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Abstract: As programming languages and the field of computer science
develop, the question of program correctness and reliability becomes more
prevalent in our field. How can we assure that programs execute as ex-
pected, and what errors can we catch before we reach them? Type systems
provide a framework to give satisfactory answers to these questions, and
more expressive type systems yield more reliable conclusions drawn from
static analysis of a program. However, more complex systems are computa-
tionally expensive, so the difficulty lies in striking a balance between a type
system’s effectiveness and its practicality in implementation and in execu-
tion.

This thesis discusses the limits of simple type systems as well as the
polymorphic lambda calculus that underlies Java’s Generics. We provide an
Ocaml implementation of a dependently typed, higher-order functional lan-
guage, to display the benefits of this expressive system that catches errors
before runtime many other systems cannot detect. This aims to be a sim-
ple, general ML implementation that does not rely on any language-specific
features, so as to highlight the type system in its clearest form. The depen-
dently typed lambda calculus is compared to other systems, with concrete
examples and a discussion of its benefits and drawbacks.
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1 Introduction

Errors are the unavoidable hurdles of the computer programming ex-
perience. From forgetting a semi-colon on a first ’Hello World’ program,
to runtime segmentation faults caused by improper user input, computer
scientists will always face the task of debugging their programs, and will
never escape the suspicion that a user can make the whole program crash
with one illegal command. Computer scientists are faced with the task of
writing programs that perform expected computations, but what means do
we have to ensure that programs actually execute accordingly to these ex-
pectations? Many people disagree on the best methods for ensuring proper
program execution, whether they support unit testing, static analysis, or an-
other technique, and programming languages themselves are designed with
different strategies for handling these issues.

Type systems provide a formal framework for automating a portion of
program analysis, defining typing rules for a type checking algorithm that
processes a program to detect type errors. These systems associate a formal
semantics with the abstract syntax of a programming language, specifying
how different language constructs are allowed to interact with each other.
Because this approach analyzes an intermediate representation of the pro-
gram, usually in the form of an abstract syntax tree generated by parsing
the program text, type checking can be performed before program execu-
tion, and even before compilation. Some languages apply this type checking
algorithm and only compile programs that satisfy the type system without
producing a type error, catching many errors before execution that would
otherwise cause the program to terminate unexpectedly.

This thesis explores type systems in depth, with the goal of highlighting
the insufficiencies of many widely used languages, and compares the costs
and benefits gained from more complex type systems. Various type theories
are presented and discussed, with the goal of providing enough theoreti-
cal background to make the formal theory of dependent lambda calculus
accessible.

1.1 Introduction to Type Systems

1.1.1 Statically Typed Languages

Programming languages are generally classified into one of two cate-
gories, statically or dynamically typed. Languages that are statically typed,
such as Java, C/C++, and ML-like languages, apply a type checking oper-
ation during the compilation process, and only compile a program if type
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checking does not detect any type errors in the code. Errors such as multi-
plying an integer by a string, or adding an integer to an array defined to be
an array of some user defined object, are caught by the type checker before
compilation, whereas other languages may not detect these errors until pro-
gram execution. This adds a level of safety to the programming language,
as the user gains confidence that a program that passes the type checker
will execute as it is expected.

However, static type checking comes with some drawbacks as well. As
this process must be performed before compiling, compilation becomes more
expensive. This does allow for some runtime optimizations that yield more
efficient code, but it is also costly to compile and more difficult to write
well-typed programs than in dynamic languages that allow much more flex-
ibility. The added restrictions in a statically typed language occasionally
rejects some programs that would execute properly occasionally fail to type
check. In the case of if -statements in a statically typed language such as
Java, the type system necessitates that the then and else clauses have the
same type, but a program such as

if (True)

return 1;

else

return "This case will never happen";

fails to type check even though the else clause is never reached in execution.
Many programmers begrudge these systems for this reason, but proponents
of static typing think the limitations are worth the reward.

1.1.2 Dynamically Typed Languages

Often referred to as ’untyped’ languages, some languages such as
Python do not type check until a program is actually executed. These
dynamic systems therefore do not catch type errors until runtime, as there
is no static analysis of the program. Because runtime errors are typically
fatal, something as easily caught as applying the ’+’ operator to anything
other than a number can go unnoticed until suddenly causing the whole
program to fail. But dynamically typed languages allow programmers much
more flexibility and power in writing code, as when used properly, complex
features such as polymorphism are trivially handled by the runtime system
of the language.
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1.2 The Simply Typed Lambda Calculus

Beyond determining when a language should handle type checking,
when writing a programming language, we must also decide what forms
of typing we want to allow. In a static environment, types are checked at
compile time, but do programs require explicit type annotations? Should
functions be passable values? There exist different theories on which to
base these language designs, and this decision carries significant influence
over what a programming lanuage allows, or considers an error.

1.2.1 Syntax

The simply typed lambda calculus, λ→, is the theoretical basis for
typed, functional programming languages [3]. This is typically the first
formal system one learns about when studying type theory, and most typed
languages handle type checking similarly to λ→, so it makes sense for us
to first look at this calculus before considering more complex systems. λ→
is the smallest statically typed, functional programming language we can
imagine. Terms in the language can only be one of four forms: variables,
constants, abstractions (anonymous functions), or applications. Types are
even more simple, and can only be either a base type α or a function between
types.

e := x Variable
| c Constant
| λx:τ.e Lambda Abstraction
| e e Application

τ := α Base Type
| τ → τ Function Type

Figure 1: Abstract Syntax of λ→

As an example, we can derive the expression

(λx:int.x) 7

by following the steps

e 7→ e e 7→ (λx:τ.e) e 7→ (λx:int.e) e 7→ (λx:int.x) e 7→ (λx:int.x) 7

where x is a variable, int is a base type, and 7 is a constant in this calculus.
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1.2.2 Type Checking

λ→ associates type semantics to the syntax described in the previous
section. It is important to note that there is also an evaluation semantics as-
sociated with these caculi, but in the sake of emphasizing the type systems
themselves, evaluation will be omitted. The following typing rules, with
respect to a context Γ containing type information of variables and con-
stants, assert that if a program is typed properly, then the program should
be evaluated without any unexpected errors [3].

Γ(x) = τ
(Var)

Γ ` x : τ
Γ ` e : τ → τ ′ Γ ` e′ : τ (App)

Γ ` e e′ : τ ′

Γ[x := τ ] ` e : τ ′
(Lam)

Γ ` (λx:τ.e) : τ → τ ′
Γ(c) = τ

(Const)
Γ ` c : τ

Figure 2: Type Rules for λ→

Type rules of the form Γ ` e:τ indicate that a term e, derivable in
the syntax of λ→, has type τ in context Γ, where τ is a type derivable by
the syntax of types in λ→. Note that according to these rules, λ→ is not
polymorphic, that is, a type identifier τ represents one specific type, and
cannot be abstracted over.

When we type check a variable, according to the (Var) rule, we first
look up the variable x in the context Γ. If x ∈ Γ is mapped to τ , then
we say that x has type τ . The typing rule for constants works in a similar
fashion to variables. For lambda abstractions (Lam), we first extend the
context Γ to associate the variable x with type τ . If in this new context,
e has type τ ′, we say that the lambda expression has type τ → τ ′. For
application (App), we first address the function being applied. If e has the
function type τ → τ ′, and e′ has type τ , then the result of applying e to e′ is
the codomain of the type of e, that is, τ ′. If the type rule is not satisfied in
any of these cases, the expression fails to type check and we do not proceed
with compilation or program execution.

1.2.3 Example Type Derivation

To clarify how we apply these type rules to an expression, let us observe
the earlier example:

(λx:int.x) 7
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Assuming we are within a context Γ where int is a base type, and integers
are constants in the language with type int, we can derive the type of this
expression as follows:

Γ[x := int](x) = int
(Var)

Γ[x := int] ` x : int
(Lam)

Γ ` (λx:int.x) : int→ int

Γ(7) = int
(Const)

Γ ` 7 : int
(App)

Γ ` (λx:int.x) 7 : int

In order to derive the type of the resulting expression, we first check that
the applicant has a valid function type, via the (App) rule. We extend the
context Γ to contain the domain information, that is that x has type int,
and check the type of the body of the lambda expression by looking up the
variable x in this new context. We confirm that the type of the applicant
is int → int, and then we proceed to look up the type of the operand, 7,
according to the (Const) rule. As 7 has the desired type int, the resulting
type of the application is type int.

1.3 System F

As was mentioned in the previous section, λ→ restricts type expressions
τ to only represent a specific type, meaning polymorphic code is unachiev-
able in a language based on that formal system. In order to write reusable
code that works properly over all types, we need to extend the definition of
the lambda calculus to allow abstraction over types.

System F provides such a solution, allowing lambda abstractions to range
over types, as well as over values [3]. For simplicity’s sake, we will only dis-
cuss relevant additional features to this system instead of going into the
same level of detail as with λ→.

While all valid λ→ expressions and types are valid in System F, we also
extend the abstract syntax to allow types as terms, and terms of the form

Λτ.e

and extend the syntax of types to allow types of the form

∀τ.τ

This extension is the basis of the form of parametric polymorphism in Java
Generics and the type systems of ML-like languages such as Standard ML
(SML) and Ocaml. To highlight the strenght and flexibility of this formal
system, we can compare the polymorphic identity function in System F to
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the identity function in λ→. If we have a language with int and String as
base types based off of the type rules of λ→, we must write separate identity
functions λx:int.x and λx:String.x, with types int→int and String→String
respectively, to operate on expressions of the two different base types. Al-
though these are perfectly valid in λ→, this creates redundant code that
could be significantly condensed with a more powerful system, as the two
functions perform equivalent functions.

In System F, we write the polymorphic identity function as

Λα.λx:α.x

This allows us to abstract over the type of the input, and we supply the
desired type as the first parameter when we apply the function. That is,
if we desire the identity function on objects of type int, we simply apply
Λα.λx:α.x to int, and replace all α’s in the body of the Λ with int, yielding
λx:int.x. Thus the single polymorphic lambda abstraction can capture the
identity function on any desired type, by simply providing the desired type
as a parameter. We must adapt the type rules to allow for application of
abstractions to types by the following:

Γ ` e : τ (T-Lam)
Γ ` Λα.e : ∀α.τ

Γ ` e : ∀α.τ ′ Γ ` τ : Type
(T-App)

Γ ` e τ : τ ′[α := τ ]

Figure 3: Extended Type Rules for System F

where τ ′[α := τ ] in the (T-App) rule means that we replace all occurrences
of α in τ ′ with τ , and the assertion Γ ` τ : Type means that τ is a valid type
in context Γ. Thus we can provide a type judgement for the polymorphic
identity function as follows:

Γ[x := α](x) = α
(Var)

Γ[x := α] ` x : α
(Lam)

Γ ` (λx:α.x) : α→ α
(T-Lam)

Γ ` (Λα.λx:α.x) : ∀α.α→ α

and conclude that the polymorphic identity function in System F has type
∀α.α→ α.

