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1. Abstract

It has long been known that as neurons fire within the brain they produce measurable electrical 

activity.  Electroencephalography (EEG) is the measurement and recording of these electrical signals 

using sensors arrayed across the scalp.  Though there is copious research in using EEG technology in 

the fields of neuroscience and cognitive psychology, it is only recently that the possibility of utilizing 

EEG measurements as inputs in the control of computers has emerged.  The idea of Brain-Computer 

Interfaces (BCIs) which allow the control of devices using brain signals evolved from the realm of 

science fiction to simple devices that currently exist.  BCIs naturally present themselves to many 

extremely useful applications including prosthetic devices, restoring or aiding in communication and 

hearing, military applications, video gaming and virtual reality, and robotic control, and have the 

possibility of significantly improving the quality of life of many disabled individuals.  However, 

current BCIs suffer from many problems including inaccuracies, delays between thought, detection, 

and action, exorbitant costs, and invasive surgeries.  The purpose of this research is to examine the 

Emotiv EPOC© System as a cost-effective gateway to non-invasive portable EEG measurements and 

utilize it to build a thought-based BCI to control the Parallax Scribbler® robot.  This research furthers 

the analysis of the current pros and cons of  EEG technology as it pertains to BCIs and offers a glimpse 

of the future potential capabilities of BCI systems.
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2. Introduction

Who wouldn't love to control a computer with their mind?  Interfaces between the brain and 

computers have long been a staple of science fiction where they are used in an incredible variety of 

applications from controlling powered exoskeletons, robots, and artificial limbs to creating art 

envisioned by the user to allowing for machine-assisted telepathy.  This space-age fantasy is not quite 

real yet, however simple BCIs do currently exist and research and public interest in them only 

continues to grow.  This research explores the process in creating a novel BCI that utilizes the Emotiv 

EPOC System to measure EEG waves and controls the Parallax Scribbler robot.

2.1 Electroencephalography

EEG waves are created by the firing of neurons in the brain and were first measured by 

Vladimir Pravdich-Neminsky who measured the electrical activity in the brains of dogs in 1912, 

although the term he used was “electrocerebrogram.”1  Ten years later Hans Berger became the first to 

measure EEG waves in humans and, in addition to giving them their modern name, began what would 

become intense research in utilizing these electrical measurements in the fields of neuroscience and 

psychology.2  

EEG waves are measured using electrodes attached to the scalp which are sensitive to changes 

in postsynaptic potentials of neurons in the cerebral cortex.  Postsynaptic potentials are created by the 

combination of inhibitory and excitatory potentials located in the dendrites.  These potentials are 

created in areas of local depolarization or polarization following the change in membrane conductance 

1 Swartz, B.E; Goldensohn, ES. "Timeline of the history of EEG and associated fields." Electroencephalography and 

Clinical Neurophysiology. Vol. 106, pp.173–176. 1998. <http://www.sciencedirect.com/science?
_ob=MImg&_imagekey=B6SYX-4FV4S6H-1-
1&_cdi=4846&_user=10&_orig=browse&_coverDate=02%2F28%2F1998&_sk=998939997&view=c&wchp=dGLbVz
z-zSkWb&md5=47fbbe7e51a806779716fba415b96ab7&ie=/sdarticle.pdf>.

2  Millett, David. "Hans Berger: from psychic energy to the EEG.” Perspectives in Biology and Medicine, Johns Hopkins 
University Press, 2001. 44.4 pp. 522–542. 
<http://muse.jhu.edu/journals/perspectives_in_biology_and_medicine/v044/44.4millett.html>.
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as neurotransmitters are released.  Each electrode has a standard sensitivity of 7 µV/mm and averages 

the potentials measured in the area near the sensor.  These averages are amplified and combined to 

show rhythmic activity that is classified by frequency (Table 1).3  Electrodes are usually placed along 

the scalp following the “10-20 International System of Electrode Placement” developed by Dr. Herbert 

Jasper in the 1950's which allows for standard measurements of various parts of the brain (Figure 1).4 

The primary research that utilizes EEG technology is based on the fact that this rhythmic activity is 

dependent upon mental state and can be influenced by level of alertness or various mental diseases. 

This research commonly involves comparing EEG waves in alert and asleep patients as well as looking 

for markers in abnormal EEG waves which can evidence diseases such as epilepsy or Alzheimer's.  One 

of the historical downsides of EEG measurement has been the corruption of EEG data by artifacts 

which are electrical signals that are picked up by the sensors that do not originate from cortical 

neurons.  One of the most common cause of artifacts is eye movement and blinking, however other 

causes can include the use of scalp, neck, or other muscles or even poor contact between the scalp and 

the electrodes.5  Many EEG systems attempt to reduce artifacts and general noise by utilizing reference 

electrodes placed in locations where there is little cortical activity and attempting to filter out correlated 

patterns.6 

3 Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press. 1981.
4 Niedermeyer, Ernst and da Silva, Fernando Lopes. Electroencephalography: Basic Principles, Clinical Applications,  

and Related Fields, Fifth Edition. Lippincott Williams & Wilkins, 2005. pp 140
5 Rowan, A. James. Primer of EEG. Elsevier Science, Philadelphia, PA. 2003.
6 Ludwig, Kip A. et al.  Employing a Common Average Reference to Improve Cortical Neuron Recordings from 

