
Robotic Swarm Networks: A Low-Cost Alternative Robotic Solution

for Surveillance, Documentation, and Resource Gathering

Ryan Gadsby, May 2010

Boston College Computer Science Departmen

ABSTRACT

From the surface of Mars, to terrestrial car factories, robots play an important role in

many aspects of human life. However, the limitations of robotic hardware – power consumption,

imprecise movement, and monetary cost chief among them - are often a massive obstacle to the

implementation of many possible applications of this technology. Swarm robotics provides

several methods of circumventing these roadblocks. Smaller, more primitive robots typically

consume less power and cost less money to develop than larger, more intricate machines.

However, by distributing tasks among multiple smaller robots, the same amount of work can be

accomplished as if we designated the same task to a single rover. The problem of imprecise

movement can be alleviated by using multiple robots to interpolate their estimated surroundings

with existing data instead of relying on a single machine's interpretation of its environments. By

using a large network consisting of low-cost robots, we can take a more cavalier approach to the

use of robots of exploration and reconnaissance: since even an inexpensive sensor on an

expensive machine might be irreplaceable and therefore limit the possible applications of a given

robot, a member of a swarm can disappear without inconveniencing its brothers unduly.

This thesis examines several different swarm network configurations and their

performance at tasks analogous to real-world applications of swarm technology. This is achieved

using a low-cost modular robotic controller developed by LEGO Mindstorms known as the NXT,

and installing a Java Virtual Machine on it to provide a hassle-free development platform. The

benefits of swarm technology are fully explored in the swarm's implementation as their collective

sensory input is used to form a “hive mind” accessible by any given member of the swarm.

I focused on the task of searching for an object in the physical environment, and

compared the time spent and general effectiveness of the swarm to a single bot equipped with

more sensors doing the same task.

INTRODUCTION

I. The growing role of robots in human society

Humanity has come to rely on robots in many aspects of society. In the industrial sector,

we have intricate, precise, robotic installations designed to either manufacture or inspect various

goods, such as automobiles. In the commercial sector, floor-crawling rovers vacuum floors, freely

available to anyone with the inclination and disposable income to do so. On the surface of Mars,

the twin observational rovers Spirit and Opportunity scour the dusty red landscape, transferring

the results of their examinations to NASA geologists. The U.S. Military deploys unmanned

aircraft for the purposes of reconnaissance without risking human life in the process. Surgical

robots are employed to aid doctors with delicate operations. Even everyday consumers can

purchase a Roomba robot to methodically vacuum their houses with no additional input on their

part besides turning it on. Robots are capable of performing tasks unsuitable or too dangerous for

humans to directly get involved with, and can even be called upon to undertake tasks that humans

deem too tedious or menial to waste human effort on. However, there are prominent difficulties

that arise where robotic technology is concerned that must be addressed in any attempt to harness

its benefits. This is especially true when considering mobile robots like rovers and walkers, the

primary types of automata used in swarm applications of robotic technology.

In January of 2004, NASA sent two robotic rovers to the surface of Mars – Spirit and

Opportunity. For the past six years they have been gathering vital geological data that will be

invaluable for any attempts to terraform the desert-like surface of the red planet. They have even

found potential evidence of former water bodies or even microbial life. Relying on robots to do a

job too costly, dangerous, and time-consuming for humans to perform is one of the foremost

applications of robotic technology. (Mars Exploration Rover project)

Robot-assisted or completely unmanned surgery has become a way for doctors to reliably

perform different operations with a degree of precision impossible to duplicate by human hands

alone. Robots can delicately perform minimally invasive tasks that human hands cannot, simply

because of the smaller size and locations of interaction that can be handled by machine. Robotic

surgical assistants are now frequently used in neurological, cardiological, and orthopedic

surgeries where even small amounts of error are intolerable. (Ahmed K; Khan MS; Vats A;

Nagpal K; Priest O; Patel V; Vecht JA; Ashrafian H, 2009)

The Roomba, an autonomous vacuuming robot designed for ordinary consumers has

become incredibly popular. As of September 2009, manufacturer iRobot has sold over 3 million

robots. Perhaps more importantly, thanks to this considerable presence in the consumer sector,

many Roomba users have taken an interest in robotics, going to far as to “hack” them with the aid

of introductory programming books available at any bookstore. This growing trend of humans

life becoming intertwined with robots even in everyday life is indicative of the advances made in

robotic technology over the past few decades. (http://www.irobot.com/sp.cfm?pageid=203)

II. Swarm robotics as opposed to conventional robotics

Swarm robotics is the application of many small, primitive robots to a problem as

opposed to using a single robot. Its study is derived from the inner workings and characteristics

of social insect swarms such as ants or bees. One of its goals is to replicate the swarm

intelligence that is naturally found in these organisms, and using this aspect to produce various

useful behaviors. For example, a “hive mind” can be formed by members of a swarm sharing

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.irobot.com/sp.cfm?pageid=203

their sensory data with each other. (K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, 2007)

Applications for swarm robotics present themselves at many levels of technology. Where

primitive swarm members are appropriate for doing a basic physical task - such as mining,

surveying, or foraging – swarms can be a preferable alternative to using human labor due to

health risks or general tedium. Where miniaturization is a factor, swarm robotics can be applied

to nanotechnology or micromachinery to handle distributed sensory tasks in the human body. By

decentralizing intelligence we allow for more primitive swarm members, instead relying on

parallel computation to perform tasks using macroscopic control over the entire swarm. As a

whole, however, swarm robotics has yet to emerge outside of the research sector, and there are no

current commercial, military, or recreational implementations of it. (Waldner, Jean-Baptiste ,

2007)

Current developments in swarm robotics include JASMINE, an open-source effort in

coordinating emulating biological swarm behavior using robots smaller than 3cm by 3cm. The

JASMINE robots themselves are incredibly primitive, sending wireless messages to each other on

rudimentary Bluetooth chips. For sensors, each is equipped with an array of IR devices that serve

as eyes. For locomotion the JASMINE robot only has two tiny electric servos, each one moving a

single wheel. These robots aren't truly capable of meaningful interaction with the physical world,

and are instead used to simulate and examine swarm behavior from a biological standpoint. They

can be compared in terms of complexity to either single cells such as members of a mold fungus.

