
1

Evaluating and Implementing
Recommender Systems As Web Services

Using Apache Mahout

By: Peter Casinelli
Advisor: Sergio Alvarez

2

C O N T E N T S
__

ABSTRACT 5

I INTRODUCTION

1 AN INTRODUCTION TO RECOMMENDER SYSTEMS 6

1.1 What Are Recommender Systems? 6

1.2 Recommender System Components 6

1.3 Recommender System Dimensions 7

1.4 Recommendation Algorithms 8

1.5 Examples of Recommender Systems 11

1.6 Addressing Common Recommender System Problems 12

II EVALUATION

2. EVALUATING RECOMMENDER SYSTEMS USING APACHE MAHOUT 13

2.1 What is Apache Mahout? 13

2.2 Mahout Recommender Systems 14

2.2.1 Non-Personalized Item Average RS 14

2.2.2 User-User Collaborative Filtering RS 14

2.2.3 Item-Item Collaborative Filtering RS 15

2.3 Mahout Similarity Algorithms 16

2.3.1 Pearson Correlation Coefficient 16

2.3.2 Log Likelihood Ratio Similarity 17

 2.4 Experiments, Results, and Discussion 18

2.4.1 Data Sets Used 18

2.4.2 Evaluation and Metrics 19

2.4.3 Baseline Evaluation of Mahout RSs and Similarity Algorithms 20

3

2.4.4 Recommendation Accuracy and Coverage As A Function of 27
Target User Ratings Pool

2.4.5 Recommendation Accuracy and Coverage As A Function of 37
Non-Target User Ratings Pool

2.4.6 Conclusions 45

III IMPLEMENTATION

3 IMPLEMENTING A RECOMMENDER SYSTEM AS A WEB SERVICE 47

3.1 Service Oriented Architecture 47

3.2 RESTful Web Services 48

3.2.1 Client-Server 48

3.2.2 Stateless Communication 48

3.2.3 Uniform Interface 49

3.3 Web Service Environment 50

3.4 Experiments, Results, and Discussion 50

 3.4.1 Improving Recommendation Response Time 51

3.4.3 Conclusions 55

IV FUTURE

4 FUTURE WORK 56

4.1 Pre-Computing Item Similarities and Storing in Database 56

4.2 Improving CF Algorithms 56

4.3 Utilize Scalability of The Cloud 56

4.4 Distributed Recommender Systems 57

V APPENDIX

A WEB SERVICE IMPLEMENTATION 57

A.1 Codahale Metrics Instrumentation 57

A.2 Logging 58

4

A.3 Grizzly 58

A.4 MySQL 58

REFERENCES 59

5

Evaluating and Implementing Recommender Systems
As Web Services Using Apache Mahout

Boston College Computer Science Senior Thesis

By: Peter Casinelli

Advisor: Sergio Alvarez

A B S T R A C T
__

In recent years there has been a dramatic increase in the amount of online
content. Recommender systems software has emerged to help users navigate through
this increased content, often leveraging user-specific data that is collected from users. A
recommender system helps a user make decisions by predicting their preferences,
during shopping, searching, or simply browsing, based on the user's past preferences as
well as the preferences of other users. This thesis explores different recommender
system algorithms such as User-User Collaborative and Item-Item Collaborative
filtering using the open source library Apache Mahout. We simulate recommendation
system environments in order to evaluate the behavior of these collaborative filtering
algorithms, with a focus on recommendation quality and time performance. We also
consider how recommender systems behave in real world applications. We explore the
implementation of a web service that serves as a front end to a recommender system,
keeping in mind our evaluation results, as well as ease of access to applications, and the
overall user experience.

6

1 AN INTRODUCTION TO RECOMMENDER SYSTEMS

1.1 What Are Recommender Systems?

Throughout the internet there are web sites, applications, and systems being
built with a focus on user interaction and data. The users of these systems expect to be
introduced to new content, to be recommended content that their friends like, and want
interfaces through which they can submit feedback to improve these recommendations.
Recommender systems (RSs) are the tools and techniques that address these demands
by utilizing user data and algorithms to suggest new items that will be of use to users
[1, 2]. A RS can provide suggestions for products to buy, books to read, places to eat, or
movies to watch.

1.2 Recommender System Components

Recommender systems are often comprised of several components known as
users, items, preferences/ratings, and neighborhoods. Items are the things or objects
that are being recommended to a user. For example, items are often products, news
articles, songs or movies. These items can be characterized by their respective metadata
that include relevant titles, tags, or keywords. For example, news articles can be
characterized by content category, songs can be characterized by artists and genre, and
movies can be characterized by genre and director. Users are the people who are being
recommended items. They often need assistance or guidance in choosing an item within
an application and use recommendation to help them make an informed and
hypothetically better decision. A user model can be built over time in an effort to make
better recommendations for each particular user. This user model acts as a profile in
which preferences and actions are encoded and is representative of the history of a user
and their interactions with items within the RS. These interactions are known as
preferences. Preferences can be interpreted as the user’s opinion of an item in a RS and
can be both explicit or implicit. Preferences are often categorized as ratings if a RS
provides an interface to rate items. A rating is a type of explicit preference that

7

represents a relationship between a user and an item. Every rating can describe, for
example, how a user feels about certain items. An example of an explicit rating is a user
rating a movie with five stars. From this rating, the RS can definitively conclude that the
user likes the movie item. An implicit preference can be a user clicking on a link or
skipping a video. In these examples, we can infer data from these implicit preferences
and assume that the user may like an item if they click on its link, or do not like a video
that they skip. A neighborhood relates users and their preferences and represents a
group of similar users. In collaborative filtering (CF) environments, which will be
discussed later, neighborhoods of similar users help a RS decide on items to
recommend to a user based on users with similar tastes [2].

1.3 Recommender System Dimensions

Every RS is uniquely characterized by several dimensions that can provide
insight into how and why a RS has been implemented. Dimensions such as domain,
purpose, context, personalization level, interface, and algorithm selection can explain a
recommender system’s goals. The domain of recommendation can help identify the
components of a RS; for example, an application that recommends movies establishes a
movie as the item component of the RS. The purpose of these recommendations are
often to encourage movie watching users and to help users discover new movies they
may want to watch. The context of such a RS can be a user browsing new movies or
movies they have already seen in order to be suggested similar movies they may like.
Personalization of a RS helps explain the choice of the RS algorithm that is implemented.
For example, if the personalization level is based on ratings of movies on a five star
scale, a User-User CF algorithm can be used to suggest movies that similar users have
rated. Two important dimensions of RSs are the interfaces through which preferences
are inputted into the RS and how recommendations are outputted from the RS. Lastly,
one of the most influential dimensions on a RS is the algorithm used to make a
recommendation. Some common algorithms include Non-Personalized, Content-Based,
Collaborative, and Hybrid filtering. This thesis primarily examines Non-Personalized,
User-User CF, and Item-Item CF filtering algorithms [3].

8

1.4 Recommendation Algorithms

The definition, components, and dimensionality help us describe and understand
RSs. This leads to a discussion of the specific implementation of commonly used RS
algorithms that are evaluated and implemented in this thesis. Every RS attempts to
predict items that a user will find most relevant and useful. While this concept is
common across all types of RSs, the manner by which a RS calculates relevance and
usefulness varies.
 The amount and type of available data about RS components such as users,
items, and preferences often dictate how this relevance and usefulness is calculated and
ultimately impacts a RS algorithm selection. When data about a user and their
preferences are lacking, a Non-Personalized RS can be an appropriate algorithm
selection. A Non-Personalized RS algorithm will rely on the overall data about popular
items amongst all users and generate recommendations such as a Top-N list of most
popular items (see Figure 1.1). Non-personalized recommendation algorithms do not
provide personalized or diverse recommendations to different users based on past
preferences of users. Instead, the RS assumes an item that is liked by most users will
also be liked by a generic user [2]. While not heavily researched, non-personalized
algorithms provide a simple and effective interface to provide recommendations to
users when they lack previous preferences, also known as the cold start problem.

