
1 
 

 
 
 
 
 
 

Automatic Pitch Detection  
and Shifting of Musical Tones  

in Real Time 

By Jinho Kim 
A&S Undergraduate Honors Thesis 2013 

Advised By Professor Sergio Alvarez 

Computer Science Department, Boston College 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 

Musical notes are acoustic stimuli with specific properties that trigger a psychological perception 

of pitch. Pitch is directly associated with the fundamental frequency of a sound wave, which is 

typically the lowest frequency of a periodic waveform. Shifting the perceived pitch of a sound 

wave is most easily done by changing the playback speed, but this method warps some of the 

characteristics and changes the time scale. This thesis aims to accurately shift the pitch of 

musical notes while preserving its other characteristics, and it implements this in real time on an 

Android device. There are various methods of detecting and shifting pitch, but in the interests of 

simplicity, accuracy, and speed, a three step process is used. First, the fundamental pitch of a 

stable periodic section of the signal is found using the Yin pitch detection algorithm. Secondly, 

pitch marks that represent the local peak of energy are found, each spaced out by roughly one 

period (inverse of the fundamental frequency). Lastly, these marks are used in the Pitch 

Synchronous Overlap and Add (PSOLA) algorithm to generate a new signal with the desired 

fundamental frequency and similar acoustical characteristics to the original signal. 
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1. Introduction 

1.1 A Brief History of Pitch Shifting 

Pitch shifting, the technique of altering the original pitch of a sound, was famously used 

in the 1950’s to create the high pitched voices of Alvin and the Chipmunks. Voice actors 

would record themselves speaking or singing at half speed at half the normal tape recording 

rate, and when the tape was played back at the normal speed, the pitch increased by an octave 

due to the doubled playback rate. This comedic high pitched effect became known as the 

‘chipmunk effect’ and is still used today. Less extreme versions were also used in other 

productions, such as in the Wizard of Oz (1939) to raise the pitch of the munchkins’ voices 

and to lower the pitch of the witch, and it was also used to create the voices of Daffy Duck 

and Tweety Bird
[1]

. This technique had its limitations, however, as it also changes the time 

length of the signal. 

This limitation was overcome by Fairbanks in 1954 with the creation of a modified tape 

recorder, which had several rotating playback heads. The difference in relative speed of these 

heads compared to the absolute playback speed of the tape was able to produce continuous 

pitch shifting of up to +10% and -40%
[2]

 .  

 

 

 

 

 

 

Figure 1 – Fairbanks’ multiple revolving heads device[2]  
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Figure 2 – The front of the Eventide H910, the first commercial harmonizer[3] 

As the capacity of memory improved, digital devices became available to become 

powerful tools in sound processing. The Eventide H910 was released in 1975 as the first 

commercial harmonizer
[3]

. This was the first device that could digitally shift pitch whilst 

preserving time length, and it was instantly put to use in recording studios.  For example, this 

device was first used to downward shift a sped up version of the sitcom I Love Lucy in order 

to fit in more commercials. 

 

 

Pitch shifting is now a commonly used sound effect that is included in most digital sound 

processing libraries. As pitch shifting algorithms and their implementations have improved, 

this effect is now achievable in real time, and it has seen widespread use in the music 

industry. For example, the popular effect ‘autotune’ is a pitch corrective technique that 

converts a normal voice into a robotic sounding one by pitch shifting the original signal to a 

perfect pitch, as well as artificially altering some of the vocal characteristics. 
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1.2 Main Goals 

The purpose of this thesis was to successfully study and implement pitch shifting while 

meeting specific constraints:  

1) Preservation of the time scale – the shifted playback audio should have the same 

duration as the recorded audio. 

2) Preservation of the original acoustical characteristics – the shifted audio should 

sound the same as the original audio except for the pitch shift. 

3) Processing in real time – the processing rate should be faster than the recording 

rate. 

The implementation was done in Android for demonstrative purposes, and a variety of 

algorithms were explored (see section 2) to find the an appropriate method in order to 

achieve the above mentioned constraints.  

 

1.3 Main Challenges 

As there are so many algorithms available, it was difficult to choose which ones to use for 

this project. After much research, I decided to pitch shift with PSOLA (section 2.5), pitch detect 

with YIN (section 2.5.1), and pitch mark with the two-phase algorithm (section 2.5.2).  

I first implemented PSOLA using MATLAB for proof of concept. Once pitch shifting was 

achieved and the sound quality was deemed acceptable, I shifted my focus towards Android. 