(Schmickl and Crailsheim, 2006)

SYMBRION is another swarm configuration, based on swarm members sharing physical

resources by docking together to form structures and share energy. It explores the notion of

artificial evolution to see what behaviors the swarm will develop to accomplish a given task.

SYMBRION's entire platform is built on the concept of pervasive adaptiveness. When one

swarm member (or a subset of the swarm) 'figures out' how to accomplish something, the entire

swarm is able to capitalize upon this knowledge. This combination of simulating social insect

behavior with artificial evolution allows SYMBION swarms to perform tasks such as linking up

to form a bridge to transport virtual 'resources' or even members of the swarm itself. (Ficici,

Watson, Pollack, 1999)

REPLICATOR, a swarm designed to be fully self-sufficient by exhibiting self-assembling

and self-programming behavior. The individual robotic modules are larger and heavier than in

JASMINE or SYMBRION, but the same principles of interconnectedness and adaptation are

applied. REPLICATOR is more focused on creating sensor- and communication-rich modules

capable of assembling and programming new swarm members instead of relying on a fixed

number of swarm members or outside assistance for a given task. It is similar in configuration to

SYMBRION insofar that it relies on adaptive behavior to direct the overall intelligence of the

swarm, but the approach is different as a result of the greater complexity of individual swarm

members. (Jason Teo, 2004)

.

III. Problems with conventional robotic technology

The use of mobile robots – robots not permanently installed like factory assemblers –

carry in tow a significant number of problems that must be addressed to have their application to

any given problem worth the trouble. Mobile robots are not typically attached to any constant

power source, and so they are subject to the limitations of the whatever battery they are equipped

with. The movements of rovers and walkers tend to be rather imprecise and unreliable, making it

rather difficult to maneuver a robot to a specific, absolute location. Due to the time required to

design, calibrate, and then program and test these robots for whatever tasks and environments

they are required to encounter, robots tend to be rather costly to engineer in terms of time and,

subsequently, currency. As a result of these costs, it often becomes difficult to justify subjecting

these machines to harsh environments that may damage them. While addressable, these concerns

must weigh heavily in the mind of any engineer before making any attempt to approach a

problem from a robotic point of view.

Power consumption is one of the largest barriers to effectively applying robotic

technology to humanity's problems. Batteries simply do not last long enough to power a robot's

motors and sensors for many tasks, especially those which last a long time such as exploration. A

common solution is to use solar panels, such as on the Mars rovers Spirit and Opportunity, but

solar panels don't generate enough energy to keep robots functioning constantly, and certain

environmental factors can render them useless altogether. Robots need access either to a constant

energy source or intermittent contact with an energy source in order to maintain function as

much as possible. Robotic swarm networks have methods of circumventing this restriction. (Mei,

Lu, Hu, Lee 2005)

The electric motors utilized on rovers and walkers lead to problems with imprecise

movement that stunt robots' usefulness when it comes to reconnaissance and charting an area.

Even motors with tachometers that can specify precisely what angle to move the motor to can be

foiled by a change of topography, or uneven terrain. Conventional methods to circumvent this

problem involve using some sort of absolute locating method such as GPS, but this only helps a

robot know where it is, not where a given set of motor movements will take it. Some sort of

reckoning needs to be enforced, as the collective error accumulated by imprecise motor

movements will cause a robot to get “lost” very quickly. (Chung, Ojeda, Borenstein, 2001)

Another problem that must be overcome in order to find a reasonable robotic solution to a

given task is the cost to design, produce, and program a given robot. Once the actual hardware is

produced (after great care is taken to select the right array of motors and sensors to accomplish

the task at hand), a great deal of time is required to calibrate and program the robot to perform a

task as aptly as a human would. And even then, the final product of all this time and money is a

robot that handles a very specific task. Often we must make a decision of making a robot that

performs a single or limited subset of tasks as well as or better than a human, or making a robot

that can be applied less adeptly at a greater range of endeavors.

As a result of these imposing costs, we further limit the applications of robots in “unsafe”

environment. A team of engineers who spent fifteen million dollars on a rover would certainly be

reluctant to send it to observe a lava flow, especially when humans are quick-footed enough to do

it themselves without undue risk. Why program an automated unmanned airborne vehicle when

we can simply remote-control it and eliminate losing large financial investments due to an

uncaught buffer overflow? For the most part, building large intricate machines leaves us

completing tasks with robots that humans could accomplish as well or better, but are simply too

menial or tedious.

IV. The benefits of a robotic swarm as compared to a conventional robot

Luckily, swarm robotics provides many methods to circumvent these restrictions. By

spreading work out over many robots instead of using just one robot, we can distribute power

consumption in a manner that doesn't require the swarm to stop doing work. By using multiple

robots, we can use multiple perspectives as an additional form of reckoning to alleviate the

problem of imprecise mobility. Smaller, more primitive robots are less expensive to manufacture;

as a result individual swarm members are expendable and can therefore be sent to perform tasks

that could result in their incapacitation or destruction more readily.

In terms of power consumption, robotic swarms tend to have many advantages when

compared to larger, more complicated robots. Their smaller, more primitive motors, sensors, and

CPUs simply use less energy, although they are also typically equipped with smaller batteries.

However, since the swarm is composed of many smaller units, allowing one to rest and recharge

via solar panels or some sort of energy source allows the swarm to continue its work relatively

unimpeded. The collective capacity to do work before recharging in a swarm will be greater than

that done by a single robot, and work will always still be done even as individual members have

entered an inactive mode in order to recharge their batteries. (Schmickl and Crailsheim, 2006)

Imprecise movement is still a problem for robotic swarms, but swarms are better equipped

to meliorate the impact of the issue than singular robots. By being able to pinpoint or even

estimate each robot's position relative to its brothers, we can construct a much more reliable

model of a given robotic operation than relying on one robot's impressions of its surroundings.