As we see in this example, System F allows programmers much more
flexibility and power to write reusable, polymorphic code. This lies at the
basis of polymorphic data structures, map, and fold functions that make
code efficient and take advantage of properties of functional languages to
their fullest.
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1.4 Improvements

In languages implementing the type theories describe up to this point,
type checking can catch errors at runtime such as applying a function to an
input of the wrong type, or trying to append an element of the wrong type
to a typed list. Static type checking provides a huge benefit to program-
mers by catching many mistakes before a program is ran, preventing runtime
crashes. But even in languages based off of the polymorphic System F, there
are runtime errors we wish we could prevent through static analysis. While
it is arguable that the compile-time costs and restricted freedom on the side
of the programmer make type systems more of a hindrance than beneficial,
we can extend these type systems further to catch even more errors before
runtime, increasing the value of static analysis.

Accompanying this thesis is an OCaml implementation of a dependently
typed, higher-order functional programming language, based off of the de-
pendently typed lambda calculus, λΠ, developed from Per Martin Löf’s
Intuitionistic Type Theory in 1972. Informally, this system proposes to be
able to catch many errors missed by other type theories at compile time by
incorporating highly expressive types that contain more information than
simple type systems. Similar to System F, λΠ allows for polymorphsim,
but in a much more powerful manner, by allowing interaction between types
and terms, rather than them having separate abstractions. λΠ introduces a
hierarchy of types, or type universes, where we say that a type τ has kind
?, and a term e still has type τ . With this addition, λΠ extends System F
to having not only polymorphic types and type abstractions, but allowing
types to depend on values of expressions, as well as on the types of those
expressions.

2 Dynamically Typed Languages

To provide a comparison of how different popular languages handle typ-
ing situations, we progress with examples of Python code, and a discussion
of the flexibility it allows, and the potential drawbacks of this dynamically
typed programming environment.

2.1 Python

Python is a dynamically typed language, that supports many functional
programming features, despite not adhering to a static type system. Types
and values have the same status in the language, similar to λΠ, and func-
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tions are first-class citizens, meaning they can be passed as arguments, and
returned as output of other functions. Although some of these features may
appear similar to the formal systems discussed, we will see how Python
differs in handling program semantics and execution.

2.1.1 Code Example

As briefly presented earlier, Python allows the then and else clauses
of if -statements to differ in their types. While programmers contend that
statically typed languages may reject programs that would never fail to ex-
ecute, the lack of restrictions in a language like Python could be the root of
easily preventable, fatal errors at runtime.

To highlight the behavior of if -statements in a dynamically typed pro-
gram, let’s observe the following factorial function:

def factorial(n):

if n < 0:
return "Invalid Input"

elif n == 0:
return 1

else :

return n * factorial(n-1)

If factorial is called with a non-negative input, the function performs
the expected factorial computation we are familiar with from mathemat-
ics. However, Python allows us to handle negative inputs in any way we
want, whereas statically typed languages could only produce an exception
to be handled or a runtime error. Here, the function returns a value of type
String when called with a negative number. This does allow programmers
to return meaningful information while avoiding a fatal error, but to advo-
cates of type systems, no longer knowing how the program will execute is
too dangerous a risk to take.

Additionally, nothing necessitates calling factorial with an integer, so
we can just as easily call it with a floating-point number. Again, we do not
know how the program will behave on an atypical input, as there is no stan-
dard mathematical definition of the factorial function on non-integers. In
a statically typed system, type annotations can require integer inputs, and
promise integer outputs, and otherwise catch these errors before execution
and fail to compile.
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2.1.2 Polymorphism

As was just mentioned, Python would allow us to call factorial on
integers, floating-point numbers, or an object of any other type, without
complaining until possibly producing a runtime error. For the factorial

example, this does not make the most sense, as the factorial function is
only defined in mathematics on integer values. But this does display the
flexibility and freedom a programmer has working in a dynamically typed
environment. Though the factorial function may not take advantage of this
freedom, untyped languages make writing polymorphic code nearly effort-
less.

As our first example, Python allows us to write the identity function as
follows:

def identity(x):

return x

which is polymorphic over all types of inputs. As the function’s operation
does not depend on any type-specific features of the input, it should natu-
rally be polymorphic, but a language with explicit, static type declarations
would require us to write nearly identical identity functions to operate on
different types of input.

def n copies(n, x):

return [x]*n

def length(l):

if l == []:

return 0

else :

return 1 + length(l[1:])

def reverse(l):

if length(l) == 0:

return []

return [l[-1]] + reverse(l[:-1])

Figure 4: Polymorphic Functions on Lists in Python
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For a more interesting example, let us look at polymorphic operations
on lists in Figure 4. Some features of lists are independent of the literal
elements, or types of those elements, contained within a list. Creating a list
of ’n’ copies of an object, calculating the length of a list, or reversing the
order of a list, are all naturally expressed as polymorphic functions.

Although these functions are polymorphic in the sense that they will
properly execute on lists of any type of element, these are not type-safe
according to any formal polymorphic type system. While we can reverse a
list of integers, or a list of strings just as easily with this reverse function,
there is nothing stopping an unknowing programmer from calling the reverse
function on for example an integer or dictionary, rather than a list. The
dynamic typing of Python enables these polymorphic functions to be written
easily, but does nothing to ensure that they are used properly, as such a type
error wouldn’t be detected until runtime, crashing whatever program makes
the illegal function call.

2.2 Runtime Errors

We have been discussing the shortcomings of dynamically typed pro-
gramming languages for the past few sections, highlighting how errors pre-
ventable by static analysis become runtime errors that are often fatal to the
program’s execution. However, it is important to point out that some errors
are by their nature runtime errors in most common type systems. While
array or list indices, or invalid user input at runtime cannot be handled by
languages like Java either, the issue with dynamic languages is that all er-
rors become runtime errors. This puts additional pressure on programmers
to write proper code, without providing any assistance to understand what
the code actually does.

3 Statically Typed Languages

Now we switch our focus to statically typed languages with specific ex-
amples of Java programs. Programming takes on additional effort, however
minimal, as explicit type annotations are required to satisfy the type check-
ing algorithm, but we will see how Java’s type system ensures that we are
programming properly to the best of its ability.
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3.1 Java

Java’s type system at a basic level works in the same way as the simply
typed lambda calculus. Programmers supply explicit type annotations to
variables during assignment, and if the type of the expression is of anything
other than that type, Java complains and halts compilation. Using an oper-
ator on an object of the wrong type, calling a function on mis-typed inputs,
or defining a function to return a type contrary to its explicitly declared
return type are all catchable errors during compilation, hence the statically
typed nature of Java.

3.2 Java Generics

The fundamentals of a typed language should be commonly understood,
so we will look at polymorphism in Java to highlight its differences from a
dynamic environment like previously discussed.

Java Generics are based off of the polymorphic lambda calculus, Sys-
tem F, introduced earlier. This form of parametric polymorphism in Java
has been supported since 2004, after the incorporation of Philip Wadler’s
Generic Java into J2SE 5.0. To briefly present some generic Java code, we
can define a polymorphic List class as follows:

public class ListC<Item> implements List<Item> {
private Node first;

private class Node {
Item info;

Node next;

public Node(Item info, Node next) {
this.info = info;

this.info = info;

}
}
public void add(Item i) {...}
public Item get(int i) {...}
public int find(Item i) {...}
...

}

Figure 5: Generic List Class Implemented in Java
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This straightforward implementation of a List class is a syntactically
nicer version of System F, where Item takes the place of all α in the calculus.
When we instantiate a ListC of integers by declaring

List<Integer> list = new ListC<Integer>();

we replace all occurences of Item in the class with the type Integer. Now
the add function accepts an Integer as input instead of an Item, so if we
try to compile the line

list.add("This is a String, not an Integer...");

we will get a type error during compilation. Python would allow such ac-
tions, as lists are general and do not restrict the types of elements allowed
in a list, that is, a list could contain both an integer and a string in Python.
Here, by parameterizing ListC with the type Integer, we restrict the al-
lowed types of elements to only integers.

To portray the polymorphism of Generics, we could just as easily instan-
tiate a list strings by declaring

List<String> list 2 = new ListC<Integer>();

in which case we could add the string from before without producing a type
error at compile time.

Java Generics allow programmers to write polymorphic, reusable code
that ranges over all types of objects, and adds an additional level of type-
safety for such programs that languages like Python cannot capture. This
polymorphism is based off of the formal System F, and adheres to its theo-
retical type rules.

3.3 Deficiencies

Even with a more robust type system (or the mere existence of a static
type system as compared to dynamically typed languages), languages such
as Java cannot capture all errors during compilation. Notably, Java has no
way of statically detecting illegal access of list or array indices until runtime.

Imagine having the two lists of Integer elements:

List<Integer> list 1 = new ListC<Integer>();

List<Integer> list 2 = new ListC<Integer>();

where the two lists are defined to be [1,2,3,4,5] and
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[1,2,3,4,5,6,7,8,9,10] respetively, and suppose we want to perform a
componentwise multiplication between these two lists, that is, we want to
multiply corresponding indices of the two lists, with the following code:

for(int i=0; i < length(list 2); i++)

list 1.get(i) * list 2.get(i);

Obviously, list 1 and list 2 have different lengths, with list 1 having
only 5 integers as opposed to 10 in list 2. While i is less than 5, this op-
eration will function properly, but a runtime error will be thrown when we
try to access an index i greater than the length of list 1. Despite Java’s
polymorphic type system, it does not have the capability of recognizing that
we will have nothing to multiply to the second half of list 2 at compile
time.

4 The Dependent Lambda Calculus

The previous example of a list index runtime error provides the moti-
vation for the implementation portion of this thesis. While most popular
languages do not have type systems capable of catching this error during
static analysis, dependent types aim to offer a sound method of solving this
issue. By providing additional information about the program via expres-
sive types, static analysis can know more about the program that would
otherwise not be learned until runtime.

4.1 λΠ

Just as with other type theories, dependent type systems are based off
of a theoretical lambda calculus with abstract syntax, typing, and evaluation
rules. The dependently typed lambda calculus, λΠ, is more of an overhaul
of the traditional lambda calculus than other theories, such as System F,
that were merely extensions with additional syntax and slight variations on
formal rules.