Microelectrode Arrays.  Journal of Neurophysiology, September 3rd, 2008. 
<http://jn.physiology.org/cgi/reprint/90989.2008v1.pdf>.
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Band Frequency (Hz)

Delta 1-4

Theta 4-7

Alpha 7-13

Beta 13-30

Gamma 30+

Table 1: EEG Bands and Frequencies

  

Figure 1: Electrode Placement according to the International 10-20 System.  Odd numbers on the right,  

even on the left.  Letters correspond to lobes – F(rontal), T(emporal), P(arietal), and O(ccipital).  C  

stands for Central (there is no central lobe).
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2.2 Brain-Computer Interfaces

The term “Brain-Computer Interface” first appeared in scientific literature in the 1970's, though 

the idea of hooking up the mind to computers was nothing new.7  The ultimate goal of BCI research is 

to create a system that not only an “open loop” system that responds to users thoughts but a “closed 

loop” system that also gives feedback to the user.  Researchers initially focused on the motor-cortex of 

the brain, the area which controls muscle movements, and testing on animals quickly showed that the 

natural learning behaviors of the brain could easily adapt to new stimuli as well as control the firing of 

specific areas of the brain.8  This research dealt primarily with invasive techniques but slowly 

algorithms emerged which were able to decode the motor neuron responses in monkeys in real-time 

and translate them into robotic activity.9,10  Recently, a system developed by researchers and Carnegie 

Mellon University and the University of Pittsburgh allowed a monkey to feed itself via a prosthetic arm 

using only its thoughts.11  This research is extremely promising for the disabled, and indeed by 2006 a 

system was developed for a tetraplegiac that enabled him to use prosthetic devices, a mouse cursor, and 

a television via a 96-micro-electrode array implanted into his primary motor cortex.12  Despite these 

achievements, research is beginning to veer away from invasive BCIs due to the costly and dangerous 

7 J. Vidal, "Toward Direct Brain–Computer Communication." Annual Review of Biophysics and Bioengineering. Vol. 2, 
1973, pp. 157-180. <http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.bb.02.060173.001105>.

8 Fetz, E E. “Operant Conditioning of Cortical Unit Activity.” Science. Volume 163, February 28, 1969, pp. 955-958. 
<http://www.sciencemag.org/cgi/rapidpdf/163/3870/955.pdf>.

9 Kennedy, Philip R. et al.  “Activity of single action potentials in monkey motor cortex during long-term task learning.” 
Brain Research, Volume 760 Issue 1-2, June 1997, pp. 251-254. <http://www.sciencedirect.com/science?
_ob=ArticleURL&_udi=B6SYR-3PM7MHB-
14&_user=521319&_coverDate=06%2F20%2F1997&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&vie
w=c&_searchStrId=1275477491&_rerunOrigin=google&_acct=C000026018&_version=1&_urlVersion=0&_userid=52
1319&md5=7690dc204a5a471e27a26a151b0d158d>.

10 Wessber, Johan et al. “Real-time prediction of  hand trajectory by ensembles of cortical neurons in primates.” 
Nature.Vol. 408, No. 6810, 2000. pp. 361-365. <http://medev.kaist.ac.kr/upload/paper/ij01.pdf>.

11 Carey, Benedict. “Monkeys Think, Moving Artifiacl Arm as Own.”  The New York Times. May 29, 2008. 
<http://www.nytimes.com/2008/05/29/science/29brain.html>.

12 Hochberg, Leigh R. et al. “Neuronal ensemble control of prosthetic devices by a human with tetraplegia.” Nature. Vol. 
442, July 13, 2006, pp. 164-171. <http://www.nature.com/nature/journal/v442/n7099/full/nature04970.html>.
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nature of the surgeries required for such systems.  Non-invasive alternatives for BCIs include EEG 

technology, Magnetoencephalography (MEG), and Magnetic Resonance Imaging (MRI), as well as the 

“partially invasive” Electrocorticography where sensors are placed within the skull but outside the gray 

matter of the brain.  Non-invasive methods are limited in that they are often susceptible to noise, have 

worse signal resolution due to distance from the brain, and have difficulty recording the inner workings 

of the brain.  However more sophisticated systems are constantly emerging to combat these difficulties 

and non-invasive techniques have the advantage of lower cost, greater portability, and the fact that they 

do not require any special surgery.13

3. Previous EEG BCI Research

Though the idea of using EEG waves as input to BCIs has existed since the initial conception of 

BCIs, actual working BCIs based on EEG input have only recently appeared.14  Most EEG-BCI 

systems follow a similar paradigm of reading in and analyzing EEG data, translating that data into 

device output, and giving some sort of feedback to the user (Figure 2), however implementing this 

model can be extremely challenging.15  The primary difficulty in creating an EEG-based BCI is the 

feature extraction and classification of EEG data that must be done in real-time if it is to have any use. 

Feature extraction deals with separating useful EEG data from noise and simplifying that data 

so that classification, the problem of trying to decide what the extracted data represents, can occur. 