Multiple cameras can be used to create a stereoptic analysis of a system, and the collective

estimations therein can be averaged to provide a realistic if imperfect snapshot of the

environment the swarm is deployed to. This way, we can have a proficient system of reckoning

without having to rely on a costly absolute system such as GPS or radar. (Moeslinger, Schmickl

and Crailsheim, 2009)

The emphasis on using many smaller, less sophisticated robots to perform a task in swarm

robotics is often a more cost-effective solution than having one or two intricate machines. Swarm

members are typically not designed with durability or multi-tasking in mind, and can therefore be

equipped with inexpensive sensors, motors, and CPUs. Some sensors can become very expensive

as higher qualities are necessary, such as cameras and infrared detectors, but we need not equip

every member of the swarm similarly. Indeed, using the sensor network of the entire swarm, it is

possible to have robots not equipped with sensors at all – individually blind, but directed by the

“hive-mind” of the swarm. (Schmickl and Crailsheim, 2006)

Because of the low cost of individual machines, members of a swarm can be viewed as

expendable, allowing them to perform tasks that one might think twice about using a single

expensive robot for. While we might be hesitant to send a multi-million dollar automated

submersible to examine undersea volcanic vents, a member of a swarm can perform this task ably

with a cheap camera and whatever relevant sensors while transmitting any data back to his

brothers before getting destroyed. This allows us to completely automate certain tasks that are

normally left to humans themselves – or at least humans remotely controlling robots – without

worry.

Aside from providing methods to overcome the main issues with mobile robotic

technology, swarm robotics gives us ways to perform tasks that would simply be infeasible for

normal robots. Robots tend to move sluggishly, and where time is an issue their employment is

often unattractive. One or two robots, no matter how sophisticated, are not an optimal way to

search for survivors in collapsed mine, to sniff out explosive devices in a sprawling urban

landscape, or to alert soldiers of intruders along a wide perimeter. A swarm, made of many

subunits, can cover ground much more quickly and survey a greater area, casting a wide sensor

net to find its objectives. The area covered by having multiple nodes contribute to the “hive

mind” of the entire swarm is a vital resource when time is a factor.

V. The drawbacks of using swarm technology

Swarm technology, however, is not without its drawbacks. Having to account for multiple

interconnected robots introduces many implementation difficulties, such as accounting for

missing nodes and needing to calibrate the sensors of many robots individually. As a result, the

number of variables that could cause something to go horribly wrong increase greatly, and must

be accounted for to have any reasonable application of swarm technology. Using more primitive

sensors and motors can also degrade the quality of the work done by the swarm. They are not

suitable for undertaking tasks that require very specific observations or sensory input, like

exhaustively exploring an entire area and surveying it to produce an accurate map.

With a single robot, one must only account for one set of sensors, one CPU, and one body

of code. This is sadly not so in a swarm. By having multiple robots equipped with a variety of

sensors on a robot-by-robot basis, there are several different protocols that must be accounted for

as the individual machines interact. In a completely networked approach this raises a great

number of possible interactions that must be taken into account, and even in a structured,

hierarchical swarm a different set of code is necessary for each level of command. Moreover,

simply having robots rely on each other for awareness of their surrounding raises several

networking issues that must be addressed. If we are assuming a node can disappear at any time –

expendability being one of the main reasons to employ a swarm – we must also provide a swarm

with the means to restructure itself when one of its members becomes absent.

Because there are so many robots in a swarm, there are a great many more variables that

must be accounted for when implementing any sort of swarm application. Unless all of the robots

in the swarm have the exact same hardware configuration, there will need to be multiple bodies

of code that must be designed, implemented, and debugged separately. Even if we encapsulate all

of the common elements of the swarm into one code base, the problems that arrive from the

different sets of sensors or motor configurations can lead to many problems. Time spent

debugging is increased dramatically as each build has to be uploaded to every bot in the swarm.

For example, it's easy to misdiagnose the odd behavior of one robot as a hardware fault when it

was simply overlooked while uploading the latest build.

Because the physical hardware swarm robots are equipped with tend not to be terribly

sophisticated, more problems arise. The lack of high-quality sensors and motors can make

swarms unsuitable for tasks that require detailed sensory feedback or delicate movement. For

example, equipping every robot in the swarm with a high resolution, telescopic lens camera

defeats the purpose of using a swarm as a cost-effective alternative to a single sophisticated

robot. They are better suited to tasks that merely require imprecise calculation: searching for the

general location of a resource, or estimating the depth of a cave, for example.

METHODOLOGY

1. The NXT Brick from LEGO Mindstorms

All swarm implementation was done in Java using ten Lego NXT “bricks” equipped with

leJOS firmware. These relatively inexpensive computers come in packages with modular,

interchangeable sensors and motors that made it easy to test different configurations. Moreover, a

third-party camera designed for the NXT was also used. Ten skeletal robots were assembled, and

several different network models were tested.

The NXT Brick itself possesses an ARM7 microprocessor clocked at the relatively

unimpressive speed of 46 megahertz and a meager cache of 32 kilobytes. While this is more than

enough computing power to handle basic motor, sensor, and communication routines, it severely

limits any sort of complicated data processing that can be done by the swarm without relying on

an external source. Luckily, the distributed nature of the swarm helps alleviate this drawback, as

computational tasks can be relegated to inactive members.

NXT Bricks can currently only interface with one type of motor, which is included in the

Mindstorms kit. It's an electric servo motor with a high degree of motion accuracy thanks to its

on-board tachometers: accurate to within one degree of specificity. Any sort of locomotive task –

either moving the robot itself or manipulating an object – was undertaken using one or more of

these motors.

The Mindstorms kit comes with a variety of sensors, and many third-party sensors have

been developed for the NXT brick. Included are:

● A touch sensor that simply gives binary feedback for touch or release.

● A light sensor that gives quantitative feedback of light intensity overall, or the

light intensity of certain colors.

● A sound sensor that gives quantitative levels of sound in either dB or dBA.

● An ultrasonic sensor that approximates the distance of an external object by

emitting an infrared “ping”.

● An accelerometer that measures the rotational position of the robot.