4.1.1 Syntax

As we did with the simply typed λ→, we will provide the abstract syntax
of λΠ along with type and evaluation semantics. As opposed to the type
theories discussed so far, λΠ mixes types into all other expressions. In other
systems, we differentiate and only allow types to occur in specific locations

16



of expressions, as in annotations or type parameters in System F, but λΠ
allows types to occur wherever usual terms are allowed [1]. We will see how
this feature becomes important as we delve deeper into λΠ.

e, ρ := ? Type of Types (Star)
| ∀x : ρ.ρ′ Dependent Function Space
| x Variable
| c Constant
| e e′ Application
| λx:ρ.e Lambda Abstraction

v, τ := c0 Constant Value
| ? Type of Types
| ∀x : τ.τ ′ Dependent Function Space
| λx:τ.e Lambda Abstraction

Figure 6: Abstract Syntax of λΠ

To make the abstract syntax more clear, we use e and ρ to refer to
what we typically think of as terms and types respectively, but in this sys-
tem, they are interchangeable and just used for syntactic clarity.

We also introduce the abstract syntax for values. Values can either be
constant values in the language, ?, the type of types, a dependent function
type, or a lambda abstraction. These values are the evaluated forms of the
terms in the term syntax of λΠ.

We introduce new constructs to the syntax from the simply-typed
lambda calculus. Here, ?, the ’type of types’, is introduced as a term. Ar-
row types are subsumed by the newly introduced dependent function space,
the dependent type of functions. With these new introductions, type terms
coincide with all other terms.

Similarly, we intermingle types with values. Thus anywhere we can eval-
uate a portion of a program to a value, we can also evaluate to types. This
allows types to depend on specific values, the core idea behind expressive
dependent types that capture more errors than simple types.
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4.1.2 Evaluation

While we did not discuss evaluation in simply-typed or polymorphic
contexts, type-checking in λΠ utilizes evaluation. We will see what this
means shortly, but here we present evaluation rules and discuss their mean-
ings.

? ⇓ ?
ρ ⇓ τ ρ′ ⇓ τ ′

∀x : ρ.ρ′ ⇓ ∀x : τ.τ ′
x ⇓ x

e ⇓ λx:τ.e e[x := e′] ⇓ v
e e′ ⇓ v

ρ ⇓ τ
λx:ρ.e ⇓ λx:τ.e

Figure 7: Evaluation Rules for λΠ [1]

When we evaluate the ? term, it simply evaluates to the ? value.
When evaluating a dependent function space, we evaluate the domain ρ,

and the codomain ρ′ to evaluate the whole term.
Evaluating applications, we first evaluate the operator term to a lambda

abstraction value. We then replace all x in the body of the lambda abstrac-
tion with e′, and evaluate this substituted body to v, thus the result of the
application is v. If the operator term does not evaluate to a lambda ab-
straction value, then this is an illegal application that will be caught during
type checking before ever reaching evaluation.

Finally, to evaluate a lambda abstraction, we just evaluate the type anno-
tation ρ ⇓ τ and return the resulting lambda abstraction value substituting
τ for ρ.

To provide a concrete example of evaluation in λΠ, consider working
within the context Γ with integer constants, and a function λx:int.x2 bound
to the variable f . Then we can evaluate the following expression as follows:

f ⇓ λx:int.x2
82 ⇓ 64

x2[x := 8] ⇓ 64

f 8 ⇓ 64

4.1.3 Type Checking

As was the case with λ→, the dependently typed lambda calculus as-
sociates a type semantics to its terms that allow us to implement a type
checking algorithm for static program analysis. Unique to λΠ, you will see
that some type rules involve evaluation of certain terms [1, 2]. This is be-
cause types may depend on specific values. As the clearest example, the
type of an application may depend on the value of the input parameter,

18



thus typing involves evaluating the input, and type checking the type of the
codomain of the dependent function space in a context, extended with the
newly evaluated input.

(Star)
Γ ` ? : ?

Γ ` ρ : ? ρ ⇓ τ
Γ[x := τ ] ` ρ′ : ?

(Pi)
Γ ` (∀x : ρ.ρ′) : ?

Γ(x) = τ
(Var)

Γ ` x : τ

Γ ` ρ : ? ρ ⇓ τ Γ[x := τ ] ` e : τ ′
(Lam)

Γ ` (λx:ρ.e) : ∀x : τ.τ ′

Γ ` e : ∀x : τ.τ ′ Γ ` e′ : τ τ [x := e′] ⇓ τ ′′
(App)

Γ ` e e′ : τ ′′

Figure 8: Type Rules for λΠ [1]

The Star term type checks as the type ?. Whenever a term type checks
to ?, we say the it ’has kind ?’, indicating that it is a type term. Essentially,
this rule says that the type of types is itself, a type.

According to the (Pi) rule, a dependent function space has kind ?, i.e. is
a type (specifically a function type). We first type check the domain term to
make sure it has kind star, and then extend the context with the evaluated
domain type bound to the variable x, and check that the codomain has kind
? in this extended context. If this all succeeds, then the dependent function
space is a valid type, and type checks as type ?.

When we type check a variable, we simply look up the type of the variable
in the context.

For a lambda expression, we first check that the annotated type term ρ
has kind ?. We then evaluate this type, and extend the context to include
this type τ associated with the variable x when we type check the body.

As mentioned, application is an interesting case in λΠ. We first check
that the type of the applicant term e is a dependent function type. If the
operand term e′ has the same type as the domain of the function space,
then we substitute all occurences of the parameter x in the codomain type
τ ′ with the operand term. If this evaluation after this substitution yields
type τ ′′, then the resulting type of the whole application will be τ ′′.
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4.1.4 Example Type Derivation in λΠ

To introduce the usage of these type rules, we look at the type deriva-
tion of a simple lambda abstraction λx: ? .λy:x.y.

(1)

Γ ` ? : ? ? ⇓ ?

Γ[x := ?](x) = ?

Γ[x := ?] ` x : ? x ⇓ x
Γ[x := ?][y := x](y) = x

Γ[x := ?][y := x] ` y : x

Γ[x := ?] ` λy:x.y

Γ ` (λx: ? .λy:x.y) : (∀x : ?.∀y : x.x)

This is the polymorphic identity function in λΠ. Although it is quite similar
to System F, notice that the type parameter x is abstracted with the same
lower-case λ as ther next parameter. This is because types are treated the
same way as other terms, whereas System F has separate rules for type ab-
straction and term abstraction. Verbally, this judgment states that for any
type x passed in as a parameter, this will return a function that takes an
input of type x, and returns an output of type x.

As a more complex example of these type rules in action, we look at the
type derivation of the following expression:

((λx: ? .λy:x.y) int) 4

Here we apply the identity function to the type parameter int with the value
4 as the second input. To derive the type of the application, we have:

1Γ ` (λx: ? .λy:x.y) int : (∀x : int.int)

Γ(4) = int

Γ ` 4 : int
int

int[x := 4] ⇓ int
Γ ` ((λx: ? .λy:x.y) int) 4 : int

Type Derivation (1)

Γ(int) = ?

Γ ` int : ?

∀y : int.int

∀y : x.x[x := int] ⇓ ∀x : int.int
1Γ ` (λx: ? .λy:x.y) int : (∀x : int.int)

where we substitute the derivation for the polymorphic identity function in
place of ’Type Derivation (1)’. Thus the resulting type of the expression is
int.

4.2 Dependent Lists

Without more complex datatypes, it can be difficult to see the benefits,
and even just the differences, of λΠ from System F. Polymorphism can be
achieved to the same effect as with the polymorphic lambda calculus, but
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the intention is to gain additional capabilities through the more complex
type system. To take full advantage of λΠ, we introduce dependent list
types. We want them to be polymorphic, so that we can declare a list of
integers, a list of strings, or even a list of types, and to be able to statically
ensure that we do not violate the prescribed type of a list by trying to insert
an element of an improper type. Additionally, we include the length of a
list in its type, thus we the type τ list(x), where τ has kind ? and x is an
integer. In concrete instances, this allows us to construct objects of such
types as int list(3), or ? list(5) (read int list of length 3 and star list of
length 5, that is a list of types of length 5).

To allow for such constructs in the abstract syntax, we allow a term to
be of the forms:

stop[ρ] Nil of type ρ
more[e, ρ] e′ e′′ Cons of length e, type ρ, element e′, and rest e′′

ρ list(e) List of type ρ, length e

in addition to the existing allowable syntactic constructs. We want to define
type rules for lists such that we can derive types for expressions such as

more[2,int] 10 more[1,int] 20 stop[int]:int list(2)

and

more[2,?] int more[1,?] ∀x:bool.bool list(3) stop[?]:? list(2)

(Removing the syntactic necessities for the dependent type system, these
are just the lists [10,20] and [int,∀x:bool.bool list(3)] respectively).

4.2.1 Type Rules for Lists

When we type check lists, we want to check that the elements of a list
are of the correct type, and that the length of the list corresponds to the
length attribute of the type itself. We have two constructors for lists, so we
will need two rules, one to type check a Nil or empty list, and one to type
check a Cons (i.e. a non-empty list). We also need a type rule to assert that
a list type term has kind ? (i.e. is a valid type).
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Γ ` ρ : ? ρ ⇓ τ
(Nil)

Γ ` stop[ρ] : τ list(0)

e ⇓ v
Γ ` e : int

ρ ⇓ τ
Γ ` ρ : ? Γ ` e′ : τ Γ ` e′′ : τ list(v − 1)

(Cons)
Γ ` more[e, ρ] e′ e′′ : τ list(v)

Γ ` ρ : ? Γ ` e : int
(List)

Γ ` ρ list(e) : ?

Figure 9: Type Rules for List Constructs in λΠ

To type check a Nil list, we first check that ρ has kind ?, and then evaluate
ρ to τ to determine the type of the elements of the list.

Type checking a Cons cell is the most computationally expensive por-
tion of type checking in our language. As shown in the type rule above,
type checking involves evaluation of terms. We first ensure that the pro-
vided length term is of type int, and evaluate it to v. We then check that
ρ is of kind ?, and evaluate it to the value τ . If the element e′′ has type τ ,
and the rest, or tail, has type τ list(v− 1), that is a list of length v− 1 and
elements of type τ , then the Cons type checks to type τ list(v).

To assert that a list type term has kind ?, we only need to check that
the term ρ has kind ?, and that e has type int.

It is evident from these type rules that adding lists to λΠ requires sup-
porting an int type. We take for granted in this report that elements of
this type behave as we expect, but must implement int before being able to
support lists.