There is no best way of extracting features from EEG data and modern BCIs often use several types of 

feature extraction including Hjorth parameters (a way of describing the normalized slope of the data), 

wavelet transforms, Fourier transforms, and various other types of filters.  The major features that 

13 Fabiani, Georg E. et al. Conversion of EEG activity into cursor movement by a brain-computer interface. 

<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.128.5914>. 2004.
14 J. Vidal, "Toward Direct Brain–Computer Communication."
15 Omidvarnia, Amir H. et al. Kalman Filter Parameters as a New EEG Feature Vector for BCI Applications.  

<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.1388>.
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EEG-BCI systems rely on are event-related potentials (ERPs) and event-related changes in specific 

frequency bands.  The “P300 wave” is one of the most often used ERPs in BCIs and is utilized because 

it is easily detectable and is only created in response to specific stimuli.16,17

Figure 2: Brain-Computer Interface Design Pattern

BCI systems are further complicated by the fact that there is no standard way of classifying the 

extracted data.  Various means including neural networks, threshold parameters, and various other types 

of pattern recognizers are employed to try to match the input data to known categories of EEG 

archetypes.18  Furthermore, researchers have also relied on unsupervised learning algorithms to find 

natural clusters of EEG segments that are indicative of certain kinds of mental activities with varying 

16 Niedermeyer. Electroencephalography. pp. 1265-1266.
17 Sellers, Eric W. et al. “A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and 

inter stimulus interval on performance.” Biological Psychology. Volume 73, Issue 3, October 2006. pp. 242-252. 
<http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T4T-4KGG642-1-
N&_cdi=4983&_user=521319&_pii=S0301051106001396&_orig=search&_coverDate=10%2F31%2F2006&_sk=9992
69996&view=c&wchp=dGLbVzW-zSkWA&md5=4e9076e39d5e96823ba4f50e3e38588d&ie=/sdarticle.pdf>.

18 Adlakha, Amit. Single Trial EEG Classification. Swiss Federal Institute of Technology. July 12, 2002. 
<http://mmspl.epfl.ch/webdav/site/mmspl/shared/BCI/publications/adlakhareport.pdf>.
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degrees of success.19,20

Feedback is essential in BCI systems as it allows users to understand what brainwaves they just 

produced and to learn behavior that can be effectively classified and controlled.  Feedback can be in the 

form of visual or auditory cues and even haptic sensations, and ongoing research is still attempting to 

figure out the optimal form feedback should take.21  

EEG-BCIs can be classified as either synchronous or asynchronous.  The computer drives 

synchronous systems by giving the user a cue to perform a certain mental action and then recording the 

user's EEG patterns in a fixed time-window.  Asynchronous systems, on the other hand, are driven by 

the user and operate by passively and continuously monitoring the user's EEG data and attempting to 

classify it on the fly.  Synchronous protocols are far easier to construct and have historically been the 

primary way of operating BCI systems.22

EEG-BCI systems have made incredible progress in recent years.  By 2000, researchers had 

created a thought-translation device for completely paralyzed patients which allowed patients to select 

characters based on their thoughts, although the character selection process was time consuming and 

not perfectly accurate.23  By 2008, researchers collaborating from Switzerland, Belgium, and Spain 

created a feasible asynchronous BCI that controlled a motorized wheelchair with a high degree of 

accuracy though again the system was not perfect.24  Today, the 2010 DARPA budget allocates $4 

19 Lu, Shijian et al. “Unsupervised Brain Computer Interface based on Inter-Subject Information.” 30th Annual 
International IEEE EMBS Conference. Vancouver, British Columbia, Canada. August 20-24, 2008. 
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04649233>.

20 Niedermyer. Electroencephalography. pp. 1240.
21 Kauhanen L, Palomaki T, Jylanki P, Aloise F, Nuttin M, and Millan JR. “Haptic feedback compared with visual feedback for BCI”. 

Proceeding of 3rd International BCI Workshop and Training Course 2006. Graz Austria. 21-25 Sept 2006, Pp. 66-67. 
<www.lce.hut.fi/research/css/  bci  /Kauhanen_et_al_conf_2006.pdf  >.

22 Niedermeyer. Electroencephalography. pp. 1265.
23 Birbaumer, N. et al. “The Thought Translation Device (TTD) for Completely Paralyzed Patients.” IEEE Transactions on 

Rehabilitation Engineering. Volume 8, No. 2, June 2000. pp. 190-193. <www.cs.cmu.edu/~tanja/BCI/TTD2003.pdf>.

24 Galán, F. et al.  “A Brain-Actuated Wheelchair: Asynchronous and Non-invasive Brain-Computer Interfaces for Continuous Control 

of Robots.” Clinical Neurophysiology. Volume 119, Issue 9, September, 2008. pp. 2159-2169. 

<http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VNP-4T08054-
5&_user=521319&_coverDate=09%2F30%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view
=c&_acct=C000026018&_version=1&_urlVersion=0&_userid=521319&md5=433c13acfed7171c6385ecefa6fe6431>.
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million to develop an EEG-based program called Silent Talk which will “allow user-to-user 

communication on the battlefield without the use of vocalized speech through analysis of neural 

signals.”25  State-of-the-art EEG-based BCIs are a cutting-edge emerging technology and researchers 

are constantly developing newer and more accurate algorithms to aid making BCIs that are simpler and 

more effective than ever before.