● A compass sensor to tell the heading of the robot with regards to magnetic north.

● An RFID sensor that gives feedback to match a given RFID frequency.

Moreover, cameras have been developed via third parities to give the robot a way of

visually interfacing with its environment. For this thesis, the NXTCam developed by <> was used

for this purpose. The proprietary sensors used were limited to the ones included in the

Mindstorms kit: the touch, light, sound, and ultrasonic sensors. This is because of the cost

associated with extra sensors whose function was either limited for the scope of this thesis or

could readily be duplicated with the other sensors.

The NXT brick has seven ports designed for 4-conductor cables to connect to: three for

motors labeled A,B, and C, and four for sensors with numeric labels. To keep the solution of

cost-effectiveness in mind, most of the bricks were equipped with only 2 motors and 2 or less

sensors. Many members of the swarm were not equipped with sensors at all. This kept each

member's functionality at bare minimal levels in order to demonstrate the power of the swarm as

a whole.

The NXT bricks have important limitations that accentuate the problem of using more

primitive hardware for a swarm as compared to a single robot. The most drastic limitation by far

is the connection limit of the NXT's on-board Bluecore chip that handles Bluetooth

communication. A given NXT brick may only maintain three connections at once, whether they

are to other NXT bricks or other Bluetooth devices such as a GPS receiver or a laptop. As such,

swarm structures were inherently limited to hierarchical configurations rather than fully-

connected graphs that a swarm would ideally possess. This could be worked around by deleting

and reinstating connections at runtime, but the significant increase in running time wasn't

justified when any data could be relayed through the hierarchy more quickly with the proper

network implementation.

The other limitation was the memory capacity of the NXT brick. Each brick only has

256K of flash memory, more than half of which was taken up by the leJOS firmware. This

limited not only the amount of Java classes that could be used in implementing the swarm's

behavior, but also the amount of persistent image data that could be relayed back to an external

source.

II. The leJOS custom firmware

The leJOS firmware is an open source project that enables the ability to put a Java Virtual

Machine on each NXT brick. This portable version of the JVM greatly eases the networking

issues of robotic implementation by allowing for the opportunity to keep code as high-level as

possible. Although other custom NXT firmware platforms were available, leJOS is currently the

only one that allows direct access to the NXT's Bluecore Bluetooth communications chip, which

was irreplaceable in allowing the individual members of the swarm to communicate with each

other.

leJOS can handle code for any class in the Java API as well as its own API that has

classes implemented for different kinds of motors and sensors. The code for a given class is

included at compile-time, so it's not hard-coded into the meager amount of memory used by the

firmware. Since we only have 256K worth of flash memory on the NXT – nearly half of it being

used up by the firmware itself – steps must be taken to conserve the remaining amount of

memory carefully. As such, it often is a smarter solution to use predefined arrays instead of

relying on generic Java List classes.

III. The CommandCenter Abstract Class

The abstract class that I designed to encapsulate swarm behavior is called

CommandCenter. It handles all of the communication between members of the swarm and is

responsible for making sure all messages and commands go to their intended recipients. It is

attached in its entirety in the appendix. Its design is that of a union of state machines that take

input from each other, so that once initiated the entire swarm is fully automated until its task is

complete or – in the case of a task that doesn't necessarily have a completion condition – shut

down externally.

CommandCenter – an abstract class – has any communication-related methods

implemented directly in the class. Subclasses, however, must implement swarm behavior

specifically by overriding the abstract method executeCommand(). In a loop, this method

essentially acts as state transition by using input from another robot to govern its own behavior to

put it in a different state, such as DOCUMENT_LOCATION, INVESTIGATE_POSITION, or

PERFORM_PHYSICAL_TASK. Three separate swarm configurations were implemented across

three separate levels of command, and so nine separate subclasses of CommandCenter were

implemented.

Each robot in the swarm is initialized with a x/y location and a facing vector. These

values are maintained by a MovementCenter object that each CommandCenter subclass object

has its own instance of. These positions are predetermined as there's no simple way to change

these at runtime thanks to the leJOS's lack of command line interface. The top member of the

swarm hierarchy maintains a list of all positions of members of the swarm, and the swarm is

initialized via the masters' requests for every member's position. After this, the swarm begins to

act autonomously, although behavior varies by swarm configuration.

The master maintains three separate connections to the mid-level members of the swarm,

and by alternating these it receives input for his CommandCenter state machine. The general

format for any commands or date sent are an operation code followed by a series of parameters,

usually a source/target robot, a location to move to, or even image data. The overall design of

swarm behavior is to make sure the master can force as much work as possible onto his

subordinates, who in turn find subordinates who are currently not doing anything. So, instead of

having a robot with a camera spend time processing image data, it instead distributes each color

channel to a separate subordinate so that it may continue on to the next objective point and take

more pictures. In a hierarchical swarm this process is absolutely necessary to keep the top-level

robot by being completely inundated with work.

For example, if a subcommander or leaf robot receives a DOCUMENT_LOCATION

signal from its superior, it then reads two more integer values – the target X and Y positions for

the target location. After individually deciding how to approach that position and taking a

picture, it reports back to its commander before re-entering the READY state, waiting for input

from its superior once more.

Each level of command had a different subclass of CommandCenter, although each

command level uses the same subclass in a given swarm configuration. The uniformity therein

makes each level much easier to manage. There is a different type of CommandCenter structure

for each swarm configuration as well. As stated, this resulted in nine total subclasses of

CommandCenter.

Each CommandCenter has an object called MovementCenter that track's the robots facing

and position and handles each robot's movement subroutines. It can be calibrated for any given

surface, and uses a Cartesian grid system relative to the starting position of the master robot in

the swarm. It can be told to go to a point, or to simply face a point. The amount of rotation and

movement are handled by using simple Cartesian distance formulas to calculate the distance, and

uses vector products to calculate the difference in degrees between the target facing and the

current facing. There are also several extra methods for moving away from a given point, or to

simply approach a point (which is useful for swarms equipped with cameras, since taking a

picture when the robot is at the point where the objective is supposed to be is often somewhat

less than useful.