4.3 An example

While the type rules get more complex, dependent lists are the cul-
mination of what we have discussed so far, so a small example can only
help illuminate the benefits of this extension of λΠ. Given the list of
int elements [2,4] (in our syntax written more[2,int] 2 more[1,int] 4

stop[int] with type int list(2)), we derive its type from our rules as fol-
lows:

2 ⇓ 2

Γ ` 2 : int

int ⇓ int
Γ ` int : ? Γ ` 2 : int (1)Γ ` more[1, int] 4 stop[int] : int list(1)

Γ ` more[2, int] 2 more[1, int] 4 stop[int] : int list(2)
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We can apply the same type rule to derive the type of the tail in expres-
sion (1), and then apply the Nil type rule to derive the type of the end of the
list. This displays that even for a simple, explicitly declared list of length
2, type checking is expensive, so why do we go through all of this effort?
We can now incorporate dependent lists into functions to ensure additional
type-safety that other languages are incapable of promising.

5 Implementation

So far we have only discussed theoretical calculi for language design,
but the goal is to implement a language abiding by these rules for practical
use. Accompanying this thesis is an OCaml implementation of λΠ, extended
with dependent lists, and familiar language constructs such as if -statements,
boolean, and integer values. We will discuss some design choices, and follow
with examples to highlight the implemented type system in action.

5.1 Implementation Decisions

Much of my implementation work was directed by the paper, A tutorial
implementation of a depeendently typed lambda calculus, presenting type
and evaluation semantics and instructions for a Haskell implementation [1].
When working on my own implementation, portions of this paper depended
upon more complex concepts or Haskell-specific features. My aim was to
implement λΠ in the most straightforward, general way possible, hence the
title of an ML implementation, rather than OCaml.

5.1.1 Abstract Syntax

When implementing the language, a choice was made to maintain a
first-order abstract syntax. For dependent function types and lambda ab-
stractions, where the types of the codomain or body depend on a value, one
could alternatively represent them as functions in the implementation lan-
guage itself to automatically handle substitution [1]. For example, whereas
I implemented the constructor for a dependent function space to accept a
variable bound to a type for the domain, and a type for the codomain that
relies on substitution, one could instead implement it to accept a domain
type, and an OCaml function for the codomain, that given a value, returns a
type. Although a higher-order abstract syntax may reduce overall complex-
ity, and even may be a more natural way of implementation, the additional
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abstraction obfuscates the underlying semantics of λΠ more than I wanted
to allow.

5.1.2 Bound and Free Variables

The tutorial implementation utilizes de Bruijn indices to maintain
bound variables and their scopes throughout the intermediate representation
of the language [1]. Again, though this may be the standard implementation
practice, I chose to instead implement direct substitution of variables bound
to symbols. To avoid name capture, I maintained a context containing in-
formation of types and values for both type checking and evaluation.

5.1.3 Term Equality

Because of the previous choices made in the tutorial paper, checking
equality of terms became non-trivial. While it would be easy to assert that
the int type is equal to the int type, but not equal to the bool type, the
higher-order abstract syntax makes certain cases more difficult to compare.
Because functions are used to define language constructs for dependent func-
tion spaces and lambda abstractions, we cannot simply ask if two OCaml
functions are equal to determine the equality of the term itself. We would
need to assert that the two OCaml functions produced the same output on
every given input, a task that sounds too complicated to even attempt to
address.

A technique called ’quotation’ was used to handle this issue, effectively
reverting higher-order abstract syntactic representations of values to first-
order terms that can be syntactically checked for equality [1]. Once again,
this did not uphold my expectations of clarity and simplicity in my own
implementation, and fortunately by avoiding a higher-order abstract syntax
altogether, I was able to implement a straightforward syntactic comparison
to determine equality.

5.2 Demo

To test my implementation of the language and confirm it properly
adheres to the semantics of λΠ, I implemented a read-eval-print-loop inter-
preter to demo some code written in my language. It is important to realize
that this interpreter conflates type checking and evaluation of terms into a
single process, and so appears to behave as a dynamically typed interac-
tive language. Although these errors seem to occur only during program

24



execution, type checking and evaluation are actually implemented as sepa-
rate processes, that in a compiler would be separated into pre-compile type
checking that produces a compiled executable of the program if type check-
ing is satisfied, and evaluation of this already statically analyzed executable
program.

5.2.1 Identity example

To introduce the syntax of my implementation, we begin with a presen-
tation of the polymorphic identity function we have previously shown the
typing rules for in λΠ.

let id:pi x:∼.pi y:x.x =

fn x:∼.fn y:x.y;;

id int 8;;

id (pi x:∼.pi y:x.x) id;;

id int id;;

(*Evaluates to 8*)

(*Evaluates to ’id’ function*)

(*Fails to type check*)

Function declarations mimic the syntax of a lambda abstraction, and
a let statement just allows us to bind the function to a variable name. If
the type of the lambda abstraction does not match the annotated type of
the variable name in the let expression, type checking fails. Also, note that
in the concrete syntax, ∼ replaces ? as the type of types symbol.

In the case of the polymorphic identity function, we annotate the func-
tion name with the type of the function itself, which we see is
pi x:∼.pi y:x.x . In the abstract syntax of λΠ, this is equivalent to the
dependent function space ∀x:?.∀y:x.x. Althought the type output by the
application of id to a single parameter depends on the first parameter, this
is an instance of types depending on types, not types depending on values.
This is nearly equivalent to parametric polymorphism in System F, instead
of dependent types.

5.2.2 n copies Example

Now that the syntax of the language is slightly more understandable,
we can write an n copies function to create a list of n copies of an input x.
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let n copies:pi t:∼.pi n:int.pi x:t.t list(n) =

fn t:∼.fn n:int.fn x:t.if n == 0 then stop[t]

else more[n,t] x (n copies t (n-1) x);;

n copies int 3 0;;

n copies ∼ 2 pi x:int.int;;

n copies bool true 1;;

(*[0,0,0]*)

(*[pi x:int.int,pi x:int.int]*)

(*Fails to type check*)

The n copies function accepts three parameters, the first being the
type, then the length, then the element to copy. If these are supplied in
the wrong order, as in the last case, the application will fail to type check.
Such an error is now caught during compilation, whereas our corresponding
Python function did not catch errors until runtime.

The n copies function is our first example of a truly dependent function
space. The output type of the function is t list(n). Not only does this
type depend on the type parameter t, but it also depends on the value of n
to which the function is applied, as the type of a list depends on its length.
Indeed, the length of the list could be any arbitrary term that we need not
know until compile time, but we can still ensure well-typedness [2].

5.2.3 Dependent Lists in Action

We finally reach the motivating example for dependent types, as we will
write a componentwise multiplication function on two lists of integers, that
requires them to be of the same length, or otherwise fails to type check.

let comp mult:pi n:int.pi a:int list(n).pi b:int list(n).int list(n) =

fn n:int.fn a:int list(n).fn b:int list(n).

if n == 0 then stop[int]

else more[n,int] ((head a) * (head b))

(comp mult (n-1) (tail a) (tail b));;

comp mult 1 (more[1,int] 5 stop[int])

(more[1,int] 5 stop[int]);;

comp mult 1

(more[1,bool] true stop[bool])

(more[1,bool] false stop[bool]);;

comp mult 1 (more[1,int] 7 stop[int])

(stop[int]);;

(*[25]*)

(*Fails to type check*)

(*Fails to type check*)
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When we componentwise multiply two integer lists of length 1, the appli-
cation passes the type checking process, so compilation would continue and
we can expect the program to execute properly and return the list [25]. If
we try to componentwise multiply lists on elements that are of non-integer
type, then the type system catches a type error during compilation, just as
we would expect in a statically typed language such as Java. Finally, we see
the power of λΠ as a type system. When we try to componentwise multiply
two integer lists of different lengths, type checking fails, as we require both
lists input to be of length 1.

6 Conclusion

These examples show how λΠ effectively handles the same typed situa-
tions as less expressive type theories. Simply-typed and polymorphic terms
remain well-typed in λΠ, and we have introduced more information to the
type system to capture more understanding during static analysis. Depen-
dent lists are a powerful extension of the dependently typed lambda calculus;
they maintain the flexibility of polymorphic lists and express more about the
state of the program than simple polymorphic lists by keeping track of the
list’s length.

Despite contributing to the computational cost of static analysis, λΠ
is reasonably practical to implement for general programming. Dependent
types may not be the solution, or even incorporated in high-performance
languages because of their complexity, but for a slight increase in compi-
lation time, significant assurance can be gained that a well-typed program
will execute as expected.

With dependent function spaces and dependent list types already incor-
porated in the core of my language, further extensions of dependent types
should become easier to implement. While certain issues may not be cap-
tured by the dependent types discussed in this paper, dependent types can
be extended to capture features such as array index bounds, or even to en-
sure a binary heap structure to a tree.

It is still true that certain issues remain inherently runtime errors. Specif-
ically, dependent types cannot do much in the way of ensuring user input
during execution satisfies the dependent type system, and therefore they are
not capable of guaranteeing proper program execution. To counter this at-
tack on dependent types, one only has to point out that such runtime errors
would be runtime errors in any of the more popular, yet less strict, formal
type systems at the basis of modern languages. Dependent types may miss
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certain errors during static analysis, but catch all that would be caught in
simple type systems, and additional errors that are beyond their scope.

7 Future Work

Hopefully the usefulness of dependent types is made clear from the
previous discussions, but there is more work to be done in creating highly
expressive type systems to ensure additional safety of program execution.
It seems that the more expressive the type system, the more errors we are
capable of catching during static analysis, so naturally we want to extend
λΠ further to reap its full benefits.

Though my current implementation introduces some extensions of λΠ to
incorporate assignments, conditionals, arithmetic, boolean logic, and depen-
dent lists, much is lacking compared to what most immediately think of as a
general programming language. Extending the core type system further to
allow dependent abstract data types, other dependent data structures, and
a core API strengthened by the theoretical foundation of λΠ would be the
next natural step in further developing this implementation.

Despite the expressive power of such a complex, but useful type theory,
requiring types to contain such additional information inevitably clutters the
syntax of a language. Not only do we have explicit type annotations, but
these type annotations depend on evaluation of terms. Of course, it would
be helpful to clean up the syntax of my implementation to improve ease of
use, but this would also further dispel the notion that dependently typed
languages are not suited for general programming. The highly expressive
type systems based off of an encoding of predicate logic in language make
for extremely powerful logic-based proof systems, but it is often thought
that the complexity of dependent types is too high for common purposes.
Hopefully a straightforward implementation and more succinct syntax will
help discourage this belief.

