192(0.1765) 0.5006(0.2767) | 0.5161(0.1447) | 0.5680(0.3346) | 0.4998(0.3501) | 0.5289(0.3141)
0.6 0.5374(0.3255) 0.4898(0.3800) | 0.5219(0.3050) | 0.5035(0.4171) | 0.4584(0.4074) | 0.4761(0.3710)

Table 2: True rates of logistic regression and ridge logistic regression

Since we only have two classes, a threshold of 0.5 means that the model is making

prediction every time, or more precisely, we are counting it's prediction every time. At this

threshold, logistic regression gives an average of 0.5002 true positive rate, with a standard

deviation of 0.0552, 0.5118 true negative rate with standard deviation 0.1051 and in aggregate a

true rate of 0.5067 with standard deviation 0.0421 over this testing period. Ridge logistic

regression had similar performance. None of the true rates for neither model tested significant

against random guessing, using the 0.5 threshold.

As we can see from the above table, as we set more restrictive thresholds, the standard

deviation gets a lot larger. The reason is that we are counting less predictions, so either those

predictions we counted are very right or they are very wrong. However, the average true rates do

not move away from 0.5. For all the true rates, only the true positive rate for ridge logistic

regression passes the t-test that it is significantly better than random guessing at 5% significance

level, with p-value equals 0.0024.

This result suggests that we need to be careful when picking higher thresholds. Although

the model is more “sure” when we count its prediction as a trade signal, it may not actually help

the overall performance. Also, when we only count a small number of predictions one wrong

prediction would have bigger impact.
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5. Prediction Model: Sector Approach

5.1 Methodology

The idea of the sector approach is to allow our model to look at a bigger picture, that is, it
accounts for the information of all the stocks within the same sector when predicting for a
particular stock’s price. This has a large advantage comparing to the individual approach. For
example, if we are to predict tomorrow’s stock price for Apple, the logistic regression model above
does not know what has been going on outside of Apple’s own stock price. However in reality,
price movements of other technology stocks can affects Apple’s stock price: if Google’s stock
rockets amid the news of it entering the smartphone business at full force, the price of Apple’s
stock most likely would fall. By looking at the returns of the stock of companies within the same
sector, though the model cannot identify and analyze those events like this one, but it can take
advantage of existed correlations between the stock price of a company and the prices of others
within the same industry.

In terms of machine learning algorithms we used to build our model for the sector
approach, we tried four basic techniques: lasso logistic regression, decision tree, naive bayes and
support vector machine(SVM). Each one of them has been slightly optimized by ways we have
discussed in Section 2. On top of it, we applied two ensemble methods: majority vote and a
customized random forest.

Maijority vote is a simple ensemble method which can take advantage of all four of the
basic algorithms. For each observation, lasso, decision tree, naive bayes and SVM each votes for
its prediction, and the majority vote model makes a prediction only when at least three of the votes
agree. This way we can be more confident on the predictions from the majority vote model.

The second ensemble method we designed, called Random Subset, is based on the
concept of a random forest. The idea is to randomly pick different subsets of the stocks in the
same sector as predictors. In particular, we choose one basic algorithm, for example naive bayes,
as the underlying model. Then, we build one hundred training sets, each randomly picks ten
percent of stocks in the sector and let naive bayes train on all of them. In the end we would have
one hundred votes, and Random Subset would make a prediction when at least half of the votes
agree on a direction. Note that each underlying model can predict up, down or none depends on

threshold of our choice, Random Subset also may not give a prediction for every observation.
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From these six models, four basic and two ensemble, we will pick the top performing ones

to backtest on real out-of-sample data in the next section.

5.2 Data

We choose the utility, energy and information technology sectors to be examined. Out of
the 484 stocks from the S&P 500 index that have traded under the same ticker from Jan 2, 2014
to Feb 1, 2016, there are 29 stocks in the utility sector, 39 stocks in the energy sector and 61
stocks in the information technology sector.