IV. Swarm configuration Triforce

The first sensor configuration for the ten-strong swarm I used for this thesis is called

“Triforce”. Triforce features three camera-equipped robots that are directly subservient to the root

commander of the swarm. At the leaves of the swarm are 6 sensorless bricks that are used

primarily to store and calculate image data from the three camera robots. Relevant conclusions

(image blob location, etc) are sent back upwards through the swarm network and stored on the

leaves for later access by an external source. While equipped with motors, they are primarily

immobile, but can be used to interact with the environment on a basic level (such as holding a

position or pushing an object.) This leaves the root node to act as the sole investigator, looking

for appropriate areas or objects to send the cameras to using the ultrasonic sensor and the light

sensor. This multiple-camera setup can be used to simulate binocular (or trinocular) vision to

approximate real-world distance to an object, or to give a fuller perspective on a given object. It

could also be used to simply document an object or an environment from multiple perspectives

for the sake of completeness or redundancy of information.

V. Swarm configuration Parker

The second sensor configuration for the swarm is called “Parker”. It works essentially as

an inversion of the Triforce configuration. The root node is equipped with camera instead of the

second command level, and the second command level function as investigators using the light

and ultrasonic sensors. As in Triforce, the leaf robots are used to process data and perform simple

mundane tasks, as they are sensorless. Most importantly, however, they are used to relay objective

data to outside sources, alerting them to the position and condition of a given objective.

Compared to Triforce, Parker's strength lies in the ability to cover ground to find potential

objectives to document as quickly as possible. It is akin to a search-and-rescue or resource-

locating swarm as opposed to the observational nature of the Triforce configuration.

VI. Swarm configuration Gaga

Gaga, the last swarm configuration, differs from Triforce and Parker in that it is designed

to accomplish work by physically interacting with its environment. Here, the leaf robots are used

as worker drones to accomplish work. Its overall sensor configuration is similar to Parker: the

root node has a camera, and each of the subcommanders has a ultrasonic sensor and a light

sensor used to find objectives. The leaf node behavior is entirely different, however. Rather than

be used simply for calculating data from their respective parents, Gaga's leaf robots travel to

locations of interest designated by the swarm and simulate performing a physical task. This

swarm configuration is best-suited to a wide-scale environmental task such as taking soil samples

or agricultural foraging.

VII. The tasks

One task was chosen for each swarm configuration. The time taken to complete each task

was recorded for both the corresponding swarm and a single bot equipped to do each task on its

own. All of the “objectives” used in these tasks are simply red plastic cups placed at random

locations in the environment that the swarm (or single robot) explores. Three timed trials for each

swarm were taken.

The task for Triforce involves documenting an objective from several perspectives. For the

Triforce swarm, the root node is used to locate these objectives while the subcommanders

simultaneously document it using cameras. For the analogous single robot, the robot must do all

of the documentation from different perspectives himself. Leaf robots were used for the purpose

of simulating physical work.

The task for Parker involves thoroughly documenting and processing information about

objectives. The Parker root node handles documentation while the subcommanders handle

detection of objectives. Computation and processing this information is done by the leaf nodes.

In the corresponding single bot, all of this work – detection, documentation, and processing is

done by a single machine. Because image data can't be transferred using the NXTCam at runtime

due to the IC2 sensor port restrictions, dummy images of the NXTCam resolution was processed

to account for run-time. Capture time and transfer time are still taken into account for the swarm.

The data is then relayed to an external source, in keeping with Parker's theme of quickly

reporting objective locations for search-and-rescue style tasks.

The task for Gaga is similar to Parker's, but instead physical work must be performed on

the objectives. To simulate these actions, any robots defined as workers spin in place for 30

seconds at the objective to demonstrate a physical task, such as drilling or gathering a sample.

The singe robot must wait until this work is completed before it can continue searching for

another objective. In all other aspects, at the root commander and subcommander level, the task

is the same as that undertaken by the Parker swarm.

RESULTS

I. Multi-perspective documentation with a single investigator

Trial Number Swarm Time Single Robot Time

1 1:46 3:32

2 1:53 3:56

3 2:38 3:28

4 --- 3:36

5 2:07 3:45

II. Single-perspective documentation with multiple investigators

Trial Number Swarm Time Single Robot Time

1 1:23 1:53

2 1:34 2:12

3 2:01 2:34

4 1:46 2:59

5 1:16 1:57

III. Environment interaction with multiple investigators

Trial Number Swarm Time Single Robot Time

1 2:38 4:57

2 --- 4:01

3 --- 5:12

4 2:45 4:53

5 2:26 4:33

IV. Conclusions

The general trend with the NXT swarms was that they were consistently able to perform

their given tasks significantly faster than single robots. However, this only applies when the tasks

themselves were completed. Due to problems with pathing, reckoning, synchronization and

communication, colliding swarm members inhibited the swarm's ability to actually finish the task

at hand.

Parker, however, was unaffected by this as its immobile leaf robots and inherently

divergent subcommander movement patterns prevented any collisions. Triforce and Gaga, due to

their more active leaf robots, were more likely to experience a fatal crash that rendered their task

not completable.

This problem could have been alleviated by more efficient pathing algorithms, or

allowing the swarm to give a more thorough estimation of its current density at given locations as

environmental features to avoid.