Although λΠ has defficiencies, the most notable of which is probably the
computational cost of type checking a dependent language, it is important
to recognize the usefulness we can gain from such additional security. While
static typing will never even be universally accepted due to the restrictions it
places on the programmer, we should still acknowledge the importance and
practicality of more rigid formal systems thanks to their increased assurance
of proper execution.
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Appendix

1 (∗
∗ f i l e : a s t . ml

3 ∗ author : Sam Baxter
∗

5 ∗ This f i l e l ay s out the ab s t r a c t syntax o f the language .
∗ A sub s t i t u t i o n func t i on i s implemented to handle

7 ∗ s ub s t i t u t i o n o f types and va lue s in type check ing and
∗ the eva lua t i on proce s s .

9 ∗ A toSt r i ng func t i on i s provided f o r the i n t e r a c t i v e d i sp l ay .
∗)

11

type va r i ab l e =
13 | St r ing o f s t r i n g

| Symbol o f s t r i n g ∗ i n t
15 | Dummy

17 type term =
| Var o f v a r i ab l e

19 | Star
| Pi o f ab s t r a c t i on

21 | Lambda o f ab s t r a c t i on
| App o f term ∗ term

23 | Int o f i n t
| Bool o f i n t

25 | Ann o f term ∗ term
| I f o f term ∗ term ∗ term

27 | And o f term ∗ term
| Or o f term ∗ term

29 | Op of term ∗ term l i s t
| Let o f ab s t r a c t i on

31 | IntType
| BoolType

33 | L i s t o f term ∗ term
| Prod o f term l i s t

35 | BinaryOp o f ( term ∗ term −> term )
| UnaryOp o f ( term −> term )

37 | Ni l o f term
| Cons o f term ∗ term ∗ term ∗ term

39 | I sN i l o f term
| Head o f term

41 | Tai l o f term

43 and ab s t r a c t i on =
va r i ab l e ∗ term ∗ term

45

l e t f r e s h =
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47 l e t k = r e f 0 in
func t i on

49 | St r ing x | Symbol (x , ) −>
i n c r k ;

51 Symbol (x , ! k )
| Dummy −>

53 i n c r k ;
Symbol ( ”” , ! k )

55

l e t r e c subst s = func t i on
57 | Var x −>

( t ry L i s t . a s soc x s with Not found −> Var x )
59 | Star −>

Star
61 | Pi a −>

Pi ( subs t abs s a )
63 | Lambda a −>

Lambda ( subs t abs s a )
65 | App( e1 , e2 ) −>

App( subst s e1 , subst s e2 )
67 | Int i −>

Int i
69 | Bool b −>

Bool b
71 | Ann( e1 , e2 ) −>

Ann( subst s e1 , subst s e2 )
73 | I f ( e1 , e2 , e3 ) −>

I f ( subst s e1 , subst s e2 , subst s e3 )
75 | And( e1 , e2 ) −>

And( subst s e1 , subst s e2 )
77 | Or( e1 , e2 ) −>

Or( subst s e1 , subst s e2 )
79 | Op( rator , rands ) −>

Op( rator , L i s t .map ( subst s ) rands )
81 | Let (x , typ , e ) −>

Let (x , subst s typ , subst s e )
83 | IntType −>

IntType
85 | BoolType −>

BoolType
87 | L i s t ( typ , l en ) −>

L i s t ( subst s typ , subst s l en )
89 | Ni l e −> Ni l ( subst s e )

| Cons ( len , typ , e l , r e s t ) −>
91 Cons ( subst s len , subst s typ , subst s e l , subst s r e s t )

| I sN i l e −>
93 I sN i l ( subst s e )

| Head e −>
95 Head( subst s e )
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| Tai l e −>
97 Tai l ( subst s e )

99

and subs t abs s (x , t , e ) =
101 l e t x ’ = f r e s h x in

(x ’ , subst s t , subst ( ( x , Var x ’ ) : : s ) e )
103

l e t makeString s = St r ing s
105

l e t r e c t oS t r i ng = func t i on
107 | Var x −> toStr ingVar x

| Star −> ”˜”
109 | Pi a −> ”Pi” ˆ ( toStr ingAbs a )

| Lambda a −> ”Lambda” ˆ ( toStr ingAbs a )
111 | App( e , e ’ ) −> ”App( ” ˆ ( t oS t r i ng e ) ˆ ” , ” ˆ ( t oS t r i ng e ’ ) ˆ

” ) ”
| Int i −> s t r i n g o f i n t i

113 | Bool i −> i f i = 0 then ” f a l s e ” e l s e ” t rue ”
| Ann( e , t ) −> t oS t r i ng e

115 | I f ( e1 , e2 , e3 ) −>
” i f ” ˆ ( t oS t r i ng e1 ) ˆ ” then ” ˆ ( t oS t r i ng e2 ) ˆ ” e l s e

” ˆ ( t oS t r i ng e3 )
117 | And( e1 , e2 ) −>

”&(” ˆ ( t oS t r i ng e1 ) ˆ ” , ” ˆ ( t oS t r i ng e2 ) ˆ ” ) ”
119 | Or( e1 , e2 ) −>

” | | ( ” ˆ ( t oS t r i ng e1 ) ˆ ” , ” ˆ ( t oS t r i ng e2 ) ˆ ” ) ”
121 | Op( rator , rands ) −> ( t oS t r i ng ra to r ) ˆ ” ( ” ˆ ( t oS t r i n gL i s t

rands ) ˆ ” ) ”
| Let a −> ”Let” ˆ ( toStr ingAbs a )

123 | IntType −> ” i n t ”
| BoolType −> ” bool ”

125 | L i s t ( typ , l en ) −> ( t oS t r i ng ( typ ) ) ˆ ” l i s t ( ” ˆ ( t oS t r i ng l en
) ˆ ” ) ”
| Prod x −> toStr ingTuple x

127 | BinaryOp f −> ”bi−op”
| UnaryOp f −> ”u−op”

129 | Ni l e −> ” [ ] : ” ˆ ( t oS t r i ng e )
| Cons ( len , typ , e l , r e s t ) −> ”more [ ” ˆ ( t oS t r i ng l en ) ˆ ” , ” ˆ

( t oS t r i ng typ ) ˆ ” ] ” ˆ ( t oS t r i ng e l ) ˆ ” ” ˆ ( t oS t r i ng r e s t
)

131 | I sN i l e −> ” i s n i l ( ” ˆ ( t oS t r i ng e ) ˆ ” ) ”
| Head e −> ”head ( ” ˆ ( t oS t r i ng e ) ˆ ” ) ”

133 | Tai l e −> ” t a i l ( ” ˆ ( t oS t r i ng e ) ˆ ” ) ”

135 and toStr ingTuple = func t i on
| [ ] −> ””

137 | [ a ] −> t oS t r i ng a
| x : : xs −> ( t oS t r i ng x ) ˆ ” ∗ ” ˆ ( toStr ingTuple xs )
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139

and t oS t r i n gL i s t = func t i on
141 | [ ] −> ””

| [ only ] −> t oS t r i ng only
143 | x : : xs −> ( t oS t r i ng x ) ˆ ” , ” ˆ ( t oS t r i n gL i s t xs )

145 and toStr ingVar = func t i on
| St r ing s −> s

147 | Symbol ( s , i ) −> s

149 and toStr ingAbs (x , t , e ) = ” ( ” ˆ ( toStr ingVar x ) ˆ ” , ” ˆ (
t oS t r i ng t ) ˆ ” , ” ˆ ( t oS t r i ng e ) ˆ ” ) ”

Listing 1: ./../../Final/ast.ml

1 (∗
∗ f i l e : environment . ml

3 ∗ author : Sam Baxter
∗

5 ∗ This f i l e conta in s the d e f i n i t i o n o f context s .
∗ Functions are inc luded to extend and look up a s s o c i a t i o n s

7 ∗ in the context by type check ing and eva lua t i on func t i on s .
∗)

9

type context = (Ast . v a r i a b l e ∗ ( Ast . term ∗ Ast . term opt ion ) )
l i s t

11

l e t lookup typ x ctx = f s t ( L i s t . a s soc x ctx )
13

l e t l ookup va lue x ctx = snd ( L i s t . a s soc x ctx )
15

l e t extend x t ? value ctx = ctx := (x , ( t , va lue ) ) : : ! ctx

Listing 2: ./../../Final/environment.ml

(∗
2 ∗ f i l e : b a s i s . ml
∗ author : Sam Baxter

4 ∗
∗ This f i l e conta in s the code f o r bu i l d i ng both the s t a t i c and

dynamic ba s i s .
6 ∗ The func t i on makeBasis w i l l c ons t ruc t a s t a t i c b a s i s when

app l i ed to the
∗ l i s t Bas i s . primOpTypes . The same func t i on w i l l c ons t ruc t a

dynamic
8 ∗ ba s i s when app l i ed to the l i s t implementat ionsOfPr imit ives .

These bases
∗ are cons t ruc ted in the preamble to the top−l e v e l read−eval−

pr in t loop in
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10 ∗ i n t e r p r e t e r . ml The apply f unc t i on s can be used to a c t ua l l y
put a type checker f o r ( or

∗ implementation o f ) a p r im i t i v e to use .
12 ∗
∗ To extend the ba s i s with new pr im i t i v e s , the l i s t primNames

must be
14 ∗ extended with an appropr ia t e i d e n t i f i e r .

∗)
16

open Environment ; ;
18

(∗
20 ∗ This i s the master l i s t o f names o f p r im i t i v e ope ra to r s .
∗

22 ∗ NB: THESE NAMES ARE LAYED OUT IN A FIXED ORDER!
∗)

24 l e t primOpNames = [ ”+” ; ”−” ; ”∗” ; ”/” ; ”%” ; ”∗∗” ; ”<” ; ”<=” ; ”==
” ; ”<>” ; ”>” ; ”>=” ; ”not” ] ; ;

26 l e t r e c z ip = func t i on
| [ ] , [ ] −> [ ]

28 | x : : xs , y : : ys −> (x , y ) : : ( z ip ( xs , ys ) )

30 l e t makeBasis va lue s =
l e t primOpNames ’ = L i s t .map Ast . makeString primOpNames in

32 l e t keyValuePairs = z ip (primOpNames ’ , va lue s ) in
l e t i n s e r t map ( key , va lue ) = ( key , va lue ) : : map

34 in
L i s t . f o l d l e f t i n s e r t [ ] keyValuePairs ; ;

36

module I n t e r p r e t e r =
38 s t r u c t

l e t applyBinary = func t i on
40 ( operat ion , [ va lue1 ; va lue2 ] ) −> operat i on ( value1 , va lue2 )

| −> r a i s e ( Fa i l u r e ”Cannot happen . ” ) ; ;
42

l e t applyUnary = func t i on
44 ( operat ion , [ va lue ] ) −> operat i on ( va lue )

| −> r a i s e ( Fa i l u r e ”Cannot happen . ” ) ; ;
46

(∗
48 ∗ The implementation o f p r im i t i v e ope ra t i on s . Note that the

order o f
∗ the se toge the r with the unarys must match up with the

order o f the
50 ∗ operator names in op . ml .

