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Abstract 
 

In this thesis, we study computer vision methods to capture 3D human 

movements in videos.  The goal is to extract high quality movement from general 

videos using minimum human interaction. With a few mouse clicks on the body 

joints in each video frame, all the possible 3D body configurations are 

automatically constructed and their likelihoods are quantified using a prior trained 

with millions of exemplars from the CMU motion capturing database. The 3D 

body movement is optimized using dynamic programming using the pose 

hypotheses and the temporal smoothness constraints. The proposed method can be 

used for unconstrained motion capturing and our experiments show that it is 

efficient and accurate. We further study two applications based on the proposed 

motion capturing method. The first one is to animate characters using the motion 

captured from videos. The second one is for sports performance analysis. With the 

3D movement information, we can measure body part speed, coordination, and 

various other parameters. 
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1. Introduction 
 

Human pose estimation and action recognition are two very large areas of research within 

the domain of computer vision.  Humans possess an uncanny ability to both detect and recognize 

different human poses and forms of motion, however, training a computer to do the same thing is 

not such a trivial task. 

 The first person to bring the study of human motion into a laboratory setting was Gunnar 

Johansson [8].  Johansson’s experiments involved illuminating a number of key points on the 

human body as it performed different types of movements including walking, running, and 

dancing.  The results of these experiments indicate that using just 10–12 illuminated points was 

enough to evoke a strong impression of human motion.  Essentially, Johansson discovered that 

the collection of moving points resulted in a special response from the brain that gave structure 

to the entire system.  

Figure 1. The collection of 15 seemingly random dots in the image on the left in fact represent a 
human pose.  The image on the right connects the dots in a meaningful way, similar to how 
Johansson’s experiments gave structure to seemingly random patterns of dots.  Images taken 
from BML Walker [14]. 
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 If the brain possesses this special method for recognizing biological motion, why has a 

computer not been used to replicate it?  The answer is because the underlying mechanism for the 

system is not completely understood.  The brain itself can be looked at as a “black box.”  

Experiments can be run on a human subject where the visual stimulus sent to the brain is 

controlled and the resulting subject response can be observed, however, the actual steps in the 

neural pathway responsible for transforming the input to the output response remain unknown.   

 Because a computer makes such a poor human brain, problem solving that utilizes a 

computer often relies on computationally intensive approaches.  From this sort of computational 

standpoint, the human body can be though of as a tree structure.  With this kind of depiction, it is 

easy to see how the extremities are related back to the torso (the root) and how the movement 

and range of motion of the extremities are constrained by the intermediate joints (the 

intermediate nodes).   

  Research in the area of human pose estimation has been approached from many different 

angles in an attempt to make a robust and accurate system.  There are two parts to the problem of 

human pose estimation.  The first is finding a pose in an image.  A couple of approaches to this 

problem include using background subtraction, template matching [5] or detecting motion in a 

video sequence.  The second part of the problem involves mathematically describing the pose.  

This has been done with both tree and non-tree [7] structures.   

 The same two problems exist in the area of human action recognition.  Detecting action 

can take the form of detecting movement in sequential frames, finding motion descriptors [6], or 

some form of template matching [13].  Recognizing actions, on the other hand, often uses some 

sort of probabilistic approach, the most common being Markov chains [1, 2, 12] or some more 

complex Bayesian based system [3]. 



 6

2. Overview 

 This thesis focuses on generating a 3D stick figure from either a single still image or a 

sequence of frames from a video.  Section 3 details how a 3D pose is generated from a single still 

image, while section 4 shows how multiple 3D poses are strung together into a coherent action.  

Section 5 shows the results from both the single frame and multiple frame reconstructions.  

Finally, section 6 demonstrates a number of different applications for this system, related work in 

the field, and future work. 
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3. Single Frame Reconstruction 
 
Reconstructing a 3D pose from an image involves three steps: 

1. Collecting user input 

2. Generating all possible poses 

3. Finding the most likely pose 

3.1 Collecting user input 

The first step in the process involves the user marking the joints of the person in the provided 

image.  Given an input image, the user clicks on the shoulder, elbow, and wrist for both arms, as 

well as the hip, knee, and ankle for both legs.  In total, 12 joints are needed.  If any of the joints 

are not visible in the image, the user must give as close an approximation as possible.  As a result 

of the collected points, a stick figure is generated with 11 line segments.  

Figure 2.  The image on the left shows a stick figure with all of its line 
segments labeled.  The legend on the right image indicates assumed lengths for 
all line segments. 
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3.2 Generating all possible poses 

In mathematical terms, a projection is defined as the mapping of a set of points and lines 

from one plane to another.  Within the scope of this project, the generated stick figure can be 

seen as a projection from a 3D plane to a 2D plane.  This type of projection is characterized by a 

loss of depth information.  Essentially, all 3D points (X,Y,Z) in the system become (X,Y).  

An easy way of thinking about a 3D to 2D projection is to picture someone shining a 

flashlight against a flat wall.  If an individual were to place his hand midway between the 

flashlight and the wall, the hand would cast a shadow.  In this situation the hand is an object in a 

3D environment and the shadow is the projection of the hand onto a 2D plane.  Given this setup, 

it is easy to imagine how either moving or rotating your hand would change the shape of the 

shadow against the wall. 