Figure 1.1 A non-personalized algorithm uses all data from a recommender system’s data model to
produce recommendations such as a Top-N list of the most popular items. This is a generic, non-
personalized recommendation since recommendations are given to a user without taking their specific
preferences into consideration; only the collective of all user preferences are used.

9

In recent years, an algorithm known as Collaborative Filtering has become
commonly implemented in RSs. CF algorithms use the similarity between data such as
the preferences of users, neighborhoods, and items in order to more effectively
recommend items from a growing set of choices [4]. This thesis examines both User-
User and Item-Item Collaborative Filtering algorithms and the evaluation of their
recommendation to users.

If there are user preference data in a recommender system’s model, it is possible
to make personalized recommendations based on similarities of user tastes or
preferences. In a User-User CF RS (shown in Figure 1.2), correlations can be identified
between different users based on past preferences that are similar in order to make
predictions on what each user will like in the future. If two users have rated many items
similarly in the past, they may be considered in the same neighborhood. Often, a
neighborhood of similar users is built by a RS and used to help recommend items [2].
User-User CF has a personalized advantage over Non-Personalized RSs; the
recommendations from User-User CF will be specific to each user and will adapt with
the user as they introduce new preferences into the RS.

Figure 1.2 A User-User CF RS recommends items to a user by building a neighborhood of similar users
and recommending items based on these neighbors’ past ratings. In this figure, the RS is being asked to
produce recommended items for a user named Peter who has liked, or positively rated, the movies
Inception and Forest Gump as shown by A. The RS first builds a neighborhood of similar users: Alex and
Chris, who have both expressed similar positive ratings for the same movies as Peter as shown in B-C.
Since Alex and Chris have also liked the movies Dallas Buyers Club and Lawless, the RS may recommend
these items to Peter as shown in D. The RS will consider these movies more likely to be positively rated
by Peter than other movies since Peter’s neighbors have rated them positively. This is based on the
intuition that similar users like similar items.

10

In an Item-Item CF RS (shown in Figure 1.3), the similarities between items are
used in order to make recommendations. Rather than building a neighborhood and
making recommendations based on similar users, correlations are made between items’
preferences. For example, in order to recommend a new item to user u, all of the items
for which u has a preference are compared to all other items i using a similarity
algorithm. The intuition is that u will be recommended items that are most similar to
items u has already rated based on past preferences [5]. Item-Item CF can be
advantageous because of the smaller scale of items; for example, items tend to grow at a
slower pace than users and items also change less over time than users. The
implementations of algorithms for calculating User-User, Item-Item CF, user similarity,
and item similarity are discussed in section 2.2 Mahout Recommender Systems and 2.3
Mahout Similarity Algorithms.

Figure 1.3 A Item-Item CF RS makes recommendations based on similarities between items. In this
diagram, A shows that Peter has rated the movie The Dark Knight with a 4. If the RS must provide Item-
Item CF recommendations to Peter, it will attempt to recommend movies that are similar to the movie
The Dark Knight since Peter has positively rated this movie in the past. In this example, we see through B
that Treven and Max have positively rated The Dark Knight with a 4 while Nick has rated it with a 2. In
C-E, we see that Treven, Max, and Nick have rated The Avengers, Spiderman, and Watchmen similarly in
comparison with The Dark Knight. Therefore, the RS will recommend these similar movies as shown in F.
This is based on the intuition that users will like items that are similar to items they have liked in the past.

11

Lastly, a Hybrid RS combines algorithms to produce recommendations. Non-
personalized and collaborative filtering are not exclusive algorithms; a hybrid RS can
compensate for when other RSs do not have enough data to produce quality
recommendations. This thesis does not go into hybrid RSs in detail, but they are
important in real world applications of RSs where problems such as cold start, data
sparsity, and scaling are realities.

1.5 Examples of Recommender Systems

In order to better understand recommender systems, their dimensions, and
algorithms, there are several helpful examples of RSs used on websites.

Amazon.com

Amazon.com, one of the most popular e-commerce web sites on the internet, has
pioneered collaborative filtering recommender systems that consumers now expect
when shopping. In Figure 1.4, similar books are being recommended to a user browsing
for books about recommender systems. Using our framework of RSs, dimensions, and
algorithms we can extract information about the RS that is being used. This is an Item-
Item CF algorithm recommending items, that are books, to users who are browsing web
pages that contain information about books and imply this user is thinking about
purchasing books about recommender systems.

Figure 1.4 Amazon often provides recommendations to users by displaying similar items that other
users have purchased.

12

Netflix.com

Netflix.com has built an application that revolves around movie
recommendation. After logging into Netflix, a user is immediately recommended
movies based on their preferences, top-n lists of movies, and movies that are similar to
other movies a user has watched. In Figure 1.5, a simple example of a Top-N Non-
Personalized algorithm is indicative of a RS that is recommending items, in this case
movies, to users who want to watch movies or discover new movies.

Figure 1.5 Netflix movie recommendations that are presented to a user upon login. These are non-
personalized Top-N recommendations that represent the most popular movies on Netflix.

1.6 Addressing Common Recommender System Problems
As we have discussed, there are several components and dimensions of RSs that

contribute to a complex system that must be designed with factors such as
recommendation accuracy, coverage, scale, and speed kept in mind. This thesis explores
common problems with designing and implementing RSs through experiments and
simulations that evaluate and implement RSs using various algorithms.
 In particular, the experiments in the following sections are concerned with the
variability of data such as users, items, and preferences, how RSs respond to issues such
as a lack of user preferences for new users (the cold start problem), as well as how a RS
adapts as the data model grows with new users, items, and preferences.

13

 Evaluation, however, is only part of the process of understanding how RSs
behave in different environments. In a production environment, RSs must be able to
provide accurate recommendations in a reasonable amount of time in order to maintain
consistent user interaction and a positive user experience. For example, a user on
Netflix will not wait 10 seconds to receive movie recommendations. In Section 3, we
evaluate a RS exposed as a web service and utilize open source libraries to measure
recommendation response times to client applications.

2 EVALUATING RECOMMENDER SYSTEMS USING
APACHE MAHOUT

2.1 What is Apache Mahout?

Apache Mahout is an open source machine learning library that consists of a
framework of tools that allow developers to create powerful and scalable recommender,
clustering, and classification applications. Mahout started in 2008 as a spin off
technology from the Apache Lucene project, which was primarily concerned with
content search and information retrieval technologies. Since there was much overlap
between the techniques and algorithms used in the projects such as clustering and
classification, Mahout became its own project and also included an open source
collaborative filtering project known as Taste. Today, the Mahout library is suitable for
applications that require scaling to large datasets because it was opened to
contributions for implementations that run on top of Apache Hadoop and now will
accept implementations that run on top of Apache Spark (see Section 4.3 Future Work).
This thesis primarily examines Apache Mahout and implementing a recommender
system using Mahout’s collaborative filtering recommender engine libraries [6].

14

2.2 Mahout Recommender Systems

 The Mahout library contains several commonly used RSs. For the purposes of
this thesis, there are specific RSs that are measured, explored, and exposed as web
services. This section discusses how Mahout has implemented the following RSs: Non-
Personalized Item Average, User-User Collaborative Filtering, and Item-Item
Collaborative Filtering.

2.2.1 Non-Personalized Item Average RS

The non-personalized item average recommender estimates a user’s preference
for an item by calculating the average of all of the known preferences for that item. This
RS is non-personalized since none of the user’s past preferences are considered to
rescore the recommendations [7]. The pseudo code to estimate a user’s preference for an
item is:

Pseudo Code to Estimate User Preference in Non-Personalized RSs

for every preference p for item i
 include p in a running average of all p’s for i

return the running average of all p’s for I [7]

2.2.2 User-User Collaborative Filtering RS

 The User-User CF RS first creates a neighborhood nu of users that are similar to

user u based on similarity algorithms that are described below in Section 3.3. Then,

using nu , the RS estimates the user u’s preference for item i by taking into consideration

all of the preferences of neighbors in nu that have rated item i. User-User CF therefore

focuses on similarities between users’ preferences [8]. The pseudo code for Mahout’s
User-User CF to estimate a user u’s preference for an item i is:

15

Pseudo Code to Estimate User Preference in User-User CF RSs

for every other user w
 compute a similarity s between user u and user w

 store users with the greatest similarity s in a neighborhood n

for every neighbor wn in n

 if wn has a preference for item i

 retrieve this preference value p, apply a weight with
value of s, and incorporate it into u’s preference for
item i

return u’s normalized preference for item i [8, 9]

The similarity algorithm used to create this neighborhood is discussed in the next
section, 3.3 Mahout Similarity Algorithms.