We use the same autoregression technique as with the individual approach, but the data
set is built in a different way to incorporate the information of other companies within a sector. The

following table provides an example of what the first two observations look like:

X Y
RAl RA2 RA3 RA4 RBl RBZ RB3 RB4 RZ] RZZ RZ3 RZ4 YA5
RAZ RA3 RA4 RAS RBZ RB3 RB4 RBS RZZ R23 RZ4 RZS YAG

Table 3: Example of two observations in the sector approach training set

Where R,, is the return of stock A from day 1 to day 2. Y, is a binary response variable,
which equals to 1 if the return of stock A at day 5 is positive and 0 otherwise. A to Z represent
companies in the same sector. We fix N, which is how many days we want to look at at 4 as we
discussed in the last section. To predict return of stock A, the model have the returns of all the
companies within the same sector going back 4 days. Also, the target stock in Y column can be
any company from those appeared in X.

If we were to use all 484 stocks from the S&P 500 as predictors, the data set would have
1938 predictive attributes. For the smallest sector, a data set using only stocks from the utility

sector has only 116 attributes, which represents a much smaller and workable dimension.
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5.3 Results

5.3.1 True Rates

Similar to the approach in the previous section, we split the dataset into 80 percent training

and 20 percent testing. Since training error means nothing when implementing the trading

strategy, the true positive rate, true negative rate and overall ture rate from only the testing set are

reported. Also, we loop through all stocks within a sector and use each one of them as the target

stock to get a list of true rates. This way we can compute means and standard deviations and

therefore conduct statistical tests to justify overall performance.

True Positive

True Negative

True Rate

Utility

0.5595 (0.0481)

0.4507 (0.0641)

0.5235 (0.0332)

Energy

0.4653 (0.0406)

0.5369 (0.0563)

0.5047 (0.0341)

Information Technology

0.5244 (0.0478)

0.5031 (0.0558)

0.5102 (0.0356)

Table 4: Average true rates of Lasso Logistic Regression on different sectors

True Positive

True Negative

True Rate

Utility

0.5699 (0.0635)

0.4624 (0.0418)

0.5179 (0.0375)

Energy

0.4524 (0.0426)

0.5320 (0.0536)

0.5042 (0.0339)

Information Technology

0.5075 (0.0519)

0.4966 (0.0653)

0.5052 (0.0363)

Table 5: Average true rates of Decision Tree on different sectors

True Positive

True Negative

True Rate

Utility

0.5949 (0.0623)

0.4957 (0.0577)

0.5495 (0.0458)

Energy

0.4797 (0.0467)

0.5812 (0.0656)

0.5193 (0.0326)

Information Technology

0.5115 (0.0523)

0.5048 (0.0594)

0.5091 (0.0345)

Table 6: Average true rates of Naive Bayes on different sectors
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True Positive

True Negative

True Rate

Utility

0.5804 (0.0545)

0.5081 (0.0741)

0.5562 (0.0416)

Energy

0.4818 (0.0728)

0.6049 (0.0897)

0.5201 (0.0369)

Information Technology

0.5142 (0.0472)

0.5040 (0.1254)

0.5149 (0.0379)

Table 7: Average true rates of Support Vector Machine on different sectors

The average true rates for each of the four basic models are reported for all three selected
sectors, while the standard deviations are shown in parenthesis. In general, models under the
sector approach outperforms the logistic regression models in the individual approach as we get
some true rates which are 1 unit standard deviation away better than 50% random guessing.

Sector-wise, the utility sector has the best predictive performance. Naive Bayes obtains an
impressive almost sixty percent average true positive rate for this sector. Also, the average overall
true rate of the utility sector outperforms energy and information technology, no matter which of
the basic model. One thing worth to notice is that overall true rate seems to be decreasing as the
size (number of stocks) of the sector increases. This may be due to the “curse of dimensionality”,
which means that higher the dimension, or the number of attributes, of the data set, the chance to
overfit increases, so we may get better in-sample performance but out-sample performance falls
toward random guessing.

Model-wise, lasso-logistic regression and decision tree shares similar performance both
got outperformed by naive bayes and SVM. Between this two better models, SVM in general
gives slightly higher standard deviation. As a result, we decide that naive bayes seems to be the
best basic model among the four.

Moreover, these models are better predicting upside than downside. True positive rates
are in general higher than true negative rates, with the exception of the energy sector. But even
with the energy sector, only naive bayes and SVM seems to give downside prediction significantly
better than random guessing. This different behavior obtained from the energy sector, we believe
is due to the free-falling oil price during the time of testing: this macroeconomic factor boosts
downside prediction accuracy simply because there are way more down days than up days. But
we are glad to see that naive bayes and SVM still maintains good overall true rates for the energy
sector.