REFERENCES

– Mars Exploration Rover project, NASA/JPL document NSS ISDC 2001 27/05/2001

– Ahmed K; Khan MS; Vats A; Nagpal K; Priest O; Patel V; Vecht JA; Ashrafian H; et al. (Oct

2009). Int J Surg. 7:431-440

– K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, An Architecture for Swarm Robots

p2-3

– Waldner, Jean-Baptiste (2007). Nanocomputers and Swarm Intelligence. London: ISTE .

pp. 242-p248

– Schmickl and Crailsheim, A navigational algorithm for swarm robotics inspired by slime

mold aggregation, Second SAB 2006

– Sevan G. Ficici, Richard A. Watson, Jordan B. Pollack, Embodied Evolution: A Response to

Challenges in Evolutionary Robotics, Eighth European Workshop on Learning Robots, 1999

– Jason Teo, Darwin + Robots = Evolutionary Robotics: Challenges in Automatic Robot

Synthesis , 2nd International Conference on Artificial Intelligence in Engineering and

Technology [ICAIET 2004], volume 1, pages 7-13, Kota Kinabalu, Sabah, Malaysia, August

2004

– Yongguo Mei, Yung-Hsiang Lu, Y. Charlie Hu, and C.S. George Lee: A Case Study of

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.symbrion.eu/tiki-download_file.php?fileId=409
http://www.symbrion.eu/tiki-download_file.php?fileId=409
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.symbrion.eu/tiki-download_file.php?fileId=407
http://www.symbrion.eu/tiki-download_file.php?fileId=407
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://en.wikipedia.org/wiki/ISTE
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf

Mobile Robot’s Energy Consumption and Conservation Techniques , pp4-5, 2005

– Hakyoung Chung , Lauro Ojeda, and Johann Borenstein, Sensor fusion for Mobile Robot
Dead-reckoning With a Precision-calibrated Fiber Optic Gyroscope , pp2-3, 2001 IEEE
International Conference on Robotics and Automation, Seoul, Korea, May 21-26, pp.
3588-3593

– Christoph Moeslinger1 , Thomas Schmickl1 , and Karl Crailsheim1: A Minimalist Flocking

Algorithm for Swarm Robots, 2009

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf

APPENDIX

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

abstract class CommandCenter{
protected List<BTConnection> con;
protected List<DataInputStream> in;
protected List<DataOutputStream> out;

public int botID;

protected MovementCenter thisBot;

public static final int BUSY=240;
public static final int NO_CHANGE=241;
public static final int CONFIRMED = 242;

public static final int INITIALIZE_LOCATIONS=250;
public static final int INVESTIGATE = 251;
public static final int DOCUMENTED = 252;
public static final int REPORT = 253;
public static final int WORK = 254;

public CommandCenter(int id, MovementCenter bot){
con = new ArrayList<BTConnection>();
in = new ArrayList<DataInputStream>();
out = new ArrayList<DataOutputStream>();
botID = id;
thisBot = bot;

}

public void addConnection(BTConnection btc){
if (con.size()<3){

con.add(btc);
in.add(btc.openDataInputStream());
out.add(btc.openDataOutputStream());

}
}
abstract void executeCommand() throws IOException,InterruptedException;

public void initialize() throws IOException{
//botLocation.add(botID, new Point(thisBot.getX(),thisBot.getY()));

//connect to parent
addConnection(Bluetooth.waitForConnection());
//connect to children
for (int i = 1; i<3;i++){

RemoteDevice rd = Bluetooth.getKnownDevice("Gadsby" +(i+botID));
addConnection(Bluetooth.connect(rd));

}
//good to go
ready = true;

}
public boolean isReady(){

return ready;
}

}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class TriforceCommand extends CommandCenter {
private UltrasonicSensor ultra;
private LightSensor light;
private Random gen;

private List<Point> botLocation;

private boolean autonomous;

public TriforceCommand(int id, MovementCenter bot){
super(id,bot);
gen = new Random();
ultra = new UltrasonicSensor(SensorPort.S1);
light = new LightSensor(SensorPort.S3);
botLocation = new ArrayList<Point>();
autonomous=true;
ready =true;

}

public void executeCommand() throws IOException, InterruptedException{
if(autonomous){//explore, then send

Thread.sleep(200); //let sensors warm up
if (ultra.getDistance() < 160 || light.readValue()>40){

Sound.playTone(1760,1000);
//found something, send notify children of coordinates!
this.requestInvestigation();

}
int dX = gen.nextInt(3);
int dY = gen.nextInt(3);
if (gen.nextInt()%2==1)

dX = dX*-1;
if (gen.nextInt()%2==1)

dY = dY*-1;
if (!locationOccupied(thisBot.getX()+dX,thisBot.getY()+dY))

thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY);

}
else{ //get data from children, interpret and act accordingly.

this.waitForDocumentation();
}

}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);
if (response != CommandCenter.BUSY && response !=

CommandCenter.NO_CHANGE){
//get botID and point, add it to locations.
botLocation.add(dis.readInt(),new

Point(dis.readInt(),dis.readInt()));
dos.writeInt(CommandCenter.CONFIRMED);

}
}catch(IOException e){

LCD.drawInt(34,0,0);
}

}
}

private void requestInvestigation()throws IOException, InterruptedException{
for (int i = 0; i<3;i++){

out.get(i).writeInt(CommandCenter.INVESTIGATE);
out.get(i).writeInt(thisBot.getX());
out.get(i).writeInt(thisBot.getY());
out.get(i).flush();

}
//move away from average swarm location
Point p = averageLocation();
thisBot.moveAwayFromPoint(p.x,p.y,4);
autonomous = false;

}

private Point averageLocation(){
int x=0;
int y = 0;
for (Point p : botLocation){

x += p.x;
y += p.y;

}
return new Point(x/botLocation.size(),y/botLocation.size());

}

private boolean locationOccupied(int x, int y){
for (Point p : botLocation){

if (x == p.x || y == p.y)
return true;

}
return false;

}

private void waitForDocumentation()throws IOException{
while (true){

for (int i = 0; i<3;i++){
int c = in.get(i).readInt();
if (c == CommandCenter.DOCUMENTED){

LCD.drawString("Bot " + i + " finished",i,i);
}

}
Button.waitForPress();

}
}

}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class TriforceSubcommand extends CommandCenter{
private NXTCam cam;

private boolean selfreported;
private boolean child1reported;
private boolean child2reported;

public TriforceSubcommand(int id, MovementCenter bot){
super(id,bot);
cam = new NXTCam(SensorPort.S1);
ready =false;
selfreported = false;
child1reported = false;
child2reported = false;

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.INVESTIGATE)
investigate();

}catch (IOException e){
}

}
}

private void initializeLocations() throws IOException{
LCD.drawInt(0,0,0);
if (!selfreported){

out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
selfreported=true;

}
else if (!child1reported){

out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
child2reported=true;