2.2.3 Item-Item Collaborative Filtering RS
The Item-Item CF RS will also recommend an item i to user u by using a

similarity algorithm. It differs from User-User CF because the RS focuses on the
similarity between different items’ preferences rather than the similarity between
different users’ preferences. The pseudo code for Mahout’s Item-Item CF to estimate a
user u’s preference for an item i is:

Pseudo Code to Estimate User Preference in Item-Item CF RSs

for each item j that user u has a preference for, calculate the similarity s between j’s
preferences and item i’s preferences

for each j that is similar with i
 calculate a weighted preference pw for i by multiplying

u’s preference for j by s

incorporate pw into an overall preference value po

return a normalized po [10, 11]

16

When making Item-Item CF based recommendations, Mahout uses this estimation
process by applying this pseudo code to every other item in the data model.

2.3 Mahout Similarity Algorithms
In the CF algorithms recently mentioned, there is a commonality between how

users and items are determined to be similar to other users and items. The Mahout
library has implemented several widely used similarity algorithms and allow
developers to plug them into the CF RSs in order identify similar neighborhoods for
users or calculate similarities between items. While Mahout has implemented similarity
algorithms including Euclidean Distance Similarity, Tanimoto Coefficient Similarity,
and Uncentered Cosine Similarity, for the purposes of this thesis the Pearson
Correlation Coefficient Similarity and the Log Likelihood Ratio Similarity algorithms
are described and measured using the data sets discussed in 4.1 Data Sets Used.

In the following similarity algorithms, user preference values are the basis from
which similarities can be calculated between different users and different items.
Therefore, both of these similarity algorithms can be used in User-User and Item-Item
CF RSs.

2.3.1 Pearson Correlation Coefficient
The Pearson Correlation Coefficient (PCC) determines the similarity between

two users or items by measuring the tendency of two series of preferences to move
together in a proportional and linear manner [12]. In this thesis’ experiments, the PCC
similarity algorithm only considers preferences on which both users or items overlap. It
attempts to find each users’ or items’ deviations from their average rating while
identifying linear dependencies between two users or items. The formula uses actual
preference values, in our case the movie rating value, to find correlation between users
or items, and gives larger weights to users or items that agree often especially in
extreme cases [3]. The PCC similarity calculation used in this thesis is:

17

Where w and u represent the two users or items for which the coefficient is being calculated, i is an item,

rw,i and ru,i are individual ratings from w and u for i, and 𝑟!and 𝑟! are average ratings for user (or item) w
and u, respectively.

Helpful explanations of the issues with the PCC similarity algorithm are
discussed in the book Mahout in Action. For example, PCC does not take into
consideration the number of overlapping preferences. This is intuitively naïve; for
example if two users have rated 10 movies similarly, these users will have a lower
similarity than two users who rated only two movies very similarly. As a result of these
problems, the PCC may not always provide the most accurate recommendation, which
is exemplified in later experiments [13]. In the next section, we discuss the Log
Likelihood Ratio, which does not consider preference values but does take into
consideration statistics such as the number of overlapping preferences.

2.3.2 Log Likelihood Ratio Similarity

The Log Likelihood Ratio (LLR) was created by Ted Dunning in his paper,
“Accurate Methods for the Statistics of Surprise and Coincidence.” The LLR relies on
calculating similarity between two users or items based on statistics that revolve around
occurrences related to these users or items. LLR focuses on events where these users or
items overlap in preferences, events where both users or items have preferences where
the compared user or item does not, and events where both users or items do not have
preferences. A helpful explanation and chart is available at [14] and summarizes these
events [15, 16].

[5]

18

The LLR predicts how unlikely the overlap between preferences is due to chance
or if the overlap represents a genuine similarity. For example, if two users have five
preferences in common, but have both only introduced 20 preferences into the data
model, they will be considered more similar than two users who have five preferences
in common but have both introduced over 100 preferences into the data model [16].

In Mahout, the LLR is used to calculate similarities between items and users.
When calculating these similarities, it never considers the actual preference value; LLR
only considers the events recently discussed and uses the ratio calculated using the LLR
formula as a weight to estimate preferences to users. See Sections 3.2.2 and 3.3.3 for
pseudo code that shows the similarity value being used as a weight in estimating a
preference.

2.4 Experiments, Results, and Discussion

2.4.1 Data Sets Used
 In the experiments with the Apache Mahout library, the GroupLens’ MovieLens
data sets from [17] are used. This collection of data sets includes data about movies
including users, movies, and movie ratings from users. Some of the data sets include
metadata about users and movies, but this thesis does not utilize those features. In some
experiments, different data set sizes are used. These include the MovieLens 100k
(ML100k) data set that contains around 100,000 ratings from ~1,000 users on ~1,700
movies, the MovieLens 1M (ML1M) data set that contains around 1,000,000 ratings from
~6,000 users on ~4,000 movies, and finally the MovieLens 10M (ML10M) data set that
contains around 10,000,000 ratings and ~100,000 tags applied to ~10,000 movies by
~72,000 users [17].

19

Table 2.1 Data set sizes and their respective number of preferences, users, and items. In the context of
the data set, the items are movies and the preferences are users’ ratings on movies. The rating can be a
whole number from one to five.

Data Set Preferences Users Items

ML100K 100,000 943 1,682

ML1M 1,000,209 6,040 3,383

ML10M 10,000,054 71,567 10,681

2.4.2 Evaluation and Metrics
When evaluating a RS it is necessary to use subsets of a data set in order to

estimate and verify recommendation. In the evaluation process, training data refers to
the subset of data that is used to “build” a RS; with this training data, the RS evaluator
will attempt to estimate a user’s preference for an item. After the RS estimates this
preference, it uses actual user preference data from the evaluation data set in order to
determine how accurate the estimated preference was. Evaluation data is therefore the
subset on which deviations from actual and predicted user rates are measured.

There are several metrics by which a RS can be evaluated and interpreted for
accuracy. In the following experiments, this thesis evaluates the different datasets using
three common evaluation metrics: Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Coverage.

MAE and RMSE are known as predictive accuracy or statistical accuracy metrics
because they represent how accurately a RS estimates a user’s preference for an item. In
our movie dataset context, MAE and RMSE will evaluate how well the RS can predict a
user’s rating for a movie based on a scale from one to five stars [4]. MAE is calculated
by averaging the absolute deviation of a user’s estimated rating and actual rating.

The formula for MAE is:

MAE = | !!!!! |!
!

!
 [18]

20

RMSE is calculated by finding the square root of the average squared deviations of a
user’s estimated rating and actual rating. The formula is:

RMSE = (!!!!!)!!
!

!
 [19]

Where in both formulas for MAE and RMSE n is the total number of items, i is the current item, ri

is the actual rating a user expressed for i, and ei is the RS’s estimated rating a user has for i.

Since RMSE squares the deviations and MAE only sums the deviations, RMSE

will weight larger deviations more than MAE. In the context of movie ratings, RMSE
may provide a more insightful accuracy metric but we provide both RMSE and MAE
evaluation on the RS algorithms. The smaller RMSE and MAE are, the more accurate a
RS. This is because RMSE and MAE will calculate smaller values if the deviations
between actual and predicted ratings are smaller.

Coverage measures how many recommendations a RS is able to make for users.
It is calculated by dividing the total number of preferences that a RS was able to
estimate by the total number of preferences the RS attempted to estimate. In some cases,
there is not enough data for a RS to provide recommendations. When this is a common
case, a RS coverage will be a low value.