∗)
52 l e t i n tCro s s In t 2 In t =
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Ast . Pi ( Ast . makeString ”qqqqqqq” , ( Ast . Prod [ Ast . IntType ;
Ast . IntType ] ) , Ast . IntType ) ; ;

54

l e t in tCros s Int2Boo l =
56 Ast . Pi ( Ast . makeString ”qqqqqqq” , ( Ast . Prod [ Ast . IntType ;

Ast . IntType ] ) , Ast . BoolType ) ; ;

58 l e t bool2Bool =
Ast . Pi ( Ast . makeString ”qqqqqqq” , Ast . Prod ( [ Ast . BoolType ] ) ,

Ast . BoolType ) ; ;
60

l e t operatorTypes =
62 [

i n tCro s s In t 2 In t ; (∗ + ∗)
64 i n tCro s s In t 2 In t ; (∗ − ∗)

i n tCro s s In t 2 In t ; (∗ ∗ ∗)
66 i n tCro s s In t 2 In t ; (∗ / ∗)

i n tCro s s In t 2 In t ; (∗ % ∗)
68 i n tCro s s In t 2 In t ; (∗ ∗∗ ∗)

in tCros s Int2Boo l ; (∗ < ∗)
70 i n tCros s Int2Boo l ; (∗ <= ∗)

in tCros s Int2Boo l ; (∗ == ∗)
72 i n tCros s Int2Boo l ; (∗ <> ∗)

in tCros s Int2Boo l ; (∗ >= ∗)
74 i n tCros s Int2Boo l ; (∗ > ∗)

bool2Bool (∗ not ∗)
76 ] ; ;

78 l e t s t a t i cB a s i s = makeBasis operatorTypes ; ;

80 l e t binaryPrePrimOps =
[

82 ( func t i on
| ( Ast . Int ( v1 ) , (∗ + ∗)

84 Ast . Int ( v2 ) ) −>
Ast . Int ( v1+v2 )

86 | ( a , b ) −>
Ast .Op(Ast . Var (Ast . S t r ing ( ”+” ) ) , [ a ; b ] ) ) ;

88

( func t i on
90 | ( Ast . Int ( v1 ) ,

Ast . Int ( v2 ) ) −> (∗ − ∗)
92 Ast . Int ( v1 − v2 )

| ( a , b ) −>
94 Ast .Op(Ast . Var (Ast . S t r ing ( ”−” ) ) , [ a ; b ] ) ) ;

96 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ ∗ ∗)

98 Ast . Int ( v1 ∗ v2 ) ) ;
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100 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ / ∗)

102 Ast . Int ( v1 / v2 ) ) ;

104 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ % ∗)

106 Ast . Int ( v1 mod v2 ) ) ;

108 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ ∗∗ ∗)

110 l e t v1 ’ = f l o a t o f i n t v1 in
l e t v2 ’ = f l o a t o f i n t v2 in

112 Ast . Int ( i n t o f f l o a t ( v1 ’ ∗∗ v2 ’ ) ) ) ;

114 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ < ∗)

116 Ast . Bool ( i f v1 < v2 then 1 e l s e 0) ) ;

118 ( fun (Ast . Int ( v1 ) ,
Ast . Int ( v2 ) ) −> (∗ <= ∗)

120 Ast . Bool ( i f v1 <= v2 then 1 e l s e 0) ) ;

122 ( func t i on
| ( Ast . Int ( v1 ) ,

124 Ast . Int ( v2 ) ) −> (∗ == ∗)
Ast . Bool ( i f v1 = v2 then 1 e l s e 0)

126 | ( a , b ) −>
Ast .Op(Ast . Var (Ast . S t r ing ( ”==” ) ) , [ a ; b ] ) ) ;

128

( func t i on
130 | ( Ast . Int ( v1 ) ,

Ast . Int ( v2 ) ) −> (∗ <> ∗)
132 Ast . Bool ( i f v1 <> v2 then 1 e l s e 0)

| ( a , b ) −>
134 Ast .Op(Ast . Var (Ast . S t r ing ”<>” ) , [ a ; b ] ) ) ;

136 ( func t i on
| ( Ast . Int ( v1 ) ,

138 Ast . Int ( v2 ) ) −> (∗ >= ∗)
Ast . Bool ( i f v1 >= v2 then 1 e l s e 0)

140 | ( a , b ) −>
Ast .Op(Ast . Var (Ast . S t r ing ( ”>=” ) ) , [ a ; b ] ) ) ;

142

( func t i on
144 | ( Ast . Int ( v1 ) ,

Ast . Int ( v2 ) ) −> (∗ > ∗)
146 Ast . Bool ( i f v1 > v2 then 1 e l s e 0)

| ( a , b ) −>
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148 Ast .Op(Ast . Var (Ast . S t r ing ( ”>” ) ) , [ a ; b ] ) ) ;

150 ] ; ;

152 (∗
∗ Coerce the implementat ions o f b inary p r im i t i v e s to be

Ast . l e t u e s .
154 ∗)

l e t binaryPrimOps = L i s t .map ( fun x −> Ast . BinaryOp x)
binaryPrePrimOps ; ;

156

(∗
158 ∗ The unary pr imt ive s .

∗)
160 l e t unaryPrePrimOps =

[
162 ( func t i on

| ( Ast . Bool ( v ) ) −> (∗ not ∗)
164 Ast . Bool ( i f v = 1 then 0 e l s e 1)

| ( a ) −>
166 Ast .Op(Ast . Var (Ast . S t r ing ( ”not” ) ) , [ a ] ) )

] ; ;
168

(∗
170 ∗ Coerce the implementat ions o f unary p r im i t i v e s to be

Ast . va lue s .
∗)

172 l e t unaryPrimOps = L i s t .map ( fun x −> Ast . UnaryOp x)
unaryPrePrimOps ; ;

174 (∗
∗ Make the dynamic ba s i s f o r export to the i n t e r p r e t e r .

176 ∗)
l e t dynamicBasis = makeBasis ( binaryPrimOps @ unaryPrimOps

) ; ;
178 end ; ;

Listing 3: ./../../Final/basis.ml

(∗
2 ∗ f i l e : s t a t i c s eman t i c s . ml
∗ author : Sam Baxter

4 ∗
∗ This f i l e conta in s a normal ize funct ion , which in e f f e c t a c t s

as
6 ∗ an eva lua t i on func t i on on the ab s t r a c t syntax . The i n f e r

funt i on
∗ i n f e r s types o f terms and checks t h e i r v a l i d i t y accord ing to

the
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8 ∗ formal r u l e s o f the dependent type system . The equal func t i on
∗ compares the equa l i t y o f terms/ types .

10 ∗)

12 open Ast
open Environment

14

l e t r e c normal ize env = func t i on
16 | Var x −>

(match
18 ( t ry lookup va lue x ! env

with Not found −> r a i s e ( Fa i l u r e ”unknow i d e n t i f i e r \n
” ) )

20 with
| None −> (Var x , env )

22 | Some e −> ( f s t ( normal ize env e ) , env ) )
| Star −>

24 ( Star , env )
| Pi a −>

26 ( Pi ( normal i z e abs env a ) , env )
| Lambda a −>

28 (Lambda ( normal i z e abs env a ) , env )
| App( e1 , e2 ) −>

30 l e t e2 ’ = f s t ( normal ize env e2 ) in
(match f s t ( normal ize env e1 ) with

32 | Lambda (x , , e1 ’ ) −>
( f s t ( normal ize env ( subst [ ( x , e2 ’ ) ] e1 ’ ) ) , env )

34 | e1 −>
(App( e1 , e2 ) ) , env )

36 | Int i −>
( Int i , env )

38 | Bool b −>
( Bool b , env )

40 | Ann( e1 , e2 ) −>
(Ann( f s t ( normal ize env e1 ) , f s t ( normal ize env e2 ) ) , env )

42 | I f ( e1 , e2 , e3 ) −>
(match f s t ( normal ize env e1 ) with

44 | Bool 1 −> normal ize env e2
| Bool 0 −> normal ize env e3 )

46 | And( e1 , e2 ) −>
(match f s t ( normal ize env e1 ) with

48 | Bool 0 as t −> ( t , env )
| Bool 1 −> normal ize env e2 )

50 | Or( e1 , e2 ) −>
(match f s t ( normal ize env e1 ) with

52 | Bool 1 as t −> ( t , env )
| Bool 0 −> normal ize env e2 )

54 | Op( rator , rands ) −>
l e t rator ’ = f s t ( normal ize env ra to r ) in
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56 (match rator ’ , rands with
| BinaryOp f , [ a ; b ] −>

58 ( f ( f s t ( normal ize env a ) , f s t ( normal ize env b) ) ,
env )

| UnaryOp f , [ a ] −>
60 ( f ( f s t ( normal ize env a ) ) ) , env )

| Prod x −>
62 ( Prod ( L i s t .map f s t ( L i s t .map ( normal ize env ) x ) ) , env )

| Let (x , t , e ) −>
64 l e t t ’ = f s t ( normal ize env t ) in

l e t e ’ = f s t ( normal ize env e ) in
66 extend x t ’ ˜ va lue : e ’ env ;

( Let (x , t ’ , e ’ ) , env )
68 | IntType −>

( IntType , env )
70 | BoolType −>

(BoolType , env )
72 | BinaryOp f as x −> (x , env )

| UnaryOp f as x −> (x , env )
74 | L i s t ( typ , l en ) −>

( L i s t ( f s t ( normal ize env typ ) , f s t ( normal ize env l en ) ) ,
env )

76 | Ni l e −> ( Ni l ( f s t ( normal ize env e ) ) , env )
| Cons ( len , typ , e l , r e s t ) −>

78 (Cons ( f s t ( normal ize env l en ) , f s t ( normal ize env typ ) ,
f s t ( normal ize env e l ) , f s t ( normal ize env r e s t ) ) , env )
| I sN i l e −>

80 (match f s t ( normal ize env e ) with
| Ni l a as t−> ( Bool (1 ) , env )

82 | Cons ( , , , ) −> ( Bool (0 ) , env )
| −> r a i s e ( Fa i l u r e ” Input cannot normal ize \n” ) )