4. The Emotiv© System

The Emotiv System, whose tag-line is “you think, therefore you can,” bills itself as a 

“revolutionary new personal interface for human computer interaction.”  It is based around the EPOC 

headset for recording EEG measurements and a software suit which processes and analyzes the data. 

Emotiv offers both a consumer headset for $299 which only works with approved applications and a 

developer headset which supports product development and includes a software bundle for $500.  Both 

headsets are wireless and utilize a proprietary USB dongle to communicate using the 2.4GHz band. 

This research used the developer EPOC headset which contains a rechargeable 12 hour lithium battery, 

14 EEG sensors (plus CMS/DRL references), and a gyroscope, and has an effective bandwidth of 0.16-

43Hz (Figures 3, 4).  Emotiv offers 6 different software development kits which grant various control 

over the EPOC headset API and detection libraries and come with up to 4 different programs (Table 2). 

This research originally used the Development SDK and later upgraded to the Research Edition.  The 

Research Edition includes the Emotiv Control Panel, EmoComposer (an emulator for simulating EEG 

signals), EmoKey (a tool for mapping various events detected by the headset into keystrokes), the 

TestBench, and an upgraded API which enables the capture of raw EEG data from each individual 

sensor.26

25 Drummond, Katie. “Pentagon Preps Soldier Telepathy Push.” Wired Magazine. May 14, 2009. 
<http://www.wired.com/dangerroom/2009/05/pentagon-preps-soldier-telepathy-push>.

26 Emotiv Website. <http://www.emotiv.com>.
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Figure 3: Emotiv EPOC Headset

Figure 4: The 14 EPOC Headset 14 contacts. In addition there is a Common Mode Sense (CMS) 

electrode in the P3 location and a Driven Right Leg (DRL) electrode in the P4 location which form a  

feedback loop for referencing the other measurements.
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SDK Edition Cost Development License Included Software

Lite Free Individuals Control Panel, 
EmoComposer,
EmoKey

Developer $500.00 (comes with 
developer headset)

Individuals Control Panel, 
EmoComposer,
EmoKey,
Basic API

Research $750.00 or $250.00 for 
upgrade from Developer 
SDK

Individuals Control Panel, 
EmoComposer,
EmoKey,
TestBench,
Raw EEG data API

Enterprise
$2,500.00 Enterprises Control Panel, 

EmoComposer,
EmoKey,
Basic API

Enterprise Plus $7,500.00 Enterprises Control Panel, 
EmoComposer,
EmoKey,
TestBench,
Raw EEG data API

Education $2,500.00 Educational Institutes Control Panel, 
EmoComposer,
EmoKey,
TestBench,
Raw EEG data API

Table 2: Emotiv SDKs

4.1 Control Panel

The Emotiv Control Panel is a graphical-user interface which functions as a gateway to using 

the EPOC headset.  It oversees connecting with the headset, preprocessing and classifying the input 

signals, giving feedback to the user, and allows the user to create a profile and train thoughts and 

actions.  The Control Panel includes the Expressiv, Affectiv, and Cognitiv suits as well as a Mouse 

Emulator which allows the user to control the mouse by moving their head and utilizing the headset 

gyroscope.  The Expressiv suite is designed to measure facial expressions based on reading EEG/EMG 
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and is an innovative way in utilizing artifacts that are usually simply filtered out of EEG systems.  The 

Expressiv suite can recognize 12 actions: blink, right/left wink, look right/left, raise brow, furrow brow, 

smile, clench, right/left smirk, and laugh.  It gives feedback by matching the incoming signals to a 

simulated face avatar which mimics the user's expressions (Figure 5).

Figure 5: Expressiv Suite

The Affectiv suite monitors the user's emotional states.  It can measure engagement/boredom, 

frustration, meditation, instantaneous excitement, and longterm excitement (Figure 6).  The Cognitiv 

suite monitors and interprets the user's conscious thoughts.  It can measure 13 active thoughts: push, 

pull, lift, drop, left, right, rotate left, rotate right, rotate clockwise, rotate counterclockwise, rotate 

forward, rotate backward, and disappear, as well as the passive neutral state.  The Emotiv Software 

detects these thoughts using built-in proprietary software.  This software works by running the input 
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from the electrodes through a neural network and attempting to classify the signals as one of the 13 

built-in “prototype” action thoughts.  The data for these “prototype thoughts” was gathered prior to the 

release of the headset based on hundreds of test cases and serve as a base for classification.  Action 

thoughts must be trained before use and the user can tie different thoughts to the built-in actions (i.e. 

training the “push” command by thinking “blue”), however doing this can lower the accuracy of 

recognizing the thoughts and increase the training time since these thoughts will not match up to the 

prototype thoughts the software initially expects.  The software gives feedback in the form of a floating 

cube that responds to the recognized thoughts (Figure 7).  

Figure 6: Affectiv Suite

Currently, at any given time the Cognitiv suite can distinguish between four separate thoughts 

on-the-fly, however the user can recognize additional thoughts concurrently by having multiple Control 

Panels open simultaneously, each looking for different thoughts.  The four thought limit is currently in 
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place due to usability concerns as adding additional thoughts can greatly increase the difficulty of using 

the Cognitiv suite effectively.  Despite this, Emotiv is currently considering upping the concurrent 

thought recognition limit to beyond four.  