}
else if (!child2reported){

out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
child2reported=true;

}
else{

out.get(0).writeInt(CommandCenter.NO_CHANGE);
out.get(0).flush();

}
if (in.get(0).readInt() != CommandCenter.CONFIRMED) //something went wrong

Sound.playTone(1760,1000);
}

private void investigate() throws IOException,InterruptedException{
while (true){

try{
int x = in.get(0).readInt();
int y = in.get(0).readInt();

//go to location
thisBot.goToPoint(x,y);
//add camera stuff here
out.get(0).writeInt(CommandCenter.DOCUMENTED);
out.get(0).flush();
break;

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class TriforceLeaf extends CommandCenter{
public TriforceLeaf(int id, MovementCenter bot){

super(id,bot);
}
public void executeCommand() throws IOException,InterruptedException{

while (true){
try{

int command = in.get(0).readInt();
if (command == CommandCenter.INITIALIZE_LOCATIONS)

initializeLocations();
if (command == CommandCenter.INVESTIGATE)

investigate();
}catch (IOException e){
}

}
}

public void initialize() throws IOException{
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void investigate() throws IOException,InterruptedException{

while (true){
try{

int x = in.get(0).readInt();
int y = in.get(0).readInt();

//go to location
thisBot.goToPoint(x,y);
out.get(0).writeInt(CommandCenter.DOCUMENTED);
out.get(0).flush();
break;

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import java.util.*;

public class MovementCenter{
public static final int LATERAL_CONSTANT = 1500;
public static final double RADIAL_CONSTANT = .13;

private int posX;
private int posY;
private float dirX;
private float dirY;

public static void main(String[] args) throws InterruptedException{
MovementCenter thisBot = new MovementCenter(0,0,0f,1.0f);
Thread.sleep(3000); //3 second delay
thisBot.moveToFace(1,1);
thisBot.moveToFace(-1,-1);
thisBot.approachPoint(4,3);
thisBot.approachPoint(0,0);

}

public MovementCenter(int px, int py, float dx, float dy){
Motor.A.setPower(50);
Motor.C.setPower(50);
this.posX = px;
this.posY = py;
this.dirX = dx;
this.dirY = dy;

}

public void move(float munits) throws InterruptedException{
//positive is forward. Motors A and C are wheels.
if (munits>0){

Motor.A.forward();
Motor.C.forward();

}
if (munits<0){

Motor.A.backward();
Motor.C.backward();
munits = munits * -1;

}

Thread.sleep(Math.round(munits*LATERAL_CONSTANT));
Motor.A.stop();

Motor.C.stop();
//forced wait to keep motors from bucking with constant movement
Thread.sleep(200);

}

public void rotate(int degrees) throws InterruptedException{
//positive is counterclockwise
if (degrees>0){

Motor.A.forward();
Motor.C.backward();

}
if (degrees<0){

Motor.A.backward();
Motor.C.forward();
degrees = degrees * -1;

}
Thread.sleep((long)Math.round(50*degrees*RADIAL_CONSTANT));
Motor.A.stop();
Motor.C.stop();
Thread.sleep(200);

}

public void goToPoint(int x, int y) throws InterruptedException{

float v2x = x - posX;
float v2y = y - posY;
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) -

Math.atan2(dirY,dirX)));
this.rotate(angle);
float distance = (float)Math.sqrt((x-posX)*(x-posX)+(y-posY)*(y-posY));
this.move(distance);
posX = x;
posY= y;
//make new direction vector via projection of onto destination
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y);
dirX= v2x/length;
dirY= v2y/length;

}

public void moveToFace(int x, int y) throws InterruptedException{
//create vector, calculate angle
float v2x = x - posX;
float v2y = y - posY;
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) -

Math.atan2(dirY,dirX)));

this.rotate(angle);

//make new direction vector via projection of onto destination
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y);
dirX= v2x/length;
dirY= v2y/length;

}

public int getX(){
return posX;

}
public int getY(){

return posY;
}

public void approachPoint(int x, int y)throws InterruptedException{//get within 3 units of
target

int dx = this.posX - x;
int dy = this.posY - y;
int targetX=x, targetY=y;
if (dx > 0)

targetX = x+1;
if (dx < 0)

targetX = x-1;
if (dy > 0)

targetY = y+1;
if (dy < 0)

targetY = y-1;

this.goToPoint(targetX,targetY);
this.moveToFace(x,y);

}

public void moveAwayFromPoint(int x, int y, float distance) throws
InterruptedException{

//create vector, calculate angle and distance.
float v2x = x - posX;
float v2y = y - posY;

int angle = 180 - (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) -
Math.atan2(dirY,dirX)));

this.rotate(angle);
this.move(distance);

posX = x;
posY= y;
//make new direction vector via projection of onto destination
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y);

dirX= v2x/length;
dirY= v2y/length;

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class ParkerRootCommand extends CommandCenter{

private List<Point> botLocation;
private List<Rectangle> rects;
private NXTCam camera;

public ParkerRootCommand(int id, MovementCenter bot){
camera = new NXTCam(SensorPort.S1);
botLocation = new ArrayList<Point>();
rects = new ArrayList<Rectangle>();
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt();
if (command == CommandCenter.INVESTIGATE)

investigate();
else

reportResults();
}

}catch (IOException e){
}

}
}
private void reportResults() throws IOException{

//write results back to computer
con.get(0).close(); //because of three-connection limit
BTConnection c = Bluetooth.waitForConnection();
DataOutputStream dos = c.openDataOutputStream();
for (Rectangle rect:rects){

dos.writeInt(rect.x);
dos.writeInt(rect.y);
dos.writeInt(rect.width);
dos.writeInt(rect.height);
dos.flush();

}
}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);
if (response != CommandCenter.BUSY && response !=

CommandCenter.NO_CHANGE){
//get botID and point, add it to locations.
botLocation.add(dis.readInt(),new

Point(dis.readInt(),dis.readInt()));
dos.writeInt(CommandCenter.CONFIRMED);