To improve downside accuracy, we introduced a two-step decision-making rule. To do this
we optimize Naive Bayes by using ROC curve analysis. In detail, we pick the optimal threshold

which associated with the optimal operating point of the ROC curve. The two-step process goes
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as follows: if the original Naive Bayes predicts up, the final model takes this prediction, but if the

original model predicts down, the final model only makes the same prediction if the probability of

predicting a negative return given by the original model exceeds the optimal threshold from the

ROC curve.

True Positive

True Negative

True Rate

Utlity

0.5949 (0.0623)

0.5023 (0.0623)

0.5513 (0.0456)

Energy

0.4797 (0.0467)

0.5884 (0.0671)

0.5210 (0.0335)

Information Technology

0.5115 (0.0523)

0.5057 (0.0595)

0.5096 (0.0346)

Table 8: Average true rates of Naive Bayes with ROC analysis on different sectors

The true negative rates improve slightly using the two-step rule. Although we believe this

improvement may not be significant, it is good to see no signs of overfitting.

Next, we look at the true rates from running the two ensemble methods. Again, Majority

Vote takes the votes from SVM, Naive Bayes, Decision Tree and Lasso Logistic. Random Subset

incorporates Naive Bayes with ROC analysis as the underlying model. The following table reports

the true rates for these two model:

True Positive True Negative True Rate
Utility 0.5807 (0.0610) 0.4921 (0.0836) 0.5573 (0.0443)
Energy 0.4753 (0.0675) 0.6003 (0.0963) 0.5192 (0.0394)

Information Technology

0.5133 (0.0389)

0.5055 (0.1407)

0.5233 (0.0419)

Table 9: Average true rates of Majority Vote on different sectors

True Positive

True Negative

True Rate

Utlity

0.6021 (0.0556)

0.5187 (0.0845)

0.5779 (0.0504)

Energy

0.4574 (0.0905)

0.5871 (0.1053)

0.5108 (0.0526)

Information Technology

0.5348 (0.0860)

0.5317 (0.1311)

0.5382 (0.0679)

Table 10: Average true rates of Random Subset on different sectors

The performance of Majority Vote is very similar to those of SVM and Naive Bayes. We
believe that this is because those models’ predictions do not differ from each other for most

observations, especially the two best performing basic models agree with each other a lot, and
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since there are only four votes, the Majority Vote does not provide meaningful improvements for
prediction accuracy.

However, we do see gladful improvements from the true rates given by Random Subset
as both upside and downside contributes positively. Utility sector has an 58% overall accuracy
compares to 55% from Naive Bayes. Information Technology sector also sees a 3% overall

accuracy improvements. It suggests that this ensemble method helps to boost performance.

5.3.2 Statistical Testing

We want to carefully examine whether the higher true rates above can withstand statistical
tests that prove them better than random guessing. Before conducting the student-t hypothesis
test, we need to make sure that we can reasonably assume these true rates come from the
normal distribution family. Therefore, we introduce a non-parametric normality testing called the
Lilliefors test.

Lilliefors test uses the Kolmoforov-Smirnov statistic for testing whether a set of
observations is from a normal population when the mean and variance are not specified but must

be estimated from the sample [19].

D= max F(x) — G(x)

(9)

D is the maximum discrepancy between the empirical distribution function (F(x)) and the
CDF of the normal distribution with the estimated mean and standard deviation (G(x)), and then
uses the Lilliefors distribution table to see whether the maximum discrepancy is large enough to

be statistically significant.

True Positive True Negative True Rate
Utility 0 0 1
Energy 0 0 0
Information Technology 0 0 0

Table 11: Lilliefors test results of Naive Bayes




True Positive True Negative True Rate
Utility 0 0 1
Energy 0 0 0
Information Technology 0 1 0

Table 12: Lilliefors test results of SVM

0 means the Lilliefors test fails to reject the null hypothesis that the sample data comes
from a normal distribution with unknown parameters, while 1 means the test rejects the rates are
normally distributed at the 5% significance level. The tests suggest that almost all of the true rates
are normally distributed, so we can conduct t-test on them to see whether they are significantly
better than random guessing. For the overall true rates of the utility sector which fail the normality

test, a different kind of statistical test is needed to address significance.