Coverage= Total # of Estimated Preferences
Total # of Attempted Estimated Preferences

[20]

2.4.3 Baseline Evaluation of Mahout RSs and Similarity Algorithms
Using the Apache Mahout library with the Movielens Dataset, these first

experiments are concerned with evaluating commonly implemented RS and similarity
algorithms. Specifically, the ML100K, ML1M, and ML10M are evaluated using CF RSs
that utilize both the Pearson Correlation Coefficient and Log Likelihood similarity
algorithms. The purpose of this experiment is to determine how an increasing data size
of users, items, and user preferences affect the accuracy of a RS.

21

As a preface, it is interesting to note that the Netflix Prize was awarded to the
team that improved recommendation accuracy, specifically RMSE, by 10 percent. The
RMSE for the winning team was approximately 0.8567, which gives some perspective to
the following results [21].

2.4.3 Results

The following results used all three datasets (ML100K, ML1M, ML10M), used 80
percent training data, and 20 percent evaluation data on each dataset. Tables and Charts
3.1-3.2 represent evaluation of User-User CF algorithms with both Pearson and Log
Likelihood similarity algorithms. Tables and Charts 3.3-3.4 represent evaluation of Item-
Item CF algorithms with both Pearson and Log Likelihood similarity algorithms.

Evaluation of User-User CF

Table 2.2 Evaluation of User-User RMSE using the Pearson Correlation and Log Likelihood similarity
algorithms shows how as the user, item, and preference content in a data set increases, the RMSE
improves for both similarity algorithms.

Data Set Pearson RMSE Log Likelihood RMSE

ML100K 1.15 1.03

ML1M 1.10 1.03

ML10M 1.09 0.96

Total Change +0.06 +0.07

22

Chart 2.1 Reflects data from Table 2.2.

Table 2.3 Evaluation of User-User MAE using the Pearson Correlation and Log Likelihood similarity
algorithms shows how, as the user, item, and preference content in a data set increases, the MAE
improves for both similarity algorithms.

Data Set Pearson MAE Log Likelihood MAE

ML100K 0.90 0.81

ML1M 0.84 0.82

ML10M 0.840 0.75

Total Change +0.06 +~0.059

23

Chart 2.2 Reflects data in Table 2.3.

Evaluation of Item-Item CF

Table 2.4 Evaluation of Item-Item RMSE using the Pearson Correlation and Log Likelihood similarity
algorithms shows how, as the user, item, and preference content in a data set increases, the RMSE
improves for both similarity algorithms.

Data Set Pearson RMSE Log Likelihood RMSE

ML100K 1.06 1.03

ML1M 1.04 1.01

ML10M 0.94 0.99

Total Change +0.12 +0.04

24

Chart 2.3 Reflects data from Table 2.4.

Table 2.5 Evaluation of Item-Item MAE using the Pearson Correlation and Log Likelihood similarity
algorithms shows how, as the user, item, and preference content in a data set increases, the MAE
improves for both similarity algorithms.

Data Set Pearson MAE Log Likelihood MAE

ML100K 0.83 0.82

ML1M 0.82 0.81

ML10M 0.73 0.78

Total Change +0.10 +0.04

25

Chart 2.4 Reflects data in Table 2.5.

Table 2.6 As the data set size increases, the median number of ratings per user increases from ML100k
to ML1M but decreases from ML1M. The mean number of ratings per item increases from ML100k to
ML10M.

Data Set Median # Ratings Per User Median # Ratings Per Item

ML100K 106.04 59.45

ML1M 165.60 269.89

ML10M 143.11 936.60

Table 2.7 As the data set size increases, the mean number of ratings per user increases from ML100k to
ML1M but decreases from ML1M. The mean number of ratings per item increases from ML100k to
ML10M.

Data Set Mean # Ratings Per User Mean # Ratings Per Item

ML100K 65 27

ML1M 96 123.5

ML10M 69 135

26

Chart 2.5 This chart reflects the change in RMSE as a function of dataset size across each User-User and
Item-Item CF and similarity algorithms

2.4.3 Discussion

Across all of the evaluations, the results show that an increase in the overall
content of a dataset including users, items, and user preferences improves
recommendation accuracy for both User-User and Item-Item CF and both Pearson and
Log Likelihood similarity algorithms. For User-User CF, the improvement is attributed
to the growth in users and user preferences that allow the RS to find better
neighborhoods of similar users. For Item-Item CF, the improvement is not only related
to the increased number of items, but also an increase in number of user preferences for
each item which allows the RS to find more similar items based on these user
preferences.

It is important to note the increase in data amount between datasets and the
respective change in recommendation accuracy. From data set ML100K to ML1M, there
are around 6.5x more users, 2x more movies, and 10x more preferences. From ML1M to
ML10M there are around 12x more users, 3x more movies, and 10x more preferences.
The results show that the improvement in RS accuracy is related to an increase in
content, but not directly proportional to the increase in content between data set sizes.

27

We also found that the most improvement in accuracy occurred for Pearson
Item-Item CF. Referring to Tables 2.6 and 2.7, the mean number of preferences per item
increases by 5x from ML100K to ML10M and the median number of preferences per
item increases by 15x from ML100K to ML10M. For User-User CF, there is an increase in
median number of preferences per user and a decrease in mean number of preferences
per user, but the ML10M contains more overall user preferences. Since there are more
preferences per item, Item-Item CF can better predict users’ ratings for movies since
more similar items can be calculated, and explains why there is a bigger improvement
in Item-Item CF than User-User CF since the latter had less significant increases in
typical user behavior and a decreased average ratings per user.

These results should be taken into consideration when designing a RS. While we
found that an increase in overall content of users, items, and preferences improves
accuracy, there was better improvement for Item-Item CF than User-User CF, and Item-
Item Pearson CF performed the best. This implies that utilizing the similarity between
movies is a better method of recommendation than relying on the social and peer
context of the similarity between users.

2.4.4 Recommendation Accuracy and Coverage As A Function of Target
User Ratings Pool

The baseline evaluation of RSs with varying data sets proved how different CF
RSs and similarity algorithms improve with more content. This experiment was
designed to examine how recommendation accuracy and coverage change as users
introduce new movie ratings to the RS in increments. It also simulates how RSs respond
to the cold start problem, or when a RS must provide “recommendations to novel users
who have no preference on any items,” since the experiment does not use the target
user’s preferences in the training data model and adds one increment at a time in
chronological order, just as a new user would be introduced to the data model, rating
one movie at a time [22].

28

2.4.4 Pseudo Code

Pseudo Code to Evaluation RSs as a Function of Target User Ratings Pool Size

For each user u

 Add all preferences from other users that occurred before u’s first preference
 to training data model dt

 Get all of u’s preferences pu in chronological order

 For each preference p from pu

Add p to dt

 Evaluate recommendation (using RMSE and MAE) on the evaluation
 data set for u using dt as the training data

2.4.4 Results
The following results used the ML1M dataset, 50 percent training data, and 50

percent evaluation for each user that rated 20 movies (which is every user in this
dataset). Only 20 movies were considered, therefore the training data consisted of 10
movie ratings in increments of one movie and the evaluation was on the last 10
preferences of each user. It evaluated accuracy using both CF and similarity algorithms
and recommendation coverage.

29

Evaluation of User-User CF

Table 2.8 As the number of preferences in the training model increases for each user, User-User CF
RMSE improves for both similarity algorithms.

Number of Preferences Per

User Pearson RMSE Log Likelihood RMSE

1 #N/A 1.18

2 1.43 1.16

3 1.34 1.15

4 1.28 1.14

5 1.25 1.14

6 1.23 1.13

7 1.22 1.13

8 1.20 1.12

9 1.20 1.12

10 1.18 1.11

Chart 2.6 Reflects data from Table 2.8.

30

Table 2.9 As the number of preferences in the training model increases for each user, User-User CF
MAE improves for both similarity algorithms.