 Using this logic, consider a line in 3 dimensions with the points (x1, y1, z1) and (x2, y2, z2) 

and its projection onto a 2D plane with points (x1, y1) and (x2, y2).  Calculating the distance 

between the two points in their respective dimensions is simply an application of the 

Pythagorean Theorem: 

2
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Where C2D and C3D are distances between the two points in 2 dimensions and 3 dimensions 

respectively.  Similarly, since C2D and C3D both utilize the same X and Y coordinates, they can 

be related to one another in the following way: 

         (3) 22
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where Z is defined as (z2 – z1).   
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 Looking back at the stick figure, the goal is to calculate some sort of depth information.  

This could be done utilizing equation 3, however, there are still two unknowns.  This is 

overcome by fixing the value of C3D for all line segments in the stick figure (Figure 2).  Solving 

equation 3 for Z yields:  

  2
2

2
3 DD CCZ �        (4) 

Having the length, however, does not completely solve the problem.  There is still a problem of 

the line segment’s orientation on the Z axis.  This is shown graphically in figure 3. 

 

 

Figure 3. The line graphed on the left represents a projection from a 3 dimensional space to the XY plane.  The 
end points of this line are (0,1) and (0,-1).  The problem with orientation on the Z-axis is demonstrated here 
because either of the two lines on the right could be used to create the projection on the left.  The line on the top 
right graph has end points (0,1,-1) and (0,-1,1), while the line on the bottom right graph has points (0,-1,-1) and 
(0,1,1). 
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Given that there are 11 line segments in the stick figure and two possible solutions for each 

segment, there are a total of 2048 possible 3D pose configurations. 

3.3 Finding the most likely pose 

After all 2048 possible poses are generated, a method is needed in order to determine 

which configuration is most likely to occur.  This was accomplished through the use of a 

Gaussian mixture model.  A Gaussian mixture model is a collection of some number of Gaussian 

functions in a fixed number of dimensions.   

 

Figure 4. The above graph depicts a collection of 3 Gaussian 
distributions in one dimension making up a Gaussian mixture model. 

 

Given any point in one dimension, the above model can numerically define how likely that point 

is to occur in the mixture through a probability density function (pdf).  This same frame of logic 

is applied to describing how likely a human poses is.   
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In order to create a Gaussian mixture model for this project, a large database was 

necessary.  Carnegie Melon University’s Motion Capture Database (MoCap) is a database filled 

with millions of examples of human poses programmatically recorded using special cameras and 

tracking dots [15].  This database served as the source of the data for the Gaussian mixture 

model.  In order to create the model, the poses were first extracted from the database as 12 

element vectors.  The vectors were then clustered in a 12D subspace using the expectation-

maximization (EM) algorithm.  The algorithm yielded estimates for ȝ (mean) and ı (standard 

deviation) for each cluster, which define the model.  The EM algorithm was constrained to use 

only 50 clusters. 

After creating the Gaussian mixture model, quantifying the likelihood of all 2048 poses 

was accomplished by simply comparing each individual pose against the model.  Each 

comparison yielded a pdf and the pose with the highest pdf constituted the most likely 

configuration.  

The above process was further optimized by utilizing two separate Gaussian mixture 

models; one for the upper body and one for the lower body.  By doing this, only 96 unique 

configurations were necessary in order to describe all 2048 possible poses.  After finding the 

largest pdf for both the upper and lower bodies, the two configurations were simply combined.  

Because the Gaussian mixture models were computed ahead of time, this optimization increased 

the speed and decreased the amount of memory used by the algorithm. 
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4. Multiple Frame Reconstruction   
Generating a 3D pose from a video sequence mirrors the procedure for the single frame 

reconstruction with one caveat.  The ordered sequence of video frames adds a temporal aspect to 

the system.  Because of this, a generated pose must not only be likely in its own regard, but must 

also be related to the poses that occur before and after it in the sequence.  This essentially turns 

multiple frame reconstruction into a graph problem. 

4.1 Travel Cost 

Just as in the single frame reconstruction, user input is required to label the joints in all 

frames of the video sequence.  All possible pose configurations are then generated for each frame 

and quantified with a pdf.  There are two conditions that need to be met in order to generate an 

accurate pose sequence.  First of all, the pdf of the pose must be maximized, indicating that the 

pose is likely to occur in the first place.  Second, poses in a sequence must be relatively close to 

one another in terms of some distance metric.  In effect, the goal is to find make a series of frame 

to frame connections that satisfy the following equation.  The travel cost to go from pose i of 

frame n-1 to pose j of frame n is defined by: 

injnin PDFposeposedistS ,1,,1 ),( �� � D     (5) 

where dist is a function representing the sum of the differences in Euclidean distances between 

the provided poses, PDFn-1,i is the pdf of the ith pose of frame n-1 and Į is some scaling factor.  