Figure 7: Cognitiv Suite

4.2 TestBench

The TestBench program provides a real-time display of the Emotiv headset data stream.  It 

allows the user to see the EEG contact quality and actual data coming in from each sensor, as well as 

the gyroscope data, wireless packet information, and battery life (Figure 8).  Furthermore, the program 

can display a Fast Fourier Transform (FFT) of any incoming channel and can display the Delta, Theta, 

Alpha, and Beta bands as well as a user-defined custom band (Figure 9).  Finally, the TestBench can 

record, save, and playback data in European Data Format (.edf) and can convert saved EDF data to 

Comma-separated Value format (.csv) and was used to record and save data for blink analysis.
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Figure 8: Real-time EEG Measurements in TestBench

Figure 9:  FFT Measurements in TestBench. TestBench also measures Delta, Theta, Alpha, Beta, and a  

user-defined custom band.
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4.3 The Emotiv API

The Emotiv API is exposed as an ANSI C interface implemented in two Windows DLLs: 

edk.dll and edk_utils.dll.  The core of the Emotiv SDK is the “EmoEngine,” which is a logical 

abstraction that “communicates with the Emotiv headset, receives preprocessed EEG and gyroscope 

data, manages user-specific or application-specific settings, performs post-processing, and translates 

the Emotiv detection results into an easy-to-use structure called an EmoState.”  Every EmoState 

represents the current input from the headset including “facial, emotional, and cognitive state” and, 

with the upgrade to the research edition, contains electrode measurements for each contact.  Utilizing 

the Emotiv API consists of connecting to the EmoEngine, detecting and decoding new EmoStates, and 

calling code relevant to the new EmoState (Figure 10).27

      Query for new EmoState

Figure 10: High-level View of the Utilization of the Emotiv API

27 Emotiv Software Development Kit: User Manual for Beta Release 1.0.x. pp. 36-37
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5. The Parallax Scibbler® Robot and IPRE Fluke

The Parallax Scribbler robot is a fully assembled reprogrammable robot built around the BASIC 

Stamp® 2 microcontroller.  It contains built in photovoltaic sensors, infrared sensors, line sensors, two 

independent DC motors to drive the two wheels, three indicator LED lights, a speaker, and a serial port. 

It can be programmed using the Scribbler Program Maker Gui or the Basic Stamp Editor.28  

The Institute for Personal Robots in Education (IPRE) Fluke is an add-on board created by 

Georgia Robotics that plugs into the Scribbler's serial port and adds color vision, IR range sensing, 

internal voltage sensing, an extra LED, and bluetooth functionality (Figure 11).  Furthermore, IPRE has 

created the Myro (short for My Robot) software package that interacts with the Fluke via bluetooth and 

grants the ability to reprogram the Scribbler using Python.29

Figure 11: Scribbler Robot with IPRE Fluke add-on Board

28 “The Scribbler: A Reprogrammable Robot.” <http://www.parallax.com/tabid/455/Default.aspx>. Copyright 2010 by 
Parallax Inc. Accessed 4/11/2010.

29 “Usage Guides.” <http://www.roboteducation.org/guides.html>. Copyright © 2007 Institute for Personal Robots in 
Education. Accessed 4/11/2010.
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6. Control Implementation

The control implementation for this project was written in Microsoft Visual C++.  I decided on 

C++ as it allowed me to easily call the ANSI C libraries exposed in the Emotiv API as well as make 

calls to the Python/C API so that I could control the Scribbler using the Python Myro interface.  The 

code implementing this control scheme is divided into four basic parts: connecting to the Emotiv 

headset via the Emotiv API, connecting to the Scribbler through the Myro Python libraries, reading and 

decoding Emotiv events and sending the corresponding commands to the Scribbler, and closing the 

connections when the user is done (Figure 12).

Figure 12: High-level View of the Control Scheme
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6.1 Emotiv Connection

Connecting to the Emotiv allows for two basic options for controlling the robot: using thoughts 

detected from the actual Emotiv EPOC headset or using the mock signals from the EmoComposer 

emulator.  The EmoComposer acts as an emulator that the Control Panel can connect to and allows the 

user to send per-recorded built-in data signals that match possible inputs from the real headset.  I coded 

the program to allow access to the EmoComposer as it allowed me to initially use clean signals from 

the EmoComposer to make a quick and testable prototype scheme before I had trained the headset, 

however once the headset was trained I switched to using actual headset signals as inputs.  The Users 

Manual suggests using the  EE_EngineConnect call to connect directly with the headset and using the 

EE_EngineRemoteConnect otherwise, however I found that the EE_EngineConnect always returned 

true, even if the headset was off.30  Instead, I decided to use EE_EngineRemoteConnect to connect 

through the Control Panel which enables communication with the headset and querying its power and 

connection status.  Thus my connection calls for utilizing the EmoComposer or the headset differ only 

in the port and IP:

EE_EngineRemoteConnect(EmoControlPanelIP.c_str(), headsetPort)

EE_EngineRemoteConnect(EmoComposerIP.c_str(), composerPort)

