
privateBook: Encrypting User Data with
Attribute-Based Encryption Using Privacy

Policies

Milo Watanabe
Boston College

April 2014

Abstract

As the internet and cloud services have pervaded our lives in nearly
every aspect, one of the biggest issues facing the populace today is
finding ways to protect our privacy. An important part of protection
for the average user of a service is their privacy policy: essentially the
only way today to let a client define how their data is used by the
server. But often a client is not given a choice, and sometimes their
policy is not even followed. We present here an way of encrypting
user data such that they first create a privacy policy, and their data is
protected from even the service unless their privacy requirements are
met by the service.

1 Introduction

Protecting user privacy is a huge problem facing any internet company, and
a huge issue for every client using those technologies. Tech giants, like Face-
book and Apple, and smaller app developers, like QuizUp publisher Plain
Vanilla, have faced a large amount of backlash based on their sometimes-
shady usage of client data [1]. More and more solutions are emerging for
giving users finer control over their data, though.
Recently in the EU, a push has gone through the European Parliament to

1



create tighter regulations for privacy and enforce larger penalties for non-
compliance [2]. Another solution involves a new programming language that
enforces privacy policies by constraining certain variables that correspond
to user data [3]. These are good solutions, and they are important steps
towards giving the client more control. One of the biggest issues with the
current state of privacy, though, is that even if a user edits their privacy
settings, often they are still left unclear as to how their data is managed, and
frankly can’t tell if it was mismanaged anyway. Figure 1 below shows how
clients lose their control after sending it off to a service.

CLIENT
Sends personal info to a server
Believes the service will use
data responsibly

?????
How is your data used? Who
can use it?

SERVER

Provides the services you
requested, but do they do
more?

YOUR DATA!!

All your data

Figure 1: Current Client/Server Relationship

The approach investigated here will not go so far as to ensure the data
is used properly, but it will create a ‘promise’ that the service will implicitly
make with every instance of the data being used. This scheme uses a type of
Key-Policy encryption called Attribute-Based Encryption. It requires a client
to share its data with a server, which will perform some action with the data,
and a third-party authority to create, store and distribute keys necessary for
the data to be encrypted and decrypted. The prototype for such a system has
been built as a web app called privateBook. In privateBook, clients create
an account and set a privacy policy, then can write posts that they can view
if signed in to their own account. The prototype shows a practical way of
ensuring data is encrypted for all parties, and can only be seen as a result of
the service adhering to a user’s privacy policy.

2



2 Data Encryption

At a high level, Attribute-Based Encryption (ABE) is a form of Public-Key
cryptography which encrypts data with an access tree, or policy. A party
attempting to decrypt the data must present an attribute list along with the
private key. This attribute list must satisfy the access tree of the encrypted
data in order for decryption to occur. We will discuss exactly how ABE
uses policies and attributes to encrypt and decrypt data, and then how the
privateBook implementation uses this type of encryption.

2.1 Public-Key Cryptography

In many systems of encryption there is one key that is used to encrypt and
decrypt messages, called a cipher. This is analogous to one key that may
lock or unlock a door. Public-Key cryptography is also called asymmetric
cryptography, due to its use of two separate keys, one used to decrypt and
one used to encrypt a message. In this form, there is both a public key and
private key. The public key is used to encrypt data, while the private key is
used to decrypt. The keys are generated with some function that creates a
public key which does not allow a foreign party to discover the private key.
This is based on certain problems which are essentially impossible to solve
computationally, such as large integer factorization problems.

2.2 Attribute-Based Encryption

There are four portions of the ABE scheme: the parameter setup, encryption,
key generation, and decryption.

Setup The setup simply generates random groups, which are stored as
PK, the public parameters, and MK, a preliminary version of the private
key. PK is the ABE version of a public key. The two keys here are bilinear
group generators raised to randomly chosen exponents. These are stored as
Python dictionaries.

Encryption Encryption uses PK, γ, the access structure, along with the
string message meant to be encrypted, M . A dictionary, E is created, which
is the encrypted cipher text. γ, a string of a boolean expression, is the policy
that must be satisfied for decryption.

3



Key Generation Key Generation uses a list of attributes, A, and MK to
generate a decryption key, D. This is the ABE version of a private key, used
to decrypt. A is the list of attributes that must satisfy γ in order for D to
successfully decrypt E.

Decryption Decryption takes E, the ciphertext containing γ, PK and D.
It applies D to E in order to decrypt the message. If A satisfies γ, in the
sense of the attributes fulfilling the boolean expression included in D, the
message will decrypt.