For each frame in the sequence, there are 2048 possible poses that could potentially connect to 

any of the 2048 poses in the next frame.  Because of this, 4,194,304 connections need to be 

computed for each pair of frames.   
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4.2 Dynamic Programming   

This situation describes a large connected graph problem.   

Figure 5.  The graph depicted here represents the connections of 2048 human 
pose configurations across n frames. 

 

Given that a video sequences can exceed 100 frames, hundreds of millions of computations are 

needed.  This type of large computation is optimized using dynamic programming.  Using 

equation 5, navigating the graph can be mathematically represented as: 

 )),((minarg ,1,1,,1, ininjnin
i

jn SPDFposeposedistS ��� �� D   (6) 

Each pose j of frame n is given a score based on equation 5.  The only change is that the score 

from the previous frame’s incoming pose is added as well.  After the final frame is reached, 

determining the sequence of poses is simply a matter of backtracking through the graph starting 

with the minimum S value in the final frame. 
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5. Results 
Single Frame Reconstruction 
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Multiple Frame Reconstruction  
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6. Discussion 

 As the above results show, this method of 3D human pose reconstruction is indeed 

possible in both single images as well as video sequences.  Although this system is not 100% 

accurate, the results are good enough to be both meaningful and useful. 

6.1 Applications 

 This thesis examines two applications directly related to 3D human pose reconstruction.  

The first is character animation and the second is sports performance analysis.   

 Traditionally, creating movement data for character animation is very limited.  

Individuals wearing suits with tracking markers were constrained to moving within small areas 

where special cameras monitor their actions.  Because of this, trackable actions are limited in 

many ways.  This 3D pose reconstruction offers an unconstrained form of motion capture that 

requires no special equipment. 

 

 

(b) (a) 

Figure 6.  (a) shows person wearing trackable markers with  the resulting computer generated pose next to it.  
(b) shows the same image with user marked joints.  The resulting 3D pose is shown to the right. 
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As you can see in figure 6b, without any special cameras or use of the tracking markers, a similar 

3D pose is generated.  In effect, this means that any video can be used to generate a series of 3D 

human poses.  The joint locations of the poses can then simply be plugged into any kind of 

character animation software and the actions of the original video can be acted out by any range 

of characters. 

 The second application of this type of software is for sports performance analysis.  A 

computer is capable of conveying large amounts of data after recording and monitoring an action 

performed by an athlete.  By simply tracking the individual points of the pose, the speed and 

direction of each individual joint can be calculated. 

Figure 7. The speed and direction of all four extremities are displayed through this gymnast’s balance 
beam performance. 

 

Even with such a simple setup, the velocity of various body parts can be analyzed, multiple 

frames can be used to calculate their respective accelerations, and overall efficiency can be 

hypothesized.  In addition to all of this, by simply including additional information with the pose, 

other aspects of the action can be examined.  Estimating the weight of the individual could yield 

information such as the amount of work done by different limbs or torque experienced by 

different joints. 
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6.2 Related Work 

Within the scope of this thesis, there has recently been some work done by other 

individuals, the most notable of which is Jinxiang Chai.  Professor Chai  currently teaches in the 

Department of Computer Science and Engineering at Texas A&M University.  His work includes 

generating human poses from still images [9] as well as video sequences [10].  The methods used 

are very similar, but differ in a few key points.  Professor Chai’s method still requires a user to 

mark key points within an image, however, 18 points of interest are necessary.  As a result, the 

human pose is defined by 17 line segments.  This system makes no assumptions about the 

lengths of the line segments, but as a tradeoff, five images are needed of a single pose in order to 

remove any ambiguity.   

 In addition to the above publications, Professor Chai has a publication describing a 

system that generates human poses based on a collection of millions of example poses [11].  This 

approach is very similar to the Gaussian mixture model prior used in this project. 

6.3 Future work 

 There are two major potential areas of improvement for this project.  The first is to have 

some way of automatically tracking 2D joint positions.  This was a problem for two reasons.  

First of all, many of the videos used were not very high quality.  Trying to find key points in a 

motion blurred image is a difficult task for a person, let alone a computer.  The 3D 

reconstruction is very much dependant on the accuracy of the joint locations.  A single outlier 

would almost certainly change a pose tremendously.  The second problem is occlusion.  This can 

either be the result of an object appearing between the camera and the person being recorded, or 

the person turning in such a way that they are only partially visible.  If some joint locations are 
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not tracked, then a 3D reconstruction would become meaningless because the human body would 

not be complete when inspected from different angles. 

The next major improvement that should be made is some form of collision detection.  

This collision detection can refer to either the body as it relates to touching itself or other objects 

in its immediate environment.  As it stands, the collection of points in a generated 3D human 

pose know little else than how to connect in order to form a stick figure.  Because of this, poses 

that have legs or arm crossed sometimes have one limb passing through another.  Problems like 

this could be avoided by adding the constraint that two limbs cannot simultaneously occupy 

some area in space. 

Overall, this software represents a good starting point for human pose reconstruction.  In 

addition to the possible applications described above, other future directions for this project 

include performance analysis, tracking multi-person interaction, or efficiently creating computer 

simulations involving people. 
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