True Positive

True Negative

True Rate

Utility 1 (6.2644e-09) 0 (0.6922) 1 (2.9240e-06)
Energy 1(0.0097) 1(2.6383e-09) 1(7.0202e-04)
Information Technology 0 (0.0907) 0 (0.5323) 1 (0.0429)
Table 13: Student-t test results of Naive Bayes

True Positive True Negative True Rate

Utility 1(1.0683e-08) 0 (0.4064) 1(7.7875e-08)
Energy 1(0.0137) 1 (6.9060e-08) 1(0.0020)
Information Technology 1(0.0154) 0(0.5159) 1(0.0013)

Table 14: Student-t test results of SVM

The values in the above tables are the results of conducting t-tests with the null hypothesis
that the true rates are from a Gaussian distribution with mean equal to 0.5, and the p-values are
reported in parenthesis. 1 indicates that the test rejects the null hypothesis at a 5% significance
level, which means that the predictive performance is different than random, while 0 means that
the observed effect is no better than merely random guessing.

For all three sectors, both Naive Bayes and SVM'’s overall true rates are significantly better
than random guessing at the 5% significance level. This shows that our prediction models can in

fact withstand statistical testing, that the predictive accuracies are not results of pure luck.
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However, some of the true rates with p-value larger than 0.01 cannot reject the null hypothesis at
1% significance level. Also, the t-tests confirm our previous finding that SVM and Naive Bayes
have better upside predictions than downside, since the true negative rates from both utility and
information technology sectors fail to be different than random guessing.

Although the overall true rates of the utility sector strongly reject the t-test, it is not
trustworthy since earlier we show that they fail to pass the Lilliefors normality test. Therefore, we
introduce the Mann-Whitney U test, or equivalent to the Wilcoxon Rank Sum test [37], which is a
non-parametric statistical hypothesis test for equality of population medians of two independent
samples [22]. This test is an alternative to the paired student’s t-test when the population does not

come from the normal distribution family.

True Positive

True Negative

True Rate

Utlity

1(1.5135e-05)

0 (0.6891)

1 (1.3329e-04)

Table 15: Wilcoxon Rank Sum test results of Naive Bayes

True Positive

True Negative

True Rate

Utility

1(8.9780e-06)

0 (0.6394)

1(2.1910e-05)

Table 16: Wilcoxon Rank Sum test results of SVM

The table shows the result of conducting a Wilcoxon rank sum test, with the null
hypothesis that the true rates come from the same population as a sample whose median equals
to 50 percent. 1 means that we reject the null hypothesis at the 5% significance level that the true
rate has a median significantly higher than 50%, while 0 means that we fail to reject otherwise.
The p-values are reported in parenthesis. The results confirm that Naive Bayes and SVM have
overall true rates significantly better than random guessing.

At last, we examine the statistical significance of the results obtained from Random
Subset, using Naive Bayes with ROC analysis as the underlying model. Same procedure is to be
followed: first conduct the Lilliefors test for normality, then based on the result decide whether to

use t-test or the Wilcoxon rank sum test.
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True Positive True Negative True Rate
Utility 0 0 0
Energy 0 0 0
Information Technology 0 0 0

Table 17: Lilliefors test results of Random Subset using Naive Bayes with ROC analysis

True Positive

True Negative

True Rate

Utility 1(1.2603e-10) 0(0.2433) 1(4.7571e-09)
Energy 1(0.0055) 1(7.9446e-06) 0 (0.2069)
Information Technology 1(0.0025) 0 (0.0638) 1(4.2767e-05)

Table 18: Student-t test results of Random Subset using Naive Bayes with ROC analysis

Table 17 shows that all of the true rates obtained by Random Subset pass the Lilliefors
test, that is, we can conduct the t-test and assume the true rates come from the normal
distribution family.

Table 18 shows the result of the t-tests. All the true positive rates for the three sectors are
still statistically significant better than random guessing at the 5% significance level. Although
Random Subset has better accuracy for downside prediction, the true negative rates for utility and
information technology sector still fail the t-test. Therefore, the downside accuracy improvements
may not be significant, and we need be aware of this fact when designing our trading strategy.
Also, the overall true rate for the energy sector fails to reject the null hypothesis, compares to it
given by Naive Bayes or SVM alone which passes the test. We cannot conclude that the
ensemble method outperforms the best basic models, so it is necessary to test both in the next

section, where we will build our trading strategy and validate it using truly out-of-sample data.
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6. Trading Strategy Implementation

6.1 Strategy

The second part of building an automated trading system is to specify a trading strategy
that use our machine learning model predictions as input and outputs actual buy/sell orders. It is
not enough to simply buy every time the model signals upward motion and sell every time it
signals down. A good trading strategy should not only take full advantage of the model’s
predictions by understanding the essence of the prediction, but also consider the existing positions
when generate trade orders.