Number of Preferences Per
User Pearson MAE Log Likelihood MAE

1 #N/A 0.85

2 0.92 0.85

3 0.90 0.84

4 0.88 0.84

5 0.87 0.84

6 0.86 0.84

7 0.86 0.83

8 0.86 0.83

9 0.85 0.83

10 0.85 0.83

Chart 2.7 Reflects data from Table 2.9.

31

Table 2.10 As the number of preferences per user increases for User-User CF, Pearson Coverage
initially increases but eventually decreases while Log Likelihood consistently increases. This slight
decrease in Pearson Coverage is discussed in Chart 2.9 and in 2.4.4 Discussion.

Number of Preferences Per

User Pearson Coverage Log Likelihood Coverage

1 #N/A 0.45

2 0.85 0.66

3 0.86 0.72

4 0.86 0.74

5 0.84 0.75

6 0.83 0.76

7 0.82 0.78

8 0.81 0.80

9 0.80 0.81

10 0.78 0.83

Chart 2.8 Reflects data from Table 2.10.

32

Chart 2.9 As increments of preferences for a target user are introduced to the data model, the average
number of preferences for every users’ neighborhood decreases for Pearson and increases for Log
Likelihood similarity.

Evaluation of Item-Item CF

Table 2.11 As the number of preferences in the training model increases for each user, Item-Item CF
RMSE improves for both similarity algorithms.

Number of Preferences Per
User Pearson RMSE Log Likelihood RMSE

1 #N/A #N/A
2 2.36 1.89
3 2.33 1.80
4 2.30 1.73
5 2.27 1.67
6 2.23 1.63
7 2.20 1.59
8 2.17 1.56
9 2.14 1.53
10 2.11 1.50

33

Chart 2.10 Reflects data from Table 2.11

Table 2.12 As the number of preferences in the training model increases for each user, Item-Item CF
MAE improves for both similarity algorithms.

Number of Preferences Per
User Pearson MAE Log Likelihood MAE

1 #N/A #N/A

2 1.19 1.09

3 1.18 1.07

4 1.17 1.05

5 1.17 1.04

6 1.16 1.03

7 1.15 1.02

8 1.14 1.01

9 1.13 1.00

10 1.12 0.99

34

Chart 2.11 Reflects data from Table 2.12.

Table 2.13 As the number of preferences in the training model increases for each user, Item-Item CF
coverage improves for both similarity algorithms.

Number of Preferences Per

User Pearson Coverage Log Likelihood Coverage

1 #N/A #N/A

2 0.95 0.98

3 0.97 0.99

4 0.98 0.99

5 0.98 0.99

6 0.98 0.99

7 0.98 0.99

8 0.99 0.99

9 0.99 0.99

10 0.99 0.99

35

Chart 2.11 Reflects data from Table 2.13

Chart 2.12 This chart reflects the RMSE as a function of target user ratings pool across each User-User
and Item-Item CF and similarity algorithms. We see that UU Log Likelihood is the most accurate
algorithm combination.

36

2.4.4 Discussion

From this experiment, we learned how a RS responds to the cold start problem
and found that as a target user’s preferences were incrementally added one preference
at a time, recommendation accuracy improved while coverage varied according to the
CF and similarity algorithm.

In User-User CF, Pearson similarity had greater improvement of
recommendation accuracy but Log Likelihood performed with a better overall accuracy.
Coverage slightly increased for Pearson similarity before decreasing while coverage
consistently increased for Log Likelihood. This decrease in coverage for User-User CF
Pearson can be explained using Chart 2.9. We see as each target user’s preferences are
incremented, the number of total preferences rated by this user’s neighbors decreases. As
a user rates more movies, while the RS creates more similar neighborhoods (reflected by
an increase in accuracy), these neighbors span less preferences and therefore increase
the chances of the RS not being able to predict a rating for the target user. In User-User
CF, Log Likelihood similarity was able to provide recommendations for users who have
only rated one movie whereas Pearson similarity is unable to make recommendations
until a user has rated two movies.

In Item-Item CF, the Log Likelihood similarity algorithm improved its accuracy
and was overall significantly more accurate than Pearson. In both similarity algorithms,
the coverage approaches 100 percent. Neither Pearson nor Log Likelihood similarity are
able to make recommendations for a user who has rated one movie. This is related to
the scale of users and items and the behavior of similarity algorithms. There are many
more users than items, explaining why there are enough users for User-User CF to find
neighborhoods for Log Likelihood, while there may not be enough similar items for
Item-Item CF to find with both similarity algorithms.

It is interesting to note that this was one of several experiments that attempted to
examine the accuracy and coverage of RSs after incrementally adding preferences. In
other experiments, larger increments of 5 and 10 preferences were introduced and
recommendation was evaluated. For these larger increments, recommendation accuracy
actually decreased. While this behavior needs further exploration beyond this thesis,
some variables that should be taken into consideration are the number of preferences
and the timestamps between these preferences. For example, users’ or items’

37

preferences may change over time, changing the similarities and neighborhoods from
which similarity is calculated. If a user has not rated a movie in a long time period, and
then rates another movie, discrepancies in neighborhoods and similarities may arise
from changing user tastes or opinions about movies.

Overall, we found that when a RS is facing the cold start problem, User-User CF
provides more accurate recommendations while Item-Item CF have better
recommendation coverage. When designing a RS, the trade offs between these
algorithms must be taken into consideration along with how accuracy and coverage will
affect user experience.

2.4.5 Recommendation Accuracy and Coverage As a Function of Non-
Target User Ratings Pool

We have seen how an increase in overall data set size as well as an increase in the
amount of target users’ preferences improves recommendation accuracy. This next
experiment examines how introducing non-target data changes recommendation
accuracy. For example, if a user does not rate many or any more movies, how does
recommendation accuracy change for this user if other users rate more movies and new
movies are added to the data model? The following results help answer this question.
2.4.5 Pseudo Code

Pseudo Code to Evaluate RSs as a Function of Non-Target Ratings Pool Size

For each user u

 Add all preferences from other users that occurred before u’s

first preference and after u’s last preference, and training
percentage of u’s preferences, all in random order, to training
data model dt

 For each increment of preferences pi from dt

Add pi to dt

 Evaluate recommendation (using RMSE and MAE) on the evaluation
 data set for u using dt as the training data

38

2.4.5 Results

The following results used the ML1M dataset, 80 percent training data, and 20 percent
evaluation on each user from the dataset.

Evaluation of User-User CF

Table 2.14 As the number of non-target preference data per user increase, User-User CF RMSE
improves for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson RMSE Log Likelihood RMSE

100,000 1.02 1.10

200,000 1.02 1.09

300,000 0.97 1.07

400,000 0.92 1.05

500,000 0.89 1.02

Chart 2.13 Reflects data from Table 2.14.

39

Table 2.15 As the number of non-target preference data per user increase, User-User CF MAE improves
for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson MAE Log Likelihood MAE

100,000 0.70 0.77

200,000 0.70 0.77

300,000 0.67 0.77

400,000 0.64 0.76

500,000 0.62 0.75

Chart 2.14 Reflects data from Table 2.15.

40

Table 2.16 As the number of non-target preference data per user increase, User-User CF coverage
improves for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson Coverage % Log Likelihood Coverage

%

100,000 0.19 0.25

200,000 0.28 0.53

300,000 0.34 0.71

400,000 0.37 0.80

500,000 0.39 0.86

Chart 2.15 Reflects data from Table 2.16.

41

Evaluation of Item-Item CF

Table 2.17 As the number of non-target preference data per user increase, Item-Item CF RMSE
improves for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson RMSE Log Likelihood RMSE

100,000 1.86 1.04

200,000 1.61 1.02

300,000 1.46 1.01

400,000 1.36 1.00

500,000 1.28 0.99

Chart 2.16 Reflects data from Table 2.17.

42

Table 2.18 As the number of non-target preference data per user increase, Item-Item CF MAE improves
for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson MAE Log Likelihood MAE

100,000 1.02 0.80

200,000 0.95 0.79

300,000 0.90 0.78

400,000 0.87 0.77

500,000 0.84 0.77

Chart 2.17 Reflects data from Table 2.18

43

Table 2.19 As the number of non-target preference data per user increase, Item-Item CF coverage
improves for both similarity algorithms.