84 | Head e −>
(match f s t ( normal ize env e ) with

86 | Cons ( , , e , ) −> ( e , env )
| −> r a i s e ( Fa i l u r e ”Cannot normal ize head o f anything

other than non−empty l i s t \n” ) )
88 | Tai l e −>

(match f s t ( normal ize env e ) with
90 | Cons ( , , , e ) −> ( e , env )

| Ni l e −> ( Ni l e , env )
92 | −> r a i s e ( Fa i l u r e ”Cannot normal ize t a i l o f anything

other than a l i s t \n” ) )
| −> r a i s e ( Fa i l u r e ” Input cannot normal ize \n” )

94

and normal i ze abs env (x , t , e ) =
96 l e t t ’ = f s t ( normal ize env t ) in

(x , t ’ , e )
98

l e t r e c a l l t r u e l = (match l with
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100 | [ ] −> t rue
| [ x ] −> x

102 | x : : xs −> x && a l l t r u e xs )

104 l e t r e c a p p l y l i s t f s l s =
(match f s , l s with

106 | [ ] , [ ] −> [ ]
| [ f ] , [ x ] −> [ f x ]

108 | x : : xs , y : : ys −> ( x y ) : : ( a p p l y l i s t xs ys ) )

110 l e t equal env e1 e2 =
l e t r ec equal ’ e1 e2 = (match e1 , e2 with

112 | Var x1 , Var x2 −> x1 = x2
| App(d1 , d2 ) , App( f1 , f 2 ) −> equal ’ d1 f1 && equal ’ d2 f2

114 | Star , Star −> t rue
| Pi a1 , Pi a2 −> equa l abs a1 a2

116 | Lambda a1 , Lambda a2 −> equa l abs a1 a2
| Int i , Int j −> i = j

118 | Bool b , Bool b ’ −> b = b ’
| Ann(d1 , d2 ) , Ann( f1 , f 2 ) −>

120 equal ’ d1 f1 && equal ’ d2 f2
| Op( r , rands ) , Op( r ’ , rands ’ ) −>

122 equal ’ r r ’ && a l l t r u e ( a p p l y l i s t ( L i s t .map equal ’
rands ) rands ’ )
| Let a1 , Let a2 −>

124 equa l abs a1 a2
| IntType , IntType −> t rue

126 | BoolType , BoolType −> t rue
| Prod a , Prod b −>

128 (match a , b with
| [ ] , [ ] −> t rue

130 | [ x ] , [ y ] −> equal ’ x y
| x : : xs , y : : ys −> equal ’ ( Prod xs ) (Prod ys ) )

132 | L i s t ( a , b ) , L i s t (x , y ) −>
equal ’ a x && equal ’ b y

134 | Ni l a , Ni l b −>
equal ’ a b

136 | Cons ( a1 , b1 , c1 , d1 ) , Cons ( a2 , b2 , c2 , d2 ) −>
equal ’ a1 a2 && equal ’ b1 b2 && equal ’ c1 c2 && equal ’

d1 d2
138 | I sN i l a , I sN i l b −>

equal ’ a b
140 | Head a , Head b −>

equal ’ a b
142 | Tai l a , Ta i l b −>

equal ’ a b
144 | , −> f a l s e )

and equa l abs (x , t , e1 ) (x ’ , t ’ , e2 ) =
146 l e t z = Var ( f r e s h x ) in
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equal ’ t t ’ && ( equal ’ ( subst [ ( x , z ) ] e1 ) ( subst [ ( x ’ , z ) ]
e2 ) )

148 in
equal ’ ( f s t ( normal ize env e1 ) ) ( f s t ( normal ize env e2 ) )

150

l e t r e c i n f e r env = func t i on
152 | Var x −>

( t ry lookup typ x ! env
154 with Not found −> r a i s e ( Fa i l u r e ”unknown i d e n t i f i e r \n” ) )

| Star −> Star
156 | Pi (x , t , e ) −>

l e t t ’ = i n f e r env t in
158 l e t temp = ! env in

extend x t env ;
160 l e t e ’ = i n f e r env e in

env := temp ;
162 (match t ’ , e ’ with

Star , Star −> Star
164 | , −> r a i s e ( Fa i l u r e ” i n v a l i d type in dependent

func t i on space \n” ) )
| Lambda (x , t , e ) −>

166 l e t t ’ = i n f e r env t in
l e t temp = ! env in

168 extend x t env ;
l e t e ’ =

170 ( t ry i n f e r env e
with Fa i l u r e s −>

172 env := temp ;
r a i s e ( Fa i l u r e ( ” Input does not type−check\n” ˆ s ) ) )

in
174 env := temp ;

Pi (x , t , e ’ )
176 | App( e1 , e2 ) −>

l e t (x , s , t ) = i n f e r p i env e1 in
178 l e t e2 ’ = i n f e r env e2 in

check equa l env s e2 ’ ;
180 subst [ ( x , e2 ) ] t

| Int i −> IntType
182 | Bool b −> BoolType

| Ann( e1 , e2 ) −>
184 l e t t = i n f e r env e1 in

check equa l env t e2 ;
186 t

| I f ( e1 , e2 , e3 ) −>
188 ( t ry check equa l env ( i n f e r env e1 ) ( BoolType ) ;

check equa l env ( i n f e r env e2 ) ( i n f e r env e3 ) ;
190 i n f e r env e2

with Fa i l u r e s −>
192 check equa l env ( i n f e r env e1 ) ( BoolType ) ;
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(match ( i n f e r env e2 ) , ( i n f e r env e3 ) with
194 | L i s t ( t , a ) , L i s t ( t ’ , b ) −>

check equa l env t t ’ ;
196 L i s t ( t ’ , b )

| L i s t ( , Int i ) , L i s t ( , Int j ) −> r a i s e ( Fa i l u r e ” I f
statement on l i s t s does not type−check\n” )

198 | , −> r a i s e ( Fa i l u r e ( ” I f statement does not type−
check\n” ˆ ( toS t r i ng ( i n f e r env e2 ) ) ˆ ” <> ” ˆ ( t oS t r i ng (
i n f e r env e3 ) ) ) ) ) )
| And( e1 , e2 ) −>

200 l e t e1 ’ = i n f e r env e1 in
l e t e2 ’ = i n f e r env e2 in

202 check equa l env e1 ’ e2 ’ ;
check equa l env e1 ’ BoolType ;

204 BoolType
| Or( e1 , e2 ) −>

206 l e t [ e1 ’ ; e2 ’ ] = L i s t .map ( i n f e r env ) [ e1 ; e2 ] in
check equa l env e1 ’ e2 ’ ;

208 check equa l env e1 ’ BoolType ;
BoolType

210 | Op( rator , rands ) −>
l e t (x , Prod ( s ) , t ) = i n f e r p i env ra to r in

212 l e t e = L i s t .map ( i n f e r env ) rands in
a p p l y l i s t ( L i s t .map ( check equa l env ) s ) e ;

214 subst [ ( x , Prod ( rands ) ) ] t
| Prod x −> Prod ( L i s t .map ( i n f e r env ) x )

216 | Let (x , typ , e ) −>
l e t temp = ! env in

218 extend x typ env ;
l e t t = i n f e r env e in

220 ( t ry check equa l env t typ
with Fa i l u r e s −>

222 env := temp ;
r a i s e ( Fa i l u r e ( ”Let binding does not type−check\n” ˆ (

s ) ) ) ) ;
224 env := temp ;

t
226 | IntType −>

Star
228 | BoolType −>

Star
230 | L i s t ( typ , l en ) −>

(match i n f e r env typ , i n f e r env l en with
232 | Star , IntType −> Star

| −> r a i s e ( Fa i l u r e ” Input does not type−check as l i s t
\n” ) )

234 | Ni l e −>
l e t t = f s t ( normal ize env e ) in

236 check equa l env ( i n f e r env t ) Star ;
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L i s t ( t , Int 0)
238 | Cons ( len , typ , e l , r e s t ) −>

l e t len ’ = f s t ( normal ize env l en ) in
240 l e t typ ’ = f s t ( normal ize env typ ) in

check equa l env ( i n f e r env typ ’ ) Star ;
242 check equa l env ( i n f e r env len ’ ) IntType ;

l e t e l ’ = i n f e r env e l in
244 check equa l env typ ’ e l ’ ;

(match len ’ , i n f e r env r e s t with
246 | Int i , L i s t ( t , Int j ) −>

check equa l env t typ ’ ;
248 ( t ry a s s e r t ( i = j+1)

with A s s e r t f a i l u r e s −> r a i s e ( Fa i l u r e ” L i s t
l eng th s do not type−check\n” ) ) ;

250 L i s t ( typ ’ , len ’ )
| , L i s t ( t , ) −>

252 L i s t ( typ ’ , len ’ )
| −> r a i s e ( Fa i l u r e ”Cons does not type−check\n” ) )

254 | I sN i l e −>
(match i n f e r env e with

256 | L i s t ( , Int i ) −> BoolType
| −> r a i s e ( Fa i l u r e ” Input does not type−check\n” ) )

258 | Head e −>
(match i n f e r env e with

260 | L i s t ( t , ) −>
t

262 | −> r a i s e ( Fa i l u r e ”Head does not type−check\n” ) )
| Tai l e −>

264 (match i n f e r env e with
| L i s t ( t , Int i ) as t ’−>

266 i f i = 0 then t ’
e l s e L i s t ( t , Int ( i −1) )

268 | L i s t ( t , a ) −>
L i s t ( t , Op(Var ( St r ing ( ”−” ) ) , [ a ; Int 1 ] ) )

270 | −> r a i s e ( Fa i l u r e ”Ta i l does not type−check\n” ) )
| −>

272 r a i s e ( Fa i l u r e ”General input does not type−check\n” )

274

276

and i n f e r p i env e =
278 l e t t = i n f e r env e in

(match f s t ( normal ize env t ) with
280 | Pi a −> a

| −> r a i s e ( Fa i l u r e ”dependent func t i on space expected \n” )
)

282

and check equa l env x y =
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284 i f not ( equal env x y ) then r a i s e ( Fa i l u r e ( ” Expres s ions are
not equ iva l en t \n” ˆ (Ast . t oS t r i ng x ) ˆ ” <> ” ˆ (Ast . t oS t r i ng
y ) ) )