}
}catch(IOException e){

LCD.drawInt(34,0,0);
}

}
}

private void investigate(int i) throws IOException,InterruptedException{
while (true){

try{
int x = in.get(i).readInt();
int y = in.get(i).readInt();

//go to location
thisBot.goToPoint(x,y);
//camera captures rect information and saves for later
Rectangle rect = cam.getRectangle(0);
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(),

rect.height,rect.weight); //records size and location of each tracked object
break;

}catch(IOException e){}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class ParkerSubcommand extends CommandCenter{
private UltrasonicSensor ultra;
private LightSensor light;
private Random gen;

private boolean autonomous;
private boolean ready;
private int botID;

public ParkerSubcommand(int id, MovementCenter bot){
gen = new Random();
ultra = new UltrasonicSensor(SensorPort.S1);
light = new LightSensor(SensorPort.S3);
autonomous=true;
super(id,bot);

}

public void executeCommand() throws IOException, InterruptedException{
if(autonomous){//explore, then send

Thread.sleep(200); //let sensors warm up
if (ultra.getDistance() < 160 || light.readValue()>40){

Sound.playTone(1760,1000);
//found something, send notify parent of coordinates!
this.requestInvestigation();

}
int dX = gen.nextInt(3);
int dY = gen.nextInt(3);
if (gen.nextInt()%2==1)

dX = dX*-1;
if (gen.nextInt()%2==1)

dY = dY*-1;
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY);

}
}

private void requestInvestigation()throws IOException, InterruptedException{

out.get(0).writeInt(CommandCenter.INVESTIGATE);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

out.get(1).writeInt(CommandCenter.REPORT);
out.get(1).writeInt(thisBot.getX());
out.get(1).writeInt(thisBot.getY());
out.get(1).flush();
out.get(2).writeInt(CommandCenter.REPORT);
out.get(2).writeInt(thisBot.getX());
out.get(2).writeInt(thisBot.getY());
out.get(2).flush();

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class ParkerLeaf extends CommandCenter{

public ParkerLeaf(int id, MovementCenter bot){
selfreported = false;
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.REPORT)
report();

}catch (IOException e){
}

}
}

public void initialize() throws IOException{
//connect to parent
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void report() throws IOException,InterruptedException{
while (true){

try{
int x = in.get(0).readInt();

int y = in.get(0).readInt();

addConnection(Bluetooth.waitForConnection());
in.get(1).writeInt(x);
in.get(1).writeInt(y);

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaRootCommand extends CommandCenter{

private List<Point> botLocation;
private List<Rectangle> rects;
private NXTCam camera;

public GagaRootCommand(int id, MovementCenter bot){
camera = new NXTCam(SensorPort.S1);
botLocation = new ArrayList<Point>();
rects = new ArrayList<Rectangle>();
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt();
if (command == CommandCenter.INVESTIGATE)

investigate();
else

reportResults();
}

}catch (IOException e){
}

}
}
private void reportResults() throws IOException{

//write results back to computer
con.get(0).close(); //because of three-connection limit
BTConnection c = Bluetooth.waitForConnection();
DataOutputStream dos = c.openDataOutputStream();
for (Rectangle rect:rects){

dos.writeInt(rect.x);
dos.writeInt(rect.y);
dos.writeInt(rect.width);
dos.writeInt(rect.height);
dos.flush();

}

}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);
if (response != CommandCenter.BUSY && response !=

CommandCenter.NO_CHANGE){
//get botID and point, add it to locations.
botLocation.add(dis.readInt(),new

Point(dis.readInt(),dis.readInt()));
dos.writeInt(CommandCenter.CONFIRMED);

}
}catch(IOException e){

LCD.drawInt(34,0,0);
}

}
}

private void investigate(int i) throws IOException,InterruptedException{
while (true){

try{
int x = in.get(i).readInt();
int y = in.get(i).readInt();

//go to location
thisBot.goToPoint(x,y);
//camera captures rect information and saves for later
Rectangle rect = cam.getRectangle(0);
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(),

rect.height,rect.weight); //records size and location of each tracked object
break;

}catch(IOException e){}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaSubcommand extends CommandCenter{
private UltrasonicSensor ultra;
private LightSensor light;
private Random gen;

private boolean autonomous;
private boolean ready;
private int botID;

public GagaSubcommand(int id, MovementCenter bot){
gen = new Random();
ultra = new UltrasonicSensor(SensorPort.S1);
light = new LightSensor(SensorPort.S3);
autonomous=true;
super(id,bot);

}

public void executeCommand() throws IOException, InterruptedException{
if(autonomous){//explore, then send

Thread.sleep(200); //let sensors warm up
if (ultra.getDistance() < 160 || light.readValue()>40){

Sound.playTone(1760,1000);
//found something, send notify parent of coordinates!
this.requestInvestigation();

}
int dX = gen.nextInt(3);
int dY = gen.nextInt(3);
if (gen.nextInt()%2==1)

dX = dX*-1;
if (gen.nextInt()%2==1)

dY = dY*-1;
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY);

}
}

private void requestInvestigation()throws IOException, InterruptedException{

out.get(0).writeInt(CommandCenter.INVESTIGATE);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
//send workers
out.get(1).writeInt(CommandCenter.WORK);
out.get(1).writeInt(thisBot.getX());
out.get(1).writeInt(thisBot.getY());
out.get(1).flush();
out.get(2).writeInt(CommandCenter.WORK);
out.get(2).writeInt(thisBot.getX());
out.get(2).writeInt(thisBot.getY());
out.get(2).flush();

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaLeaf extends CommandCenter{

public GagaLeaf(int id, MovementCenter bot){
super(id,bot);

}
public void executeCommand() throws IOException,InterruptedException{

while (true){
try{

int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.WORK)
work();

}catch (IOException e){
}

}
}

public void initialize() throws IOException{
//connect to parent
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void work() throws IOException,InterruptedException{
while (true){

try{
int x = in.get(0).readInt();
int y = in.get(0).readInt();

//go to location
thisBot.goToPoint(x,y);
out.get(0).writeInt(CONFIRMED);
out.get(0).flush();
thisBot.rotate(3600);
break;

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