6.2 Scribbler Connection

Initializing the Scribbler robot consists of three steps: initializing Python, loading the Myro 

libraries, and connecting to the robot using the Myro's initialize() command.  The Python.h library 

allows C/C++ code to embedding Python and make direct calls to the Python interpreter.  Initializing 

the Python interpreter and loading the Python dictionary requires four lines of code:

Py_Initialize();
PySys_SetArgv(argc, argv);

30 User Manual. pp 37-38
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main_module = PyImport_AddModule("__main__");
main_dict = PyModule_GetDict(main_module);

From here, any code can be sent to the Python interpreter directly using the PyRun_SimpleString 

function.  Furthermore, C++ code can construct PyObject pointers to reference Python functions stored 

in the Python dictionary.  These functions can be called via the PyObject_CallFunction which passes 

back another PyObject pointer which is the return value of the called function.  Thus full embedding 

functionality is possible complete with function calls, parameter passing, and return values when 

embedding Python in C/C++.31   Loading the Myro libraries consists of only one line of code:

PyRun_SimpleString("from myro import *");

however it is important to remember to update the C++ reference to the now updated Python dictionary 

so that the Myro functions can be called.  From there, the user inputs the Bluetooth out com port that 

the Scribbler is connected to and the Myro initialize() command is called which allows the Python 

interpreter to send commands directly to the Scribbler:

PyObject* initFunction = PyDict_GetItemString(main_dict, "initialize");

PyObject_CallFunction(initFunction, "s", port.c_str());

6.3 Decoding and Handling EmoStates

There are four major steps in reading and decoding information from the EPOC headset: 

creating the EmoEngine and EmoState handles, querying for the most recent EmoState, deciding if this 

is a new EmoState, and decoding the EmoState.  The EmoEngine handle allows for queries to get direct 

input from the headset including contact quality, raw electrode input, and the connection quality.  New 

EmoStates are constantly created by the EmoEngine which represent recognized actions such as facial 

expressions, changed emotional status, and detected thoughts and can be queried through the EmoState 

handle.  First the EmoEngine handle to query for new EmoStates and the EmoState handle used in 

31 van Rossum, Guido. Python/C API Reference Manual. Python Software Foundation 21, February, 2008. 
<http://docs.python.org/release/2.5.2/api/api.html>. Accessed 14, April, 2010.
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determining what was detected are allocated using the Emotiv API:

EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate();
EmoStateHandle eState = EE_EmoStateCreate();

From here, the EmoEngine handle is queried to retrieve the most recent event using:

EE_EngineGetNextEvent(eEvent);

This should be polled 10-15 per second to ensure real-time reactions to the users thoughts/actions. 

Next the program determines the event type returned by the EmoEngine.  There are three categories of 

event types: hardware-related events, new EmoState events, and suite-related events.32  If the event 

represents a new EmoState, the code retrieves the EmoState, the user's ID number, and the time-stamp 

of the event so that the event can be decoded:

EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent);

...
if (eventType == EE_EmoStateUpdated) {

EE_EmoEngineEventGetEmoState(eEvent, eState);
const float timestamp = ES_GetTimeFromStart(eState);

decodeState(userID, eState, timestamp);
}

In decoding the EmoState, I look for eight possible events.  First, I check whether the headset 

was disconnected or reconnected.  If the headset was disconnected, I suspend all activity until a 

reconnect EmoState is published.  I originally had the program terminate if the headset disconnected, 

however I decided to alter the scheme to allow for the user disconnecting/reconnecting without having 

to restart the program each time since I often had trouble maintaining a lengthy connection with the 

headset.  I used the ES_GetWirelessSignalStatus(eState) and the ES_GetHeadsetOn(eState) 

calls to determine whether or not the headset was still connected.  If the event was not related to the 

headset disconnecting/reconnecting, I check to see if the event was a blink using the 

ES_ExpressivIsBlink(eState) call.  I maintain a global variable that keeps track of when the last 

blink is recorded and whenever a new blink is detected I compare it with the time-stamp of the new 

32 User Manual. pp 38
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blink to determine if the user double-blinked.  If so, I have the Scribbler take a picture by calling the 

Myro Python commands:

PyRun_SimpleString("show(takePicture())");

PyRun_SimpleString("stop()");

It is necessary to call the stop() command so that the picture frame returned by the Python 

interpreter is refreshed.

If the event was neither a blink nor a signal that the headset had disconnected or reconnected, I 

look for three possible cognitive thoughts: Push, Turn Left, and Turn Right.  To do this, I cast the 

EmoState as a CognitivAction, get the specific integer value of the action, and get the power of the 

thought by utilizing the Cognitiv Suite:

EE_CognitivAction_t actionType = ES_CognitivGetCurrentAction(eState);
float actionPower = ES_CognitivGetCurrentActionPower(eState);

int power = static_cast<int>(actionPower*100.0f);
int action = static_cast<int>(actionType);

From here, the integer value of the action can be compared to the defined CognitivAction enumerator 

stored in the EmoStateDLL.h file (Table 3).  Once I have decoded which thought sparked the 

EmoState, I send the appropriate call to the Scribbler (Push → Move Forward, Turn Left → Turn Left, 