Number of Non-Target
Preference Data Per User Pearson Coverage % Log Likelihood Coverage

%

100,000 0.951 0.995

200,000 0.992 0.999

300,000 0.997 0.999

400,000 0.999 0.999

500,000 0.999 1.000

Chart 2.18 Reflects data from Table 2.19.

44

Chart 2.19 This chart shows RMSE as a function of the amount of non-target preference data across all
User-User and Item-Item similarity algorithms.

2.4.5 Discussion

The results generally show that with an increase in non-target preference data,
recommendation accuracy and coverage improve with both User-User and Item-Item
CF and similarity algorithms. During this experiment, while each user may or may not
have introduced new ratings, the focus on an increase in the “surrounding” non-target
preference data introduces more users and items, allowing better user neighborhoods
and item similarities to be calculated by the User-User and Item-Item CF algorithms,
respectively.

In Item-Item CF we found that while Pearson had the most improvement in
accuracy, overall Log Likelihood outperforms Pearson in accuracy. With both similarity
algorithms, coverage improves and quickly approaches 100 percent. In User-User CF,
we found that Pearson outperformed Log Likelihood in overall accuracy. Log
Likelihood had considerably better coverage and approaches 90 percent, while Pearson
had around half of the coverage by the time a user rates 10 movies.

45

User-User CF performed better than Item-Item CF with a lower RMSE and MAE,
but had considerably less coverage. As more non-target data was introduced into the
data model, the coverage improved with each increment, but User-User CF had
considerably worse coverage than Item-Item CF’s coverage. Since each increment
introduced 100,000 more movie ratings, it is reasonable that overall, User-User CF with
Pearson had the most accurate recommendation. With each introduction of 100,000 user
preferences, it is more likely that the increase in data provides more overall similar user
data than similar item data. This increase in user preferences provides better
opportunities for more similar user neighborhoods to be generated by the RS. But, we
still found that coverage is a problem for User-User CF algorithms and must be
considered in the design and implementation of RSs.

2.4.6 Conclusions

From these experiments, we learned about which combinations of CF and
similarity algorithms perform the best within the context of dataset size, accuracy, and
coverage. These factors are important decisions in evaluation and designing a RS.

Larger Datasets Provide Better Recommendation Accuracy

From the results and discussion, we can conclude that a larger dataset size with
more overall content including users, items, and preferences improve recommendation
accuracy and coverage. In our results, Item-Item CF with Pearson similarity was the
most accurate RS algorithm combination across all data sets, meaning movie similarities
was a better factor in recommendation than social and peer user similarities.

Multiple RS Algorithms Must Be Used To Address The Cold Start Problem

The simulations of user increments (a new user to the data model) helped us
understand how RSs behave with the cold start problem when there is varying to little
availability of user preferences and similarity data. In a large dataset, when new users
are introduced to the RS or a user has rated one to ten movies, User-User CF using the
Log Likelihood similarity is the most accurate algorithm. However, if a user has only
rated one movie, this algorithm is only able to cover around 45 percent of

46

recommendations. Furthermore, User-User CF with Pearson similarity is not able to
make any recommendations if a user has rated only one movie. This raises questions in
the implementation of RSs; some algorithms are more accurate, but may have little to no
coverage. Other algorithms evaluated in the increment experiment such as Item-Item
CF with both Log Likelihood and Pearson similarity achieved at least 94 percent
coverage after a user rates only one movie. For RSs that are attempting to recommend
to new users, our results suggest alternating algorithms according to the amount of
ratings a user has submitted to the RS. Item-Item CF with Log Likelihood may be the
best algorithm for users with smaller amounts of preferences while they are still
building their “profile” of movie ratings. After a user has rated enough movies and the
RS is able to make more recommendations, User-User CF with Log Likelihood could be
utilized to make more accurate recommendations.

Increasing Surrounding Non-Target User Preference Data Improves Accuracy
and Coverage

With our final experiment, we isolated a RS so that only non-target user data was
incrementally added, providing a picture of how recommendation for users improves
as a dataset increases in preference content around them. We found that User-User CF
with Pearson similarity was the most accurate algorithm, but the Item-Item CF
algorithms achieved much higher coverage. With only 100,000 movie ratings out of a
large data set, it is reasonable that a RS has difficulty finding similar user
neighborhoods. This allows us to conclude that in a small or growing dataset, it may be
necessary to utilize Item-Item CF, despite its lower accuracy in some cases, in order to
ensure that users have a positive user experience with a RS that is actually able to make
movie recommendations. Perhaps users who have rated more movies, or once the data
model reaches a certain size, the RS can utilize the more accurate User-User CF
algorithms. It is important to consider our previous results in overall dataset size that
showed Item-Item CF performs the best with larger dataset sizes. This experiment is
specific to smaller dataset sizes where non-target “surrounding” preference content is
increasing.

47

Evaluation Is Only Part Of The Bigger Picture

These results raise critical issues of evaluating a RS but do not necessarily
provide a realistic evaluation of implementing a RS in production. As a RS’s dataset
grows and new users join the system and add new movie ratings, constraints such as
speed and scale need to be considered. Which algorithms are able to provide
recommendations while not interrupting the user experience with slow responses? How
can we provide accurate and helpful recommendations while still meeting this
requirement of a positive user experience? This next section discusses these constraints
of implementing a RS as a web service.

3 IMPLEMENTING A RECOMMENDER SYSTEM AS A
 WEB SERVICE

Because the Apache Mahout project is a RS library, it can be used within other
applications. This section of the thesis explores exposing Mahout as a web service using
commonly implemented concepts including Service Oriented Architecture and RESTful
Web Services.

3.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is a method of organizing software systems
so that there are an “interconnected set of services” that are accessible and able to
communicate through “standard interfaces and messaging protocols”. SOA is
commonly implemented with a Service Provider that readily provides services and a
Service Client that make requests to a service provided by a Service Provider. There is
also a Service Registry that provides a description of the available services from a
Service Provider to a Service Client. SOA focuses on designing services that maintain
properties such as interoperability and loose coupling so that other applications can
easily communicate with these services over common interfaces, regardless of the
client’s implementing technologies, while remaining decoupled from each other so that

48

the service provider and service client do not need to understand what the other is
doing [23].

3.2 RESTful Web Services

A web service is a modular application, or Service Provider, that provides an
interface by which Service Clients can retrieve application data through requests that
are made through the Web [24]. REST, which stands for Representational State Transfer,
is a network based application architectural style that places constraints on how
elements of data can be requested and provided [25]. Therefore, a RESTful Web Service
exposes web services that are available according to constraints imposed by a RESTful
interface. We focus on exploring and implementing three of the main constraints of a
RESTful interface including a client-server relationship, stateless communication, and a
uniform interface.

3.2.1 Client-Server

The client-server constraint is based on a system architecture that is composed of
two components: a server and a client. The server exposes services by listening to
requests while clients make requests to this server to access these services. The server
then responds accordingly, perhaps with the client’s desired data from the web service
or an error message if the request could not be completed [24, 25]. This architecture is a
powerful constraint on RESTful Web Services because it decouples the server logic from
the client; the server can focus on scaling independently and communicating with back
end services such as databases while the client can focus on the user interface and
application aesthetics.

3.2.1 Stateless Communication

The stateless constraint on communication between clients and servers
guarantees that every request made by the client contains all of the application session
state data, such as user information, required for the server to process the request and

49

respond. The server does not contain any context of this session state data, requiring the
client to be responsible for maintaining state. This constraint on RESTful Web Services
inherently provides “properties of visibility, reliability, and scalability” [24]. Every
request provides all of the necessary data for the server’s service to process the response
and make a request often without the need of additional data retrieved internally by the
service through other services. Each request ensures a high level of reliability since the
design ensures all necessary request information is provided by each single request. For
example, if there is a web service failure during an interaction between the client and
server, the system knows that it can repeat the request since all of the data is
encapsulated by the request. Lastly, a RESTful Web Service is independent of
application state data, meaning it is not responsible for maintaining state across
requests. The web service logic can assume that before and after every request, it does
not need to concern itself with the context and state of past requests. This allows the
server to “free resources” between requests and also provides for simpler distributed
capabilities, since state would not need to be distributed [24, 25].