2.3 Example Usage

An example following the paper describing ABE’s fine-grained access capa-
bilities can demonstrate how this system would play out if used in exactly
the way described above [5].
If there were a system for storing activity logs on a network, this data would
need to be protected by an encryption scheme that would vary for different
types of information and different types of activity. Here, ABE encryption
would be useful, as each log could be stored with a specific access policy:
say ”user is Bob or Alice AND the date is between September 2010 and May
2014 AND the activity is related to updating or changing the financial in-
formation of projects”. This information would then be encrypted with this
policy. Anyone investigating the logs could then be given a secret key with a
specific access list with their properties: user name, title, security clearance,
activity type, date, etc. ABE would then only allow the analyst to access
information if their information fit with the policy: all other data, which is
not pertinent to their work, will be unaccessible.

3 ABE Privacy Prototype

The implementation of ABE is provided by Charm, a Python framework pro-
viding many different crypto systems [4]. It is used to power the encryption in
privateBook. This can apply to any service which uses client data to perform
some function, whether it be like Facebook, just storing and displaying mes-
sages, text or multimedia, or something like Google Maps, which uses client
location info to display a map or directions. In a sense, the prototype ap-
plies ABE in a backwards fashion: rather than encrypting with a policy, and

4



users attempt to decrypt by presenting their attributes, here the attribute
list is created and clients present their policies. Figure 2 displays the process.

CLIENT
Encrypts their data with
the Public Key

AUTHORITY
Generates and stores keys

SERVER

Attribute list is the
default privacy policy

2. Public Key
1. Attribute List

2. Private Key

3. Encrypted Data

4. Decrypted Data or Failure

Figure 2: Prototype encryption/decryption process

3.1 Parties Involved

In privateBook, there are three relevant parties involved: the server, which
provides the service, a client, who uses the service, and the authority, a third
party that creates, distributes and stores the keys for both parties. The
server creates default settings for privacy, saving them as an attribute list.
The client creates their own privacy settings, which is saved as a policy. The
keys generated from these values are managed by an authority party. This
authority is necessary as another layer of security for the client: if a third
party generates the public and private keys, the client can be sure that they
are generated properly, in an unbiased fashion. If a server generated the keys,
they could possibly leave themselves a backdoor. The authority also would
then have the ability to check the server’s data use with their default privacy
policy, and confirm that the server was truly using data in the way they had
claimed.

3.2 The Full Process

There are four steps of this scheme: server registration, key distribution,
client encryption, and server response.

5



1. Server Registration This is the first step, and only happens once.
The server registers with the Authority, naming itself and providing a list of
attributes, A, which is a list of the default values created for a privacy policy.
The Authority stores A.

2. Key Distribution This happens once, in three parts. The Authority
generates PK and MK, the public parameters and master key, which are used
to generate D. A, PK and D are stored by the Authority. Then, D is sent
to the server, which will use it to decrypt data, and PK is sent to the client,
who uses it to encrypt data.

3. Client Encryption This will happen with every client request. The
client encrypts by providing their data, γ, their personal privacy policy, and
PK. This yields E, a cipher text, which is sent to the server. The server then
stores the data as a cipher text.

4. Server Response This happens after every client request. The server
stores the encrypted data, and attempts to decrypt it by applying the de-
cryption key D to E. This will return either the original data or False. If A
satisfies γ, the data will be properly decrypted, and the server can perform
whatever functions it needs with the data and responds to the client indi-
cating success. If the policy is not successfully satisfied by the attribute list,
the server responds to the client indicating failure.

4 privateBook

The prototype of this scheme mimics an online diary: a user can make their
own account, then write notes to themselves that will display on their page.
The idea of using ABE is that, in decrypting the data, the server must
know the privacy policy of the user presenting it. Thus successful decryption
becomes analogous to an active promise that the service has read and will
follow the user’s wishes for privacy, rather than potentially ignoring a policy
saved in some database.
There are three parts of the site: a server registration page, on which the
server creates its attribute list and the Authority stores the keys and A in
an Authority table, a client registration page, where a client creates his or
her privacy policy, storing γ and their identification information in a Policy

6



table, and a homepage, where the client can write their updates and have
them displayed; each update is stored by the server as a cipher text with a
user ID in a Posted Data table. We will demonstrate each of the four steps
in the privateBook implementation.

4.1 privateBook Server Registration

The privateBook server registers its name and default privacy settings with
the Authority, which saves them as an attribute list, and then creates PK
and D, the public parameters and private key. Figure 3 shows the printed
values created from the default privateBook privacy values.

Figure 3: Authority values (Attribute list, PK, D)

These default values are based off the client privacy policy creation page,
which is shown in Figure 4.

7



Figure 4: Client Policy creation page

4.2 Authority Key Storage and Distribution

The Authority then serializes the dictionary keys and stores them, shown in
Figure 5.

Figure 5: Authority key storage

These keys are then provided to the server and the clients by way of database
queries to the Authority table. In a real distributed system, the Authority
would send back D to the server, which would store it on their own. The
clients would then receive PK upon registering for the service, an added
complexity that this prototype does not delve into.