The models proposed in this paper are designed to make prediction on next-day returns,
so the essence is that we can only trust the model predictions one-day ahead and the strategy we
designed need to take this in consideration. To illustrate this point, assume that our model has
given upward predictions for the past five days and we bought 1 unit of 100 shares of the target
stock each day. The position in this stock we have at the end of the fifth day is 500 shares, but
now the model gives us a sell signal for day six. A question the strategy needs to answer is how
much we want to sell given this sell signal. If we only sell 1 unit, we will still have 400 shares
tomorrow when we know, based on our model, that we will lose money on this long position. In
another word, the upward predictions have carried over for more than 1 day until we sell all the
shares. The example strategy does not take full advantage of the model predictions since they do

not tell us what will happen more than one day ahead.

If model predicts up
If at long position or no position
Buy one unit (100 shares)
If at short position
Buy back all short position and buy one unit

If model predicts down
If at short position or no position
Short one unit (Buy -100 shares)
If at long position
Sell all long position and short one unit

Figure 6: Detail illustration of our customized trading strategy
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The above figure demonstrates the strategy we designed specifically for the models
proposed in this paper. This strategy takes in consideration the existing portfolio positions before
submitting a trade order. Let’s say the model gives a buy signal, which means that it suggest the
stock price is going up tomorrow. If we already hold a long position, which cumulates from
previous buy signals, or have no position at all, it makes sense to buy one more unit or enter a
long position. But if we are shorting the stock, we know that the short position will suffer lost
tomorrow when price goes up, so we need to exist all short position to avoid this lost, and, we
want to go aggressive and even start entering a new long position to profit from the price increase.
This aggressiveness depends highly on our model’s accuracy and as a result, the returns
generated by this strategy are meant to have higher volatilities.

In Section 4 and 5, we train the Machine Learning prediction models on the first 70 percent
of the data and calculate the true rates on the rest 30 percent. In real world situation, however,
new data point comes in every day so we can also take advantage of this fact. Instead of building
just one training data set, we build it dynamically, that is, our trading system update the train set
everyday by adding the new entry.

Moreover, for each sector, we pick the top 10 performers from the validation period to
trade on. The table below shows the tickers for these best performing stocks. Only using the top
10 stocks may cause overfitting thus hurt the out-sample results. In real situation, however, we
can manage the cash proportion of our portfolio easier compare to trading every stock in the

sector. Of course, this list of top performers should be updated constantly, like once a month.

Naive Bayes with ROC

Utility AEP, D, CMS, SO, PNW, ES, PCG, DTE, XEC, WEC
Energy VLO, PXD, MPC, NBL, PSX, TSO, DVN, RIG, OKE, OXY
IT FISV, INTU, EMC, CA, ADP, AMZN, MU, TXN, WU, HPQ

Random Subset

Utility XEL, D, CMS, WEC, PNW, AEP, DTE, NI, PEG, ES
Energy ESV, PXD, EOG, MPC, XOM, AES, OKE, DO, RIG, DVN
IT NVDA, CA, MU, FISV, EBAY, AMHT, ADP, EMC, PAYX, KLAC

Table 19: Top 10 performers of each sector for Naive Bayes and Random Subset
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6.2 Market Simulator

We develop a market simulator to provide an environment where the trading strategies
can be tested. The simulator uses real-work stock prices, and inherits a simplified version of real
market mechanism. It allows strategies to place buy/sell orders, executes the orders at market
price including trading cost, and evaluates portfolio value at daily frequency.

A key advantage of having a market simulator is that we can backtest a trading strategy to
see how it would have performed in the past. Backtesting is a key difference between a traditional
investment management process and a quantitative investment process [6]. Not only we can
derive complete detail of the performance of a strategy such as daily returns, position changes
and cash changes, but also backtesting allows s to experiment with variations to the original
strategy to refine and improve it.