However, I had no prior experience with Android development, so programming an Android 

application from scratch proved to be quite a challenge. Also, creating an efficient class 

hierarchy and optimizing the application speed was fairly challenging (more in section 3). 
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Figure 3 – A graphical representation of the propagation of a sound wave[4] 

1.4 Basics of Sound 

The manipulation of sound first requires an understanding of it. In the most basic sense, 

sound waves are vibrations that propagate through a physical medium, the most common of 

which is air
[5]

. Vibrations cause a rapid alternation between compression and expansion of 

the medium, which is propagated outwards from the source in a wavelike fashion by the 

transference of energy from molecule to molecule. These vibrations are generally sinuisoidal 

and thus periodic in nature. 

 

 

 

 

 

 

 

 

1.4.1 Amplitude – Loudness of a Sound 

The oscillating pressure caused by sound waves can be measured and represented in the 

time domain, with the x axis denoting time and the y axis representing the change in 

pressure. As shown above in Figure 3, the compressions correspond to the high points 

(peaks), while expansions correspond to the low points (valleys). This pressure variation is 

called the amplitude and is typically measured in decibils (dB). The magnitude of a sound 

wave’s amplitude is represents the intensity of the vibration (pressure variations) which 

determines the loudness of a sound. 
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Figure 4 – Labeled terminology of a sound wave[5] 

1.4.2 Frequency and Period – Pitch of a Sound 

The rate at which the vibrations oscillate is known as the frequency and is typically 

measured in Hertz (Hz), which is the number of cycles completed per second. The inverse of 

frequency is the period (wavelength), which is the length of time it takes to finish one cycle, 

as shown in Figure 4 below. 

 

 

 

 

 

 

 

 

 Pitch, which is the ‘highness’ or ‘lowness’ of a musical note, is directly related to the 

frequency of a sound wave, so a high pitched squeak of a mouse would be characterized by 

rapid vibrations in the air, while a low pitched call of a whale would be characterized by 

slower vibrations in water. Different animals have varying ranges of sensitivity to pitch. For 

example, humans’ ears are able to detect sounds from a frequency range of roughly 64Hz to 

23kHz, while dogs can hear from a frequency range of 67Hz to 45kHz – precisely why dog 

whistles cannot be heard by humans
[6]

.  
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Figure 5 – The summation of the fundamental frequency and its harmonics to create 

a complex waveform[5] 

1.4.3 Harmonics and Complex Waves – Tone Quality of a Sound 

The previously shown sound waves were perfect sine waves for simplicity’s sake. A 

perfect sine wave is a pure tone of a single frequency and sound uncharacteristically dull
[5]

. 

Most musical tones are complex and have multiple sine waves of different frequencies in 

them. The lowest frequency in the tone is known as the fundamental frequency, which is the 

most important component because it determines the pitch of the overall sound.  Musical 

tones typically have additional frequencies embedded in the signal that are integral multiples 

of the fundamental frequency. These multiples are known as harmonics, and the presence and 

strength of these harmonics determine the tone quality (timbre) of a sound. Different 

instruments and organisms have varying patterns of harmonics and thus produce a diverse 

array of sounds even when playing a note of the same pitch. As shown in Figure 5 below, the 

fundamental frequency and its accompanying harmonics are algebraically summed together 

to produce a complex waveform. Although the fundamental frequency is usually the 

dominant signal in a sound, sometimes it may be overriden by another harmonic or may be 

missing completely
[7]

.  
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Figure 6 – Time Domain on the left, Frequency Domain on the right[10] 

2. Pitch Shifting Algorithms 

2.1 Overview 

The Phase Vocoder was one of the earliest methods for pitch shifting with time 

preservation, and it was proposed in 1966 by Flanagan and Golden
[8]

. This algorithm was 

first implemented 10 years later by Portnoff in 1976 using the Fast Fourier Transform
[9]

. 

Digital Sound Processing has exploded in growth since then, and a number of pitch shifting 

algorithms have been invented and improved.  