Listing 4: ./../../Final/staticsemantics.ml

(∗ f i l e : l e x e r . mll ∗)
2 (∗ Lex i ca l ana lyze r r e tu rn s one o f the tokens :

the token NUM of in t ege r ,
4 ope ra to r s (PLUS, MINUS, MULTIPLY, DIVIDE , CARET) ,

or EOF. I t s k i p s a l l b lanks and tabs , unknown cha ra c t e r s . ∗)
6 {

open Parser (∗ Assumes the par s e r f i l e i s ” par s e r . mly ” . ∗)
8 }

l e t d i g i t = [ ’ 0 ’ − ’ 9 ’ ]
10 l e t word = [ ’ a ’− ’ z ’ ’A’− ’Z ’ ]

r u l e token = parse
12 | [ ’ ’ ’\ t ’ ’\n ’ ] { token l exbu f }

| ’ , ’ { COMMA }
14 | d i g i t+

| ” . ” d i g i t+
16 | d i g i t+ ” . ” d i g i t ∗ as num

{ NUM ( i n t o f s t r i n g num) }
18 | ’+ ’ { PLUS }

| ’− ’ { MINUS }
20 | ’∗ ’ { MULTIPLY }

| ’ / ’ { DIVIDE }
22 | ’% ’ { MOD }

| ’ : ’ { COLON }
24 | ’ ; ’ { SEMI }

| ”−>” { ARROW }
26 | ” fn ” { FUN }

| ” p i ” { PI }
28 | ”˜” { STAR }

| ’ . ’ { DOT }
30 | ” i n t ” { INTTYPE }

| ” bool ” { BOOLTYPE }
32 | ” l i s t ” { LIST }

| ” stop ” { NIL }
34 | ”more” { CONS }

| ” i s n i l ”{ ISNIL }
36 | ”head” { HEAD }

| ” t a i l ” { TAIL }
38 | ”∗∗” { CARET }

| ”<” { LT }
40 | ”<=” { LE }

| ”=” { EQ }
42 | ”==” { CMPEQ }

| ”<>” { NE }
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44 | ”!=” { NEALT }
| ”>=” { GE }

46 | ”>” { GT }
| ” true ” { TRUE }

48 | ” f a l s e ” { FALSE }
| ” l e t ” { LET }

50 | ” in ” { IN }
| ” i f ” { IF }

52 | ” e l s e ” { ELSE }
| ” then” { THEN }

54 | ”and” { AND }
| ” or ” { OR }

56 | ”not” { NOT }
| word+ as s t r i n g { ID s t r i n g }

58 | ’ ( ’ { LPAREN }
| ’ ) ’ { RPAREN }

60 | ’ [ ’ { LBRACKET }
| ’ ] ’ { RBRACKET }

62 | { token l exbu f }
| eo f { EOF }

Listing 5: ./../../Final/lexer.mll

1 /∗ f i l e : pa r s e r . mly ∗/

3 %{
open Pr i n t f

5 l e t toId s = Ast . Var (Ast . makeString s )
%}

7

%token EOF
9 %token COMMA
%token NIL CONS ISNIL HEAD TAIL LIST

11 %token <s t r i ng> ID
%token LPAREN RPAREN LBRACKET RBRACKET

13 %token <int> NUM
%token LET IN COLON SEMI

15 %token PLUS MINUS MULTIPLY DIVIDE MOD CARET
%token TRUE FALSE IF THEN ELSE AND OR NOT EQ

17 %token LT LE CMPEQ NE NEALT GE GT
%token ARROW INTTYPE BOOLTYPE FUN PI DOT STAR

19

%nonassoc CONS NIL ISNIL HEAD TAIL
21 %nonassoc COLON SEMI FUN PI

%nonassoc IF THEN ELSE
23 %r i gh t DOT

%l e f t LET
25 %r i gh t EQ

%r i gh t IN
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27 %r i gh t ARROW
%l e f t OR

29 %l e f t AND
%l e f t LT LE CMPEQ NE NEALT GE GT

31 %l e f t PLUS MINUS
%l e f t MULTIPLY DIVIDE MOD

33 %r i gh t CARET
%r i gh t COMMA

35 %nonassoc NOT TRUE FALSE LPAREN LBRACKET

37 %s t a r t input
%type <Ast . term> input

39

%% /∗ Grammar r u l e s and ac t i on s f o l l ow ∗/
41

input :
43 exp SEMI SEMI EOF { $1 }

;
45

exp :
47 | exp term { Ast .App( $1 , $2 ) }
| term { $1 }

49 ;

51 term : NUM { Ast . Int ( $1 ) }
| TRUE { Ast . Bool (1 ) }

53 | FALSE { Ast . Bool (0 ) }
| FUN ID COLON tyterm DOT exp { Ast . Lambda(Ast . S t r ing ( $2 ) , $4 ,

$6 ) }
55 | tyterm { $1 }
| ID { Ast . Var (Ast . S t r ing ( $1 ) ) }

57 | exp COLON exp { Ast .Ann( $1 , $3 ) }
| l i s t { $1 }

59 | ISNIL exp { Ast . I sN i l ( $2 ) }
| HEAD exp { Ast . Head ( $2 ) }

61 | TAIL exp { Ast . Ta i l ( $2 ) }
| exp PLUS exp { l e t id = toId ( ”+” ) in Ast .Op( id , [ $1 ; $3

] ) }
63 | exp MINUS exp { l e t id = toId ( ”−” ) in Ast .Op( id , [ $1 ; $3

] ) }
| exp MULTIPLY exp { l e t id = toId ( ”∗” ) in Ast .Op( id , [ $1 ; $3

] ) }
65 | exp DIVIDE exp { l e t id = toId ( ”/” ) in Ast .Op( id , [ $1 ; $3

] ) }
| exp CARET exp { l e t id = toId ( ”∗∗” ) in Ast .Op( id , [ $1 ; $3

] ) }
67 | exp MOD exp { l e t id = toId ( ”%” ) in Ast .Op( id , [ $1 ; $3

] ) }
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| exp LT exp { l e t id = toId ( ”<” ) in Ast .Op( id , [ $1 ; $3
] ) }

69 | exp LE exp { l e t id = toId ( ”<=” ) in Ast .Op( id , [ $1 ; $3
] ) }

| exp CMPEQ exp { l e t id = toId ( ”==” ) in Ast .Op( id , [ $1 ; $3
] ) }

71 | exp NE exp { l e t id = toId ( ”<>” ) in Ast .Op( id , [ $1 ; $3
] ) }

| exp NEALT exp { l e t id = toId ( ”<>” ) in Ast .Op( id , [ $1 ; $3
] ) }

73 | exp GT exp { l e t id = toId ( ”>” ) in Ast .Op( id , [ $1 ; $3
] ) }

| exp GE exp { l e t id = toId ( ”>=” ) in Ast .Op( id , [ $1 ; $3
] ) }

75 | NOT exp { l e t id = toId ( ”not” ) in Ast .Op( id , [ $2 ] )
}

| MINUS exp { l e t id = toId ( ”−” ) in Ast .Op( id , [ Ast . Int
(0 ) ; $2 ] ) }

77 | LPAREN exp RPAREN { $2 }
| IF exp THEN exp ELSE exp { Ast . I f ( $2 , $4 , $6 ) }

79 | exp AND exp { Ast .And( $1 , $3 ) }
| exp OR exp { Ast .Or( $1 , $3 ) }

81 | LET ID COLON tyterm EQ exp { Ast . Let (Ast . S t r ing ( $2 ) , $4
, $6 ) }

;
83

l i s t :
85 NIL LBRACKET tyterm RBRACKET { Ast . Ni l ( $3 ) }
| CONS LBRACKET term COMMA tyterm RBRACKET exp term { Ast . Cons (

$3 , $5 , $7 , $8 ) }
87

tyterm :
89 INTTYPE { Ast . IntType }
| BOOLTYPE { Ast . BoolType }

91 | PI ID COLON tyterm DOT tyterm { Ast . Pi ( Ast . S t r ing ( $2 ) , $4 , $6
) }

| LPAREN tyterm RPAREN { $2 }
93 | ID { Ast . Var (Ast . S t r ing ( $1 ) ) }
| STAR { Ast . Star }

95 | tyterm LIST LPAREN term RPAREN {Ast . L i s t ( $1 , $4 ) }
;

97

%%

Listing 6: ./../../Final/parser.mly

2 module type INTERPRETER =
s i g
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4 open Ast
open Environment

6 va l i n t e r p r e t e r : Environment . context r e f −> uni t
va l makeContext : ( ’ a ∗ ’ b ) l i s t −> ( ’ c ∗ ’ d ) l i s t −> ( ’ a ∗ ( ’
b ∗ ’ d opt ion ) ) l i s t

8 va l ctx : Environment . context r e f
end ; ;

10

module I n t e r p r e t e r : INTERPRETER =
12 s t r u c t

open Bas i s ; ;
14 open Sta t i c s emant i c s ; ;

open Environment ; ;
16

l e t s tBa s i s = Bas i s . I n t e r p r e t e r . s t a t i cB a s i s ; ;
18 l e t dyBasis = Bas i s . I n t e r p r e t e r . dynamicBasis ; ;

20 l e t parseInput ( ) =
l e t inch = i n pu t l i n e s td in in

22 l e t l exbu f = Lexing . f r om s t r i ng inch in
l e t a s t = Parser . input Lexer . token l exbu f in

24 as t ; ;

26 l e t r e c i n t e r p r e t e r context : un i t =
(

28 ou tpu t s t r i ng stdout ( ”\n>>> ” ) ;
f l u s h stdout ;

30

t ry
32 ( l e t a s t = parseInput ( )

in ( t ry
34 (

l e t e = Sta t i c s emant i c s . i n f e r context as t in
36 l e t t , ctx ’ = Sta t i c s emant i c s . normal ize context

as t in
(

38 ou tpu t s t r i ng stdout (Ast . t oS t r i ng t ) ;
ou tpu t s t r i ng stdout ( ” : ” ) ;

40 ou tpu t s t r i ng stdout (Ast . t oS t r i ng e ) ;
ou tpu t s t r i ng stdout ”\n” ;

42 f l u s h stdout ;
i n t e r p r e t e r ctx ’

44 )
)

46 with Fa i l u r e s −>
(

48 ou tpu t s t r i ng stdout s ;
f l u s h stdout ;

50 i n t e r p r e t e r context
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)
52 )

)
54 with

Pars ing . Pa r s e e r r o r −>
56 (

ou tpu t s t r i ng stdout ” Input s t r i n g does not parse
. . . \ n” ;

58 f l u s h stdout ;
i n t e r p r e t e r context

60 )
| Fa i l u r e s −>

62 (
ou tpu t s t r i ng stdout ” Input does not type−check

. . . \ n” ;
64 f l u s h stdout ;

i n t e r p r e t e r context
66 )

) ; ;
68 l e t r e c makeContext x y = (match x , y with

| [ ] , [ ] −> [ ]
70 | ( a , b ) : : s , ( c , d ) : : t −> ( a , (b , Some d) ) : : ( makeContext s t

) ) ; ;

72 l e t ctx = r e f (makeContext s tBa s i s dyBasis ) ; ;

74 l e t = i n t e r p r e t e r ctx ; ;
end ; ;

Listing 7: ./../../Final/interpreter.ml
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