Turn Right → Turn Right).  If the thought is not a Push, Turn Left, or Turn Right thought I ignore it.  I 

initially experimented with using the power of the thought as an input to the power of the robotic 

action, however I found that this control scheme was too difficult to use and it ended up being far more 

intuitive to use specific values for turning and moving forward no matter the thought-power.  This 

allowed the user to concentrate on the thoughts alone and not have to additionally worry about how 

“hard” to think the thoughts.
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Action Value

Neutral 0x0001

Push 0x0002

Pull 0x0004

Lift 0x0008

Drop 0x0010

Left 0x0020

Right 0x0040

Rotate Left 0x0080

Rotate Right 0x0100

Rotate Clockwise 0x0200

Rotate Counterclockwise 0x0400

Rotate Forward 0x0800

Rotate Backward 0x1000

Disappear 0x2000

Table 3: Predefined Cognitiv Action Enumerator Values

6.4 Modifications

One of the first early problems I recognized was the disparity between the rate of input 

EmoStates and the time it takes the Scribbler to perform actions.  The internal sampling rate in the 

EPOC headset is 2048Hz.  This is filtered to remove artifacts and alias frequencies and then down-

sampled to approximately 128Hz.33  Any given motion input to the Scribbler using Bluetooth takes 

approximately 2 seconds to execute, while picture taking take slightly longer as it has to capture and 

send data back.  My initial tests of my control scheme failed to account for this time differential in 

input sampling and possible output execution and consequently failed to offer a usable interface. 

Instead of the Scribbler responding to my thoughts, EmoStates and corresponding actions for the 

Scribbler almost instantly queued up while the Scribbler was still executing the first command, and the 

33 Emotiv Research Plus SDK Headset Specifications. <http://www.emotiv.com/ResearchPlus.html>.
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result was a robot that seemed to make random actions as it executed thoughts that had taken place 

seconds and even minutes ago instead of responding to current thoughts.  To solve this problem I 

introduced a sampling variable to only decode one in every ten input EmoStates.  The rational behind 

creating this variable is that the 128Hz input rate is so fast that inputs like a Push thought or even an 

eye blink will create numerous EmoStates.  Using my sampling variable I filter out those extra states 

that really only correspond to one event by using a sample rate small enough that it will still capture 

events which send more than 10 input EmoStates while sending only one command to the Scribbler 

instead of queuing up 10.  This system worked much better, and even had the added bonus of filtering 

out “noise” thoughts when the headset detected a push or turn thought for a fraction of a second. 

Despite this, adding the sampling variable had the unintended consequence of creating the possibility 

of missing a headset disconnect/reconnect as these events create only one EmoState each.  To solve this 

problem, I moved the checking of the sample variable and settled on decoding every single EmoState 

so that I could catch the disconnect/reconnect while filtering thought and blink EmoStates using the 

sample variable to ensure the Scribbler acts on current thoughts.

One other modification I made after this scheme was created was to add an additional operation 

mode.  I decided to add this as it would often be useful to be able to send more than three commands to 

the Scribbler.  However, if I wanted to take the same approach as before and hook up thoughts to robot 

actions I had to contend with the added difficulty in recognizing more an additional thought for every 

new action I wanted to add.  To solve this problem, I created an additional mode which remaps the 

same three input thoughts to different outputs in the robot.  This is hugely beneficial as it does not 

increase the difficulty in recognizing new thoughts and also does not require the user to train additional 

thoughts, thus giving double the usability with only one additional input.  This additional input is 

raising the eyebrows which toggles between the original and the new mode.  I decided on utilizing the 

raising of eyebrows as a toggle as it is very easily trained and accurately recognized by the headset. 
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The new mode maps Push to the Scribbler moving forward until it detects a wall, Turn Left to rotating 

approximately 90° to the left, and Turn Right to rotating approximately 90° to the right.  Having the 

Scribbler move forward until it detects a wall is accomplished by sending a loop to the Python 

interpreter which has the Scribbler continually use the Fluke board to check if there is an obstacle in 

front of it and move forward if no object was detected:

string command = "while(getObstacle(1)<1050): forward(.5,1)";
...

PyRun_SimpleString(command.c_str());

Upon seeing how successful this was I also added a check to the initial move forward command so that 

when the user commands the Scribbler to go forward into a wall the robot instead gives feedback to the 

user explaining there is an object in the way.  The addition of more modes is certainly possible and is 

an excellent way of adding functionality without adding the cost of recognizing and learning new 

thoughts.  In the end, it was completely feasible to control the Scribbler robot using the EPOC headset 

proving the viability of EEG based BCI technology.

7. Blink Detection

Having explored the Device/Application Control and the Feedback portions of the BCI Design 

Pattern by creating my Emotiv-Scribbler Control Scheme, I next decided to explore the Pre-Processing, 

Feature Extraction, and Classification of EEG data by analyzing eye blinks (Figure 2).  The analysis of 

eye blinks is useful in BCI development for two reasons: eye blinks can be used as control inputs (as in 

my control scheme), and if they are not they must be filtered out lest they corrupt the useful EEG data. 