 

2.2 Time Domain versus Frequency Domain 

Pitch shifting algorithms are typically separated into two groups – those that operate in 

time domain, and those that operate in the frequency domain. Sound processing in the time 

domain is done using the familiar representation of the change of amplitude over time. The 

frequency domain is a different representation, where the x axis is frequency and the y axis is 

the amplitude. This representation can show the strengths of the individual frequency 

components present in the signal, which would be difficult to see or detect in the time 

domain. Figure 6 shown below depicts a single complex signal in the time domain. This 

signal is composed of the union of 2 different frequencies, which are easily separated in the 

frequency domain, as shown by the 2 distinct lines in the right graph
[10]

. 
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Table 1 – Pros and Cons of Pitch Shifting in the Time and Frequency Domains 

Pitch shifting algorithms utilize the different information available in the time and 

frequency domains and have varying degrees of performance. The general pros and cons of 

each are summarized below in Table 1. 

 Pros Cons 

Time 

Domain 

-Fast 

 

-Easier to implement 

-Performs poorly with large shift factors 

 

-Unable to process polyphonic signals 

well 

 

-Significantly less accurate in the 

presence of noise 

Frequency 

Domain 

-Works well with large shift 

factors 

 

-Able to process polyphonic 

signals well 

 

-Resistant to noise 

-Computationally expensive 

 

-Difficult to implement properly 

(requires post-processing to preserve 

original acoustical characteristics) 
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2.3 Pitch Shifting in the Frequency Domain 

Sound manipulation in the frequency domain is usually done by breaking up the signal 

into small overlapping segments (windows) and then processing each segment separately. 

This is necessary because the frequency of a signal can change over time, which would result 

in a large number of detected frequencies if the whole signal were to be converted into the 

frequency domain at once. By processing each small windowed segment separately, we can 

isolate the frequencies present in that period of time to achieve greater accuracy.  

In order to process a windowed segment in the frequency domain, the window must first 

be converted from the time domain. Typically, this is done with the Fast Fourier Transform 

(FFT). The FFT outputs an array of complex numbers that can be converted into magnitudes 

that represent the average power of certain frequency ranges. These frequency ranges are 

called bins, and the number of bins determines the frequency resolution of the FFT given by 

the following equation
[11]

: 

Resolution (Hz) = (sampling rate) / (window size) 

Higher resolution can be achieved with a larger window, but the downsides are slower 

processing and the increased likelihood of instability in frequency. 

The resulting spectrum of the windowed segment then undergoes spectral manipulation 

to change the frequencies within the signal, which is done differently by various pitch 

shifting algorithms. 

Lastly, the processed windowed segments are then combined and resynthesized to 

recreate the pitch shifted signal. These steps are visually outlined in Figure 7 below. 
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Figure 7 – The steps behind a basic frequency domain based pitch 

shifting algorithm[11] 
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Figure 8 – Phase and Phase Shift[5] 

2.3.1 Phase Vocoder
[12]

 

As mentioned previously, the Phase Vocoder algorithm is a classic algorithm in 

pitch shifting, as it was one of the first methods to be able to pitch shift while preserving 

the time length of a signal.   

As phase modification is a major part of this algorithm, it is important to know 

what phase is. The phase of a wave at any given point is the measure of the progression 

of the cycle. This progression is measured in degrees, with 360 degrees being a complete 

cycle. The cycle starts from the baseline (0
o
), increases to the peak (90

o
), goes back down 

to the baseline (180
o
), sinks to the valley (270

o
), and then finally returns back to the 

baseline (360
o
 or 0

o
). Figure 8 below shows the various stages of phase, which is also 

known as the phase angle, and it also shows what a phase shift looks like
[5]

.  
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Figure 9 – Time-shifting of overlapping blocks. (a) is the original 

signal. (b) shifts the blocks forward in time and extends the length. 

(c) shifts the blocks backwards in time and shortens the length[12]. 

The basic steps of the algorithm are as follows: 

1) Time-shift overlapping blocks (windows) to alter the length of the signal while 

preserving the pitch. As shown in Figure 8, shifting the blocks forward in time 

elongates the length, and shifting them backwards in time shortens the length. 

2) Take the FFT of each overlapping part of the blocks and modify the phase of each 

bin to ensure phase continuity. 

3) Resynthesize blocks using the inverse FFT 

4) Resample blocks to restore the original time length while changing the frequency. 
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2.4 Pitch Shifting in the Time Domain 

The speed and simplicity of pitch shifting algorithms in the time domain make them good 

candidates for real time processing. Most of these algorithms are variants of Overlap and 

Add (OLA) methods. In particular, the Pitch Synchronous Overlap and Add (PSOLA) 

method will be discussed as it was used in the implementation because of its relative 

robustness and efficiency. 