However, this simplified version of market is subject to many limits that may cause the test
results to be less significant or unrealistic. The biggest concern is that the prices which orders are
executed on are different than they would be in actual trading. The real Market uses a bid/ask
spread mechanism, where buy order is fulfilled at the lowest possible ‘ask’ price and sell order is
fulfilled at the highest possible ‘bid’ price. Without going into more details, usually the market price,
which the simulator uses, is the average of the lowest ask price and highest bid price. Also, our
prediction model needs to wait for the closing price of today in order to make the prediction for
tomorrow. This means that our strategy can only place orders after the Market is closed for the
day so that the orders in real life would be executed at the opening price on the next day, but our
simulator assume that the order is executed at the closing price today. In the two situations
described above, usually the difference between market price and bid/ask price is tiny, and except
for some special events the difference between today’s closing price and tomorrow’s opening
price is also small, but keep in mind that these differences cumulated can potentially hamper our
backtesting result.

Backtesting is done in two parts. We train and optimize the trading strategies on data
between Jan 2, 2014 to Jan 31, 2016. Then we run truly out-of-sample tests from Feb 1, 2016 to

May 1, 2016 to obtain validation of our strategies’ historical performances
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6.3 Out-of-Sample Live Simulation

6.3.1 Sharpe Ratio

In order to measure a strategy’s performance, looking at just the historical returns the
strategy generates is not enough. We need a performance measure that considers the
consistency of the returns generated by a strategy. In William F. Sharpe’s 1994 original paper [28],
He introduced the Sharpe Ratio which is a measure for calculating risk-adjusted return. The
Sharpe ratio equals mean of portfolio return minus risk-free rate and divided by standard deviation
of portfolio return.

The Sharpe Ratio is the average return earned in excess of the risk-free rate per unit of
volatility [15], where the risk-free rate usually is the federal interest rate in the U.S. It has become
a industry standard for measuring strategy performances and it is also great at comparing
performances across different strategies. In practise, people annualize the Sharpe ratio. In our
case where the Sharpe ratio is calculated at daily frequency, we annualize it by multiplying by
square root of 252, since there are 252 trading days in a year.

As a rule of thumb [6], a strategy that has an annualized Sharpe ratio of at least 1 is
suitable as a stand-alone strategy, that is, the returns generated by it have statistical significance.
A strategy that can achieve profitability almost every month typically has its Sharpe ratio greater
than 2, and a strategy that is profitable almost every day usually has Sharpe ratio greater 3. For
the purpose of this thesis, we aim for Sharpe ratio above 1.

Notice that although the Sharpe ratio offers a standard and convenience solution for
measuring strategy performance, it has certain limits worthy for us to bear in mind. William Sharpe
in a reprinted version of his paper in 1996 [29] acknowledges that “any measure that attempts to
summarize even an unbiased prediction of performance with a single number requires a
substantial set of assumptions for justification”. In particular, as Andrew Lo points out [20], the
calculation to annualize the Sharpe ratio, especially for the standard deviation part, relies on the
assumption that the daily returns are i.i.d and serially uncorrelated, so the result is subject to

estimation errors.
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6.3.2 Individual Approach
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Figure 7: Three months out-of-sample simulation results for individual approach models
SPY AAPL AMZN XOM AEP
Sharpe 2.0738 0.5343 2.8183 -2.8736 -2.0579

Table 20: Sharpe ratio of ridge logistic regression trading on different stocks

Figure 7 shows the performances of our trading system trading on Apple, Amazon, Exxon
Mobil and American Electric Power, using the ridge logistic regression with 0.55 threshold. The
system trades from February 1st to April 29th, which represents a two-month out-of-sample test.
These target stocks are chosen as “representatives” because there are the largest market-cap
companies in their corresponding sectors.

The dotted line is the performance of the S&P 500 in the same period, or strictly speaking
is the performance of a buy-and-hold strategy trading on SPY. The SPY index achieves a 2.07
sharpe ratio during this two month, but only the trading system which trades on Amazon beats the
Market with a 2.82 sharpe ratio. This system outperforms Market for the first 20 days, but keeps

underperforming in the next 50 days only to catch up at the very end.
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Other Amazon, systems that trades on Apple, XOM and AEP all underperform the Market

in this out-sample test. Only the Apple system achieves positive sharpe ratio but an insignificant

0.53, while systems on XOM and AEP have negative -2 sharpe ratios, that is, these two systems

consistently lose money every month. However, the good news is that even with such large

negative sharpe ratios, both systems do not lose a lot portfolio value, which shows that our

strategy does have certain degree of downside protection.