3.2.2 Uniform Interface

Lastly, the interactions between clients and servers in a RESTful web service
occur over a uniform interface. This uniform interface revolves around components
known as Uniform Resource Identifiers (URIs), Resources, Representations, and
Hypertext Constraint that are involved in the communication process between a client
and a server. A URI “is an identifier of a resource” to which a client can send requests
and expect a response indicating the request’s status. The Resource is the service with
which the client is attempting to communicate. A Representation is an “encapsulation
of the information (state, data, or markup) of the resource” such as a JSON request or
response that contains resource information. Clients communicate with servers by using
the Hypertext Transfer Protocol (HTTP) to submit requests to Resources and expect
Representations as responses. Lastly, each response from a server to a client “represents
the state of the [client’s] interaction within the application”. This concept, known as the
Hypermedia Constraint, implies the server’s response causes an altered client state and
is indicative of the lack of state data in a request and response [26].

50

3.3 Web Service Environment

In order to build an environment in which a RS can be exposed as a web service,
this thesis leveraged popular open source technologies including Java, Grizzly, Jersey’s
implementation of JAX-RS, Codahale Metrics, SLF4J, Apache Mahout, and MySQL (see
Appendix A for descriptions of these technologies).

Within a Grizzly container, we use Jersey to provide RESTful web services in
resource classes that are able to provide recommendations using the Apache Mahout
library and underlying MySQL database with the MovieLens dataset [17] to
recommend movies from a MySQL database (see Figure 3.1).

Figure 3.1 In the diagram above, we see the process of a client making an HTTP request to a web
service through a RESTful interface. The web service uses a recommender system that leverages Apache
Mahout and a MySQL database instance.

3.4 Experiments, Results, and Discussion

The following experiment uses the architecture described in Section 4.1. The web
service application was run on an Amazon C3.Large Elastic Compute Cloud and uses
an Amazon DB.M3.Medium Relational Database with MySQL.

51

3.4.1 Improving Recommendation Response Time

In order to simulate a web service that is handling requests from users using a
movie recommendation application, we used Apache JMeter to simulate 1,000 users by
making HTTP requests every second. JMeter ramps up users incrementally, so every
second a new user makes an HTTP request until 1,000 users have made requests for
movie recommendations. The resources available as web services are shown in Table
3.1.

Table 3.1 Resource URI’s that represent web services that provide recommendations using varying
Mahout API’s.

Resource URI

/ii/file/similarity/pearson

/ii/file/similarity/loglikelihood

/ii/db/similarity/pearson

/ii/db/similarity/loglikelihood

/uu/file/similarity/pearson

/uu/file/similarity/loglikelihood

/uu/db/similarity/pearson

/uu/db/similarity/loglikelihood

Each URI represents a different manner by which recommendations are made.
All URI’s that contain file use a file as a data model that contains user preferences and
uses standard Mahout API’s to make recommendations. All URI’s that contain db use a
database as the data model but also leverage efficient Mahout caching API’s that cache
user neighborhoods, item similarities, and item-item and user-user recommenders.
These web services focus on bringing recommendation data such as user preferences in
memory for faster recommendation and responses to HTTP requests. One API in
particular reloads data from a database into memory and also allows the data model to
be refreshed so new preference data can be taken into consideration.

52

3.4.1 Results

Response Times For 1,000 Unique Clients

Table 3.2 Shows the performance of algorithms with varying data models. All algorithms labeled with
DB used a database as a data model and also utilized Mahout’s API’s. All algorithms labeled with File
used a File as a data model and did not utilize Mahout’s caching API’s.

RS Algorithm and Data Model Median Response Time
(Milliseconds)

Mean Response Time
(Milliseconds)

UU DB Pearson 76 79
UU DB Log Likelihood 215 250

II DB Pearson 3434 5614
II DB Log Likelihood 3691 5888

UU File Pearson 4325 4470
UU File Log Likelihood 5000 5195

II File Pearson 18082 13835
II File Log Likelihood 11582 15161

Chart 3.1 Reflects the Median Response time in Table 3.2.

53

Chart 3.2 Reflects the Mean Response time in Table 3.2.

Response Times For One Unique Client

Table 3.3 Represents the Median and Mean Response times for one unique client that makes 1,000
HTTP requests to a web service client.

RS Algorithm Median Response Time
(Milliseconds)

Mean Response Time
(Milliseconds)

UU Pearson 43 45

UU Log Likelihood 22 25

II Pearson 19 49

II Log Likelihood 17 42

54

Chart 3.3 Reflects Median Response times from Table 3.3

Chart 3.4 Reflects Mean Response times from Table 3.3.

55

3.4.1 Discussion

 In our first experiment, we found that the typical response time for User-User DB
Pearson was the fastest while the typical response time for Item-Item File Pearson was
the slowest. In the second experiment, however, we found that both Item-Item
algorithms provided the fastest recommendation response times. In the second
experiment, User-User DB Pearson had double the response times of other Item-Item
algorithms.
 Our first simulation of 1,000 unique clients requesting recommendations
represents the behavior of a RS that is being accessed by many different users at once. In
some cases this may be unrealistic since not all, or many different, users would be
logged into a movie recommendation service at once. The second experiment simulates
the repeated HTTP requests of one client. For example, a user may log into a movie
recommendation web site and browse through the recommendations. This simulation
shows how caching this data for one user results in much more acceptable response
times as fast as around 17 milliseconds.

3.4.2 Conclusions

By utilizing Mahout API’s, the response times across all algorithms were
significantly improved. In some cases, such as Item-Item Pearson, response time
improved by around 20 percent. The Mahout API’s implemented in algorithms labeled
with DB focused on caching data in memory for fast access. For example, we utilized
API’s that provided a cached data model from a MySQL database, cached user and item
similarity algorithms such as Pearson and Log Likelihood, cached user neighborhoods,
cached item similarities, and even cached RSs. While recommendation accuracy is
important to the success and user experience of a RS, if the recommendations take too
long to be presented to a user, it can negatively affect a product or service. Therefore, it
is important to cache data or provide faster access to data than repeated requests to a
file or database storage of preference data.

56

4 FUTURE WORK

4. Precomputing Item Similarities and Storing in Database
While Item-Item CF algorithms ran slower than User-User CF algorithms in

Experiment 4.3.1, Item-Item CF algorithms can be faster for data sets that have a much
larger amount of users than items. Furthermore, the item similarities between items can
be precomputed and stored in a database. This would allow more systems to easily
access these precomputations when needed, rather than using memory.

4.1 Improving CF Algorithms
The Apache Mahout library is powerful because it provides baseline algorithms

for effective CF algorithms. It also provides a framework and easy methods to introduce
new recommendation algorithms. While exploring the Mahout APIs, we experimented
with an Item Average Recommender that produces Top-N item recommendations
based on overall rating averages across all items. In a simple experiment, we rescored
items based on how many total ratings each item received. For example, if an item
received an average rating of five stars, but only had two total ratings, this item would
be “penalized” according to a pessimistic constant value. Items that may have a lower
average, such as four stars, but have over 100 ratings, will not be penalized as much. In
some experiments, this algorithm performed significantly better than the Item Average
Recommender implemented in Mahout.

4.2 Utilize Scalability of The Cloud
While the web service prototype we present utilizes important architectural

design decisions such as a RESTful interface, it does not offer true scaling capabilities.
In order to utilize the scalability of the cloud, a RS web service would implement load
balancing and have multiple EC2 and RDS instances that would be listening for and
serving HTTP requests. This would improve web service performance, provide faster
recommendations, and allow the RS to scale with an increasing number of users.

57

4.3 Distributed Recommender Systems
The Apache Mahout library uses algorithms implemented by a popular open

source project called Apache Hadoop. Hadoop is “software for reliable, scalable,
distributed computing” that uses, for example, thousands of machines to complete
computation. The benefit is that each machine uses its own local resources to complete
these computations and is synchronized at the application level [27]. This could
dramatically reduce computation times of tasks such as precomputing item-item
similarities.