 

2.5 Pitch Synchronous Overlap and Add (PSOLA)
[17]

 

As with most pitch shifting algorithms, PSOLA is divided into two main parts – Analysis 

and Synthesis. These two parts can then be further divided into two steps each. 

1) Analysis 

 a) Pitch Detection 

 b) Pitch Marking 

2) Synthesis 

 a) Synthesis Pitch Marking 

 b) Overlap and Add 

 

2.5.1 Pitch Detection – AutoCorrelation Function (AC) 

 Pitch detection is the process of finding the dominant pitch in a sound signal by finding 

the fundamental frequency. Autocorrelation is a basic time domain pitch detection algorithm 

that takes the cross-correlation of a signal with itself. It takes advantage of the fact that 

periodic signals are similar from one period to the next and computes the similarity between 

the signal and time-lagged versions of itself. The correlation signal should have the greatest 
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Figure 10 – Slight time lag between the original (blue) and lagged 

(red) signal. The correlation value is 0.3317, which is fairly low. 

peak in magnitude at the time lag that corresponds to the pitch period of the fundamental 

frequency of the signal. The following equation can be used to compute the cross-correlation 

of a signal s[m]
[13]

: 

 

 

N is the total number of samples in a window and k is the lag index. This function will have 

the greatest values at time lag 0 because the similarity of a signal with itself is 100%. If the 

signal is periodic, the next greatest peak after lag 0 should correspond to the fundamental 

period of the signal. Figures 10, 11, and 12 shown below depict the correlation values of 

different time lags of a signal.  
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Figure 11 – Medium time lag between the original (blue) and lagged 

(red) signal. The correlation value is -0.8184, which is extremely low. 

Figure 12 – Large time lag between the original (blue) and lagged (red) 

signal. The lag amount is almost exactly one pitch period, resulting in a 

peak correlation value of 0.7744. 
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 Basic autocorrelation by itself is not reliable or accurate enough, however, as it is 

reported to have a gross error rate of 10% in tests, where gross errors are defined to be a 

deviation of at least 20% from the correct fundamental frequency
[14]

. Most of these errors are 

a result of pitch doubling or pitch halving, where the algorithm chooses the wrong peak in 

the autocorrelation values. 

 Instead, I chose to use the YIN algorithm, which boasts a gross error rate of 0.5% in tests. 

The YIN algorithm is based on autocorrelation, and it uses 5 additional steps to improve the 

results by reducing the common errors of autocorrelation and increasing accuracy through 

parabolic interpolation
[14]

. 

 

2.5.2 Pitch Marking 

 The quality of the synthesis of PSOLA relies on the proper synchronization of its 

analysis, so the accuracy of pitch marks are an essential part of the algorithm. In the interests 

of accuracy, speed, and the lack of additional equipment such as a laryngograph, I decided to 

use a two-phase pitch marking algorithm utilizing dynamic programming to pick optimal 

pitch mark candidates
[15]

.  

 In general, pitch marks should simultaneously address two optimization criteria: 

1) Magnitude of amplitude should be as large as possible 

2) Distance between adjacent pitch marks should be as close to the fundamental 

period as possible 

 The first phase of the algorithm consists of finding the pitch marks at the peaks and 

valleys separately, and then choosing one of the two to use. In order to avoid phase 

discontinuities, pitch marks must remain consistent at either the peaks or the valleys. For the 
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Figure 13 – The global maximum of a signal circled in red 

sake of simplicity, only peaks will be discussed, as the same algorithm can be used on a 

negated signal to find the valleys. The first step of this phase of the algorithm is to find the 

global maximum of the waveform and make this the first pitch mark. This mark is circled 

below in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 Looking to the right of the current pitch mark, the local maximum is found within a 

specific search region. The next pitch mark should be roughly one fundamental period away, 

so the search region is limited to the region close to that. The search region is given by [tm + 

f*T0, tm + (2 – f)*T0], where tm is the current pitch mark, f is a constant whose range is 0.5-

0.9 (which is usually set to 0.7), and T0 is the current fundamental period, which should have 

been found in the previous pitch detection step. The green lines in Figure 14 show the search 

range, and the smaller red circle represents the local maximum within that region.  
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Figure 14 – The search region is marked by the green lines, and the 

local maximum is marked by the small red circle 

Figure 15 – The two circled peaks are the local maxima in their 

respective search regions, leading to an incorrect pitch mark[16] 

 

 

This process is repeated until it reaches the end of a signal or an unperiodic section of the 

signal, where the pitch detection was unable to find a fundamental frequency. This process 

can also be repeated towards the left of the global maximum to fully mark the signal.  