8



4.3 Client Privacy Policy Creation

The client, to become a privateBook user, registers themselves with a name
and their privacy policy, as shown in Figure 4. They are then given their
own ID, simply the order in which they were created, as their password,
and username of their full name. These design choices are meant to simplify
the account creation process: the focus of the prototype is not concerned
with creating users as much as maintaining the privacy of their data, so pri-
vateBook has foregone security measures that should be in place in practical
applications. Two policies are shown in Figure 6. They are strings of boolean
expressions. The first is a policy that has the least privacy restrictions as
given by the service, and the second has the strictest settings. The first
includes an ‘or’ for every type of privacy setting which includes all possible
attributes; this allows for any default setting in the attributes list to satisfy
the policy. The second, stricter policy includes the fewest attributes, making
it the most difficult to satisfy.

Figure 6: Least strict and most strict user privacy policies

This method of creating a default attribute list was to allow the server to
fail. In practice, a service that intends to have wide use should never fail,
and thus an early idea was to simply let each attribute be the type of privacy
setting it was, and store the values elsewhere. Then the server would still
need to decrypt the data and thus inherently read the privacy policy, but
that would offer no real difference from what exists currently, as the actual
privacy settings would still be stored somewhere and potentially ignored, as
they are now. So a difficulty arose in finding an appropriate method to allow
one attribute list to successfully satisfy many different policies. This method
was chosen because it is based on an idea of having different levels of privacy,
where a baseline is chosen by the service and clients can be more or less strict;
more, rendering the service useless for that user, and less, allowing for full
use.

9



4.4 Client Encryption and privateBook Response

The client then makes a status update, much like a Facebook one, and sub-
mits that. The data is encrypted with the update, a string, along with the
user’s privacy policy and the public key PK. This results in a long cipher text,
which is stored in privateBook’s database as a serialized dictionary. The re-
sults of this process are shown in Figure 7. E is stored in the database, then
the page is reloaded, displaying all of the user’s updates. The server, upon
loading of the user’s homepage, first attempts to decrypt their data. If it is
successful, the date, time and actual content are shown. If it is unsuccessful,
the content is replaced with: “Your status could not be displayed: this ser-
vice does not support your privacy policy!” Thus this service will not work
for the client if their privacy settings are too strict, and therefore their policy
is not satisfied by privateBook’s default attribute list.

Figure 7: The plaintext update and it’s corresponding encrypted
cipher text

10



5 Issues with the Prototype

Though the privateBook prototype offers a solution, there are, as can be
expected, some faults. The biggest issue is that the encrypted data, E, is
extremely large. As all large internet services have constraints on their mem-
ory already, and must constantly work towards improving memory efficiency,
this solution definitely puts consumer needs before those of the service, to
put it lightly. A fix for that problem could involve compression of the en-
crypted data, but this would put a large amount of strain on the backend and
undeniably cause slower speeds of service, another big concern for internet
companies.
Another catch to this system is that it still does not solve the issue of misuse
of data. Though it forces companies to actively accept user privacy policies,
it does nothing to enforce them. This responsibility would most likely fall to
the Authority, which would need to have access to an enormous amount of
data and track its use, which in itself could be considered contradictory to
the original purpose of the scheme.

6 Conclusion

The privateBook prototype demonstrates a possible use of ABE encryption
in protecting user privacy, which can be considered an important step in
a controversial yet important problem. Though this implementation is far
from perfect, it offers a unique solution: using the current model of a privacy
policy, and extending it to giving users actual control over how the company
using their data, at minimum, claims to use it. In the process of decrypt-
ing data, the service is making an implicit declaration that they have seen
your preferences for privacy, and are promising to use it in the way you have
described. This solution calls for better legislation and improved memory
storage options, but hopefully can take its place as one part of a series of
improvements aimed at better protection for users of internet services.

11



Acknowledgements

Professor Robert Muller and Stefan Saroiu at Microsoft Research

References

[1] Lawler, Ryan. ”QuizUp Sends Personal User Info To Strangers, Com-
pany Says Bug Contributed To Weakened Security.” TechCrunch, 25 Nov.
2013.

[2] Bajaj, Vikas. ”Imagine if Companies Had to Ask Before Using Your
Data.” Taking Note. The New York Times, 13 Mar 2014.

[3] J. Yang, K. Yessenov, A. Solar-Lezama. A Language for Automatically
Enforcing Privacy Policies. POPL 2012.

[4] Akinyele, Joseph A. and Garman, Christina and Miers, Ian and Pagano.
“Charm: a framework for rapidly prototyping cryptosystems.” Journal
of Cryptographic Engineering 3.2 (2013): 111-128.

[5] J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based
Encryption.

12