6.3.3 Sector Approach
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Figure 8: Three months out-of-sample simulation results for sector approach models

Naive Bayes with ROC

Random Subset

SPY

Utility

Energy

IT

Utility

Energy

Sharpe

2.0738

0.4344

2.1362

0.5069

-0.4024

2.6898

2.8393

Table 21: Sharpe ratio of sector approach trading systems trading on different sectors
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Here, ‘Naive Bayes’ refers to a trading system which use Naive Bayes with ROC
optimization as the underlying model, and similarly with ‘Random Subset’, which refers to a
system which employs the Random Subset technique with ROC-optimized Naive Bayes as the
underlying model.

Naive Bayes on utility, energy and information technology sectors all achieve positive
returns during the testing period. In particular Naive Bayes trading on the top 10 stocks in the
energy sector has a promising 2.14 sharpe ratio, though the other two do not have sharpe ratios
above 1. The Random Subset systems trading on energy and IT sector both have strong
out-sample performances, with promising 2.69 and 2.84 sharpe ratio respectively. On both
sectors, Random Subset outperforms Naive Bayes.

One interesting thing to notice is that, in section 6, the ML models run on utility sector have
higher true rates than those on energy and IT, but the overall true rates for the utility sector do not
pass the normality test. We would have expected that the systems which trade on utility sector to
have the best portfolio performance, however, they are the worst performers during the testing
period, and Random Subset on utility even has a negative sharpe ratio. This might because of the
true rates do not come from a normal distribution, therefore skewed and subject to bigger risk of
overfitting.

Moreover, five out of the six trading systems achieve positive sharpe ratio, only two trading
systems, Naive Bayes and Random Subset trading on energy sector, outperform the S&P 500
index during the testing period. But although is common to compare the performance trading
strategies with the SPY, long-short trading strategies like our trading systems are dollar neutral,!!!
and therefore more appropriate to compare with the risk-free interest rate. In this case then, since
the risk-free interest rate is close to zero under current economic policy, all five systems with

positive sharpe ratio generate higher return than the risk-free rate.
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7. Conclusion

In this thesis, we built an automated trading system based on Machine Learning
algorithms. Based on historical price information, the machine learning models forecast next-day
returns of the target stock. A customized trading strategy then takes the model prediction as input
and generate actual buy/sell orders and send them to a market simulator where the orders are
executed. After training on available data from January 2, 2014 to January 31, 2016, our system is
back-tested on out-of-sample data from February 1, 2016 to May 1, 2016.

We found that only looking at a company’s past stock price itself was not sufficient enough
to predict its future returns. A better way to do so was to look at the entire sector which the target
company was part of, and used historical price information of all companies within the sector to
predict the target’s next-day return. In a three month in-sample validation period, some models
achieved almost 60 percent accuracy with statistical significance. Also, we found that simple
variations of machine learning basic algorithm, like the ROC curve optimization, or Ensemble
Methods which combine basic algorithms can improve accuracy and provide significant results.

A customized trading strategy that utilizes our model predictions showed signs of
successfully timing the market. Our trading systems achieved promising sharpe ratios with nearly
20 percent return, after transaction cost, during the out-of-sample testing period, and was able to
beat the risk-free interest rate and some even outperformed the S&P 500 index. The backtesting
on unseen data validated that our automated trading system was able to consistently generate
positive returns.

For future works, there are so many things worth to try. This thesis only focused on
technical analysis, so an obvious thing to do is to incorporate some fundamental analysis. We tried
to add daily trading volume to our data set, but it doubled the dimension and did not improve our
model predictions, but with careful feature selection, we believe there should be information gain
by adding trading volumes. Variables about company fundamentals such as revenues and
earnings, and about macroeconomic issues such as interest rates, exchange rates and
unemployment reports should also help predicting stock prices. Moreover, we remain curious how
more sophisticated machine learning algorithms or deep learning techniques can be meaningfully
implemented in the application of financial forecasting, with caution for overfitting drawbacks.

After all, automated trading should not be just about algorithms, programing and

mathematics [5]: an awareness of fundamental market and macroeconomic issues is also needed
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to help us decide whether the backtest is predictive and the automated trading system will

continue to be predictive.
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