 This simple algorithm is unreliable, however, as it only maximizes magnitude and not 

pitch mark distances. As shown in Figure 15, the largest peak does not always correspond to 

the largest peak in the next period
[16]

.  
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The second phase of this algorithm attempts to fix this error by first finding multiple 

candidates within each search region and then using dynamic programming to find the best 

sequence of pitch mark candidates.  

Each pitch mark candidate is assigned a state probability that is associated with its 

relative magnitude and is given by the following equation: 

 

 

Where j ranges from 1 to n (the number of pitch mark candidates), hi(j) is the height of 

candidate j in region i, and hmax and hmin are the max and min of the signal. 

Each search region (except the last one) is also assigned an nxn matrix to represent the 

transition probabilities of the n candidates in a given search region to the n candidates in the 

next. The transition probability is associated with the similarity of the distance between pitch 

marks and the detected fundamental period found in the previous pitch detection process and 

is given by the following equation:  

 

 

Where f is the detected fundamental frequency, fs is the sampling rate, d is the distance 

(in sample points) between candidates j1 and j2, and β is a fine tuning parameter (I left this at 

1). 

These probabilities could then be used to assign accumulated probabilities from the first 

pitch mark (typically the global maximum). The first pitch mark would have an accumulated 

probability of 1. The rest of the accumulated probabilities of pitch mark candidates are 

calculated dynamically; the candidate in the previous search region that gives the highest 
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Figure 16 – Each candidate is dynamically assigned an accumulated 

probability, and the path with the highest total accumulated 

probability is chosen at the end[16] 

sum of accumulated probability and transition probability to that particular candidate in the 

current search region is found, and the accumulated probability is calculated by adding that 

sum to the state probability of the current candidate. The previous candidate used is saved for 

each new candidate calculated, so that the optimal path can be backtracked at the end. In 

Figure 16 below, the number of candidates per region is limited to two, and the optimal path 

of pitch marks can include any combination of white and black circles (representing different 

peaks)
[16]

.  

 

 

 

The effectiveness of this two-phase algorithm was tested by comparing it (using 3 

candidates per search region) to the simple one-phase algorithm that only looked for one max 

peak. I tested these two algorithms with 4 different types of frequencies; low (100Hz), 

medium (200Hz), high (400Hz), and moving (ranging from 100-400Hz). The accuracy of 

these algorithms was measured by the deviation of consecutive pitch mark differences from 

expected periods. The variance of the differences between consecutive pitch marks was 

found by calculating the average squared difference between the expected period (the 

detected fundamental period in the previous step) and the detected period (the difference 
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Figure 17 – Using 3 candidate marks per search region significantly reduced 

the error rate and gave smoother results 
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Figure 18 – Using 3 candidate marks per search region required a significant 

increase in computation, but there was more than enough leeway to 

disregard this time constraint 

between consecutive pitch marks). The standard deviation was then calculated by finding the 

square root of the variance. This standard deviation was then divided by the average period to 

get a relative idea of the magnitude of the standard deviation compared to the average period. 

The comparison between the performances of the two algorithms is shown in Figure 17 and 

Figure 18 below.  
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Figure 19 – A full diagram of the steps in PSOLA[17] 

2.5.3 Synthesis Pitch Marks 

 Once the pitch marks have been found, the synthesis pitch marks need to be placed. 

These synthesis pitch marks are spaced relative to the distances between the analysis pitch 

marks, but synthesis marks can be affected by a shift factor. If the shift factor B is given by 

(desired frequency) / (original frequency), the distance between consecutive synthesis marks 

should be the (current period) / B. If the desired frequency is higher than the original, then 

the period will be smaller, and thus the synthesis marks will be closer together than the 

analysis marks. This would eventually lead to a reconstructed signal with a higher frequency 

in the next step, with the opposite occurring if the desired frequency is lower. The first 

synthesis pitch mark starts at the first analysis pitch mark, but each synthesis mark thereafter 

is (current period) / B samples away. In Figure 19 below, the analysis step finds 4 pitch 

marks, but the synthesis step results in 5 synthesis marks, which leads to a higher pitch
[17]

.    
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2.5.4 Overlap and Add 

 Once the synthesis pitch marks are placed, the algorithm continues with the final step – 

the reconstruction of the shifted signal. The shifted signal starts off empty, and the algorithm 

starts on the initial synthesis mark and then does the following: 

1) Find the closest pitch mark p to current synthesis mark si 

2) Obtain a windowed segment centered on p with the width being 2 * pitch period 

3) Multiply this window by a hanning window of the same size to taper off ends 

4) Overlap and Add this window to the shifted signal, centering it at current synthesis 

mark si.  