I furthermore decided on eye blinks as they are immediately recognizable in the AF3 channel (Figure 

13).  Focusing on only one channel allowed me to immediately reduce the amount of input data by a 

factor of 14 since I could discount the other 13 input channels.  
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Figure 13: A Blink Event Highlighted in the AF3 Channel

Reducing the size of the data set is the primary focus of pre-processing and feature extraction 

whose goal is to get rid of extraneous and noisy data while preserving data that can best differentiate 

between classes.  However, before I could do this I first needed a data set and thus recorded twenty ten 

second clips, ten of which I blinked during and ten of which I didn't.  I then exported the clips to CSV 

format so that I could load them in MATLAB.  These recordings produced a lot of data because in 

addition to the 14 EEG channels capturing electrode data at 128Hz the headset also records gyroscope 

data, battery data, packet information, etc. and each 10 second clip ended up had roughly 36000 data 

points and combined I recorded 720000 data points (Figure 14).
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Figure 14: One 10-second Segment with Blinks and Noise

The first step of my feature extraction was to use just the AF3 channel where blinks are clearly 

visible.  I was curious as to how simply extracting this channel would work for blink classification and 

decided to run the 20 test clips through a neural net to see how it would fare.  The classification using 

MATLABS' nprtool to create a two-layer feedforward neural network with backpropagation obtained 

only a 65% accuracy (Figure 15).  The reason for this became apparent when I looked at a plot of all 

the AF3 channel data (Figure 16).  It is clear that, though there is a certain pattern to blinks, the neural 

net was thrown off because the blinks were not normalized with respect to time.  The neural net treated 

time as an attribute, and thus might not classify two samples that both contain blinks but where the 

blinks occur at different times.  Time is correlated to blinks in respect to how long the blink takes and 

thus how wide the blink spike will be, however the time that the blink occurs is not a usable attribute.  

27

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0



Figure 15: Initial Neural Net Results showing both a Confusion Matrix and Receiver Operating  

Characteristic (ROC) Plot

Figure 16: Twenty 10-second Recordings of AF3 Data

To solve this problem, I decided to further reduce the amount of data the neural net worked with 

along with normalizing any blinks found.  Recognizing that blinks correlate to spikes in EEG data, I 

scanned each 10 second clip looking for the largest spikes.  I found that blinks typically were 

represented by a surge in the 4500 to 4800 µvolt range over approximately .59 seconds and were 

followed by a characteristic dip of around 50 µvolts over approximately .20 seconds (Figure 17).  This 

pattern was very clear and easily distinguishable from a non-blink state; I first noticed it when applying 

unsupervised K-Means Clustering to detect naturally occurring patterns in the data (Figure 18).
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Figure 17: 1.6 Second Recording Showing a Blink Pattern (blue) with Non-Blink Data (green) for  

Comparison

Figure 18: Unsupervised K-Means Clustering Exposes Naturally Occurring Blink Patterns (2 Clusters  

Left, 3 Clusters Right)
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I used this information to further filter each of the 20 inputs down to 1.6 second segments, each 

of which highlighted the maximum spike of the original ten second segment.  This normalized the 

blinks by having each blink start at roughly the same time and additionally filtered out noise that was 

unrelated to the blinks creating data that was much easier for a neural net to distinguish (Figure 19). 

Using these inputs, neural net accuracy improved to 100%, however I wanted to see if this system truly 

recognized blinks or was over-trained on the input data.  Therefore, I recorded five more segments, 3 

with blinks and 2 without, and followed the same pre-processing/feature extraction steps and fed the 

data to the neural net.  The neural net accurately predicted all of these new inputs even though it had 

not been trained upon them, showcasing that it was truly was extendable and actually recognizing blink 

patterns.  These are very promising results that prove the feasibility of utilizing a neural net to classify 

blinks, however it would be best to obtain a larger sample size to accurately test the classification 

performance of this scheme.

Figure 19: Fully Processed and Normalized Input to the Neural Network
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8. Conclusions

Having explored all phases of EEG-based BCI construction and implementation, I can safely 

say that it is a feasible system that will likely only improve and become more widespread in the future. 

The biggest flaw I encountered in the technology was interference with the wireless headset which 

often had difficulty connecting and staying connected, however Emotiv has informed me that this is 

likely a hardware problem with the headset and will be sending me a new one.  I did my research using 

a Beta version of the EPOC headset so it is possible that the Consumer version they will send me will 

address this problem.  

The system I constructed was largely a success as I was able to create a system whereby I could 

control a robot with my thoughts and further created accurate blink-recognizing software. 

Furthermore, my system showcases the amazing possibilities of BCI's in aiding the disabled.  For 

instance, a person who could only move their head could certainly use my system to control a 

motorized wheelchair accurately using their thoughts.  In addition, had they a computer built into the 

headset, they could easily switch modes by raising their eyebrows and then use their thoughts as an 

input to the computer, by using the same thoughts that had moved the wheelchair to control the mouse 

and double-blinking to click.  An alternative would be to keep the thoughts controlling the wheelchair 

while utilizing the gyroscope in the headset to control the mouse, enabling the user to have 

simultaneous control of the wheelchair and computer.   Further research can certainly lead to direct 

implementation of such systems and can explore the recognition of thoughts beyond those included in 

the Emotiv API.  In the end, the research demonstrates just the tip of the iceberg in what is truly the 

limitless potential of EEG-BCI systems.
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