In April, the Mahout project announced that it would not be accepting future
algorithm implementations that utilize MapReduce, Hadoop’s “system for parallel
processing of large data sets” [27]. Instead, Mahout will rely on a domain specific
language for “linear algebraic operations” that will run on Apache Spark, another open
source project that is an “engine for large-scale data processing” [28, 29].

A WEB SERVICE IMPLEMENTATION APPENDIX

A.1 Codahale Metrics Instrumentation

When evaluating the performance of a web service, it is important to have a way
of measuring metrics such as response time. We used a Java library called Codahale
Metrics that “provides a powerful toolkit of ways to measure the behavior of critical
components in your production environment” [30]. Specifically, we used a metric unit
called a timer that measured response times each type of RS and similarity algorithm
combination.

A.2 Logging

An important part of a RS prototype is logging debugging, error, and general
information about the system. While logging provides various ways of monitoring the
health of a system, it is also critical to instrumenting the code base and providing
important data from which efficiency and behavior can be extracted. In order to

58

interface with other libraries such as Codahale Metrics for instrumentation, two logging
libraries are used in the prototype: Simple Logging Facade for Java (SLF4J) and Log4J.

SLF4J provides a facade design pattern that abstracts common logging
frameworks. Different libraries utilize different logging frameworks such as
java.util.logging or Log4J. SLF4J allows a developer to decide on the underlying logging
framework at deployment while easily integrating with other libraries. This allows a
developer to be unbound by library dependencies on multiple logging frameworks [31].

In the RS implementation, Apache’s Log4j 2 is used to log important events in
the RS’s lifecycle as well as a way to record the instrumentation information provided
by the Codahale Metrics library. Using XML, a system can configure default and class
level logging behavior as well as establish appenders that record logging information.
In this prototype, logging is recorded in text files [32].

A.3 Grizzly

Grizzly is a Java framework that helps developers build scalable server
applications that take advantage of powerful Java API’s such as NIO [33].

A.4 MySQL

MySQL is an “Open Source SQL database management system, is developed,
distributed, and supported by Oracle Corporation”. It provides a database management
system with relational database structures and is “very fast, reliable, scalable, and easy
to use” [34].

59

References
[1] N. Rastin and M. Zolghadri Jahromi, “Using content features to enhance
performance of user-based collaborative filtering performance of user-based
collaborative filtering,” Int. journal of artificial intelligence and applications, vol. 5, no. 1,
pp. 53-62, Jan, 2014.

[2] F. Ricci et al, “Introduction to Recommender Systems Handbook,” in Recommender
Systems Handbook. New York: Springer, 2011, pp. 1-35.

[3] J. Konstan and M. Ekstrand. (2014, September 3). “Introduction to Recommender
Systems: Module 1-8” [Online lecture]. Available:
https://www.coursera.org/course/recsys

[4] J. Herlocker et al, “Evaluating collaborative filtering recommender systems, ” ACM
Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 5-53, Jan, 2004.

[5] B. Sarwar et al, “Item-based collaborative filtering recommendation algorithms,” in
Proceedings of the 10th international conference on World Wide Web, New York, 2001, pp.
285-295.

[6] S. Owen et al, “Meet Apache Mahout,” in Mahout in Action. New York: Manning,
2014, ch. 1, sec. 1-2, pp. 1-3.

[7] The Apache Foundation. (2014, April 19). ItemAverageRecommender.java [Online].
Available:
https://github.com/apache/mahout/blob/391cd431dc6b0f2ff1bcdae9f5420c710716b2d
4/mrlegacy/src/main/java/org/apache/mahout/cf/taste/impl/recommender/Item
AverageRecommender.java

[8] The Apache Foundation. (2014, April 19). GenericUserBasedRecommender.java
[Online]. Available:
https://github.com/apache/mahout/blob/trunk/mrlegacy/src/main/java/org/apac
he/mahout/cf/taste/impl/recommender/GenericUserBasedRecommender.java

[9] The Apache Foundation. (2014, April 19). GenericItemBasedRecommender.java
[Online]. Available:
https://github.com/apache/mahout/blob/trunk/mrlegacy/src/main/java/org/apac
he/mahout/cf/taste/impl/recommender/GenericItemBasedRecommender.java

[10] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York:
Manning, 2014, ch. 4, sec. 1-2, pp. 43-45.

[11] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York:
Manning, 2014, ch. 4, sec. 4, pp. 56-59.

[12] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York:
Manning, 2014, ch. 4, sec. 3, pp. 48.

60

[13] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York:
Manning, 2014, ch. 4, sec. 3, pp. 50.

[14] T. Dunning. (2007, March 21). Surprise and Coincidence [Online]. Available:
http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html

[15] T. Dunning, “Accurate methods for the statistics of surprise and coincidence,”
Comput. Linguist, vol. 19, no. 1, pp. 61-74, Mar, 2003.

[16] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York:
Manning, 2014, ch. 4, sec. 4, pp. 55.

[17] G. Lens. (2014). MovieLens [Online]. Available:
http://grouplens.org/datasets/movielens

[18] C. Aggarwal et al, “Horting hatches an egg: A new graph-theoretic approach to
collaborative filtering,” in Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, New York, NY, 1999, pp. 201-212.

[19] J. Leskovec et al, “Recommender Systems,” in Mining of Massive Datasets, 2nd ed.
New York: Cambridge University Press, 2011, ch. 9, sec. 9.4.2, pp. 327.

[20] N. Good et al, “Combining collaborative filtering with personal agents for better
recommendations” in Proceedings of the sixteenth national conference on Artificial
intelligence and the eleventh Innovative applications of artificial intelligence conference
innovative applications of artificial intelligence (AAAI '99/IAAI '99), Meno Park, CA, 1999,
pp.439-446.

[21] Netflix. (2014). Netflix Prize: View Leaderboard [Online]. Available:
http://www.netflixprize.com/leaderboard

[22] X. Lam et al., “Addressing cold-start problem in recommendation systems,” in
Proceedings of the 2nd international conference on Ubiquitous information management and
communication, New York, NY, 2008, pp. 208-211.

[23] M. Papazoglou, “Service-oriented computing: Concepts, characteristics and
directions,” in Web Information Systems Engineering, Rome, Italy, 2003, pp. 3-12.

[24] J. Rao and X. Su, “A survey of automated web service composition methods,” in
Proceedings of the First international conference on Semantic Web Services and Web Process
Composition, San Diego, CA, 2004, pp. 43-54.

[25] R. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. Dissertation, Inform. and Comput. Sci., Univ. of California, Irvine,
CA, 2000.

61

[26] S. Allamaraju, “Appendix Overview of REST,” in RESTful Web Services Cookbook,
Sebastopol, CA: O’Reilly Media / Yahoo Press, 2010, ch. B, pp. 261-263.

[27] The Apache Software Foundation. (2014, April 10). Welcome to Apache™
Hadoop®! [Online]. Available: http://www.hadoop.apache.org/

[28] The Apache Software Foundation. (2014, April 25). What is Apache Mahout?
 [Online]. Available: https://mahout.apache.org/

[29] The Apache Software Foundation. (2014, April 9). Spark: Lightning Fast Cluster
Computing
 [Online]. Available: http://spark.apache.org/

[30] C. Hale and Y. Inc (2014). Metrics: Mind the Gap [Online]. Available:
http://metrics.codahale.com

[31] QOS.ch (2014). Simple Logging Facade for Java (SLF4J) [Online]. Available:
http://www.slf4j.org/

[32] The Apache Software Foundation (2014). Apache Log4j 2 [Online]. Available:
http://logging.apache.org/log4j/2.x/

[33] Project Grizzly (2014, January 24). Project Grizzly: NIO Event Development
Simplified [Online]. Available: https://grizzly.java.net/

[34] Oracle (2014). What is MySQL? [Online]. Available:
http://dev.mysql.com/doc/refman/4.1/en/what-is-mysql.html