5) Repeat for the next synthesis mark si+1. 

The number of periods in the resulting shifted signal will correspond to the number of 

synthesis marks, as opposed to the number of analysis marks. If these numbers differ, the 

pitch will have successfully shifted.  
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Figure 20 – A simplified diagram of the Android project design 

3. Android Implementation 

This pitch shifting project was implemented in Java on my personal phone, a 2-year-old 

Android device (HTC Droid Incredible) with a single core 1GHz processer. Although it has 

fairly weak performance compared to the quad-core smartphones of today, my phone was 

able to handle the sound processing in real time well enough.  

3.1 Android Data Flow 

 

The flow mostly revolved around the Main, Audio Recorder, Audio Processor, and Draw 

threads. The Audio Recorder thread obtains data from the microphone and passes it over to 

the Audio Processor thread using a double buffer system to avoid concurrency issues. The 

Audio Processor thread then shifts the microphone data if pitch is detected by using the 
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Figure 21 – The top plot shows the waveform of my voice singing the tone 

D4. The blue and red boxes are the pitch marks found on this signal. The 

bottom plot shows the waveform of the shifted tone (G#4). 

Figure 22 – Diagram of the FFT plot of the same signal 

PSOLA algorithm. The amount to shift is determined by either the user or the Harmonizer 

class (experimental). This shifted signal data is then sent back to the Main thread, which then 

passes it to the Draw thread to display 1 of 4 options: 

1) Waveform 

 

 

 

 

 

 

 

 

 

2) FFT 
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Figure 23 – Diagram of the YIN coefficient values. The white line represents the 

threshold value (the algorithm chooses the first valley that is less than the threshold 

Figure 24 – Diagram of the relative pitch. The green line represents the tone 

detected from the microphone, and the white lines represent perfect semitones 

3) YIN 

 

 

 

 

 

 

 

 

 

 

4) Pitch 
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Figure 25 – Data flow of buffers for an arbitrary frame i 

3.2 Real-Time Processing Buffer System 

In the class setup, new microphone data is recorded in the Audio Recorder Thread, and when a 

buffer of 2048 samples gets full, it sends that block to the Audio Processor Thread. Figure 25 

below depicts how this data is then processed. 

 

 

 

 

 

 

 

 

 

For every new block of audio data, the latter half (1024 samples) are saved to use in the next 

frame. The latter half of the shifted (post processed) data is also saved for the next frame. These 

half buffers will be referred to as ‘previous’ data, and when the program is initialized, these 

buffers are zeroed. When new audio data comes in, the following steps are executed: 

1) Previous Data (1024 samples) and the new audio data are pitch marked, starting from a 

previously saved location in the Previous Data section (if available). The latter half of the 

new audio data is saved to use in the next frame, and the last pitch mark location is saved. 

2) Starting from a previous synthesis pitch mark in the Shift Previous Data buffer if 

possible, the new audio data is pitch shifted (1024 samples from previous data + 2048 

samples from new audio data = 3072 samples). The latter 1048 of the shifted data is 

saved to use in the next frame, and the last synthesis pitch mark location is saved. 

3) The first 2048 samples of the 3072 sample shifted block is used as output in the draw 

class and as output sound for the speakers. 
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4. Conclusion 

Overall, the implementation of this project was very successful. My outdated phone was 

able to meet all the goals that were outlined; It was able to pitch shift in real time while 

preserving the original acoustical characteristics and time length. Additionally, I was able to 

explore and experiment with things like Autotune, automatic harmonization, and the use of 

filters. There is a lot of potential for the exploration of these 3 subtopics alone. For example, 

the addition of a zero-phase filter could help with the pre or post processing steps. The 

harmonization could also be vastly improved, by implementing more rules, such as those 

regarding the progression of the harmony which would improve the sound. Furthermore, my 

implementation only used one algorithm, and thus I was not really able to compare the sound 

quality or computational speed of competing algorithms. It would be interesting to try out 

other algorithms and implement those properly instead of just reading about them.  
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