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ABSTRACT

From the surface of Mars, to terrestrial car factories, robots play an important role in 

many aspects of human life. However, the limitations of robotic hardware – power consumption, 

imprecise movement, and monetary cost chief among them - are often a massive obstacle to the 

implementation  of  many  possible  applications  of  this  technology.  Swarm  robotics  provides 

several  methods of  circumventing  these  roadblocks.  Smaller,  more  primitive robots  typically 

consume  less  power  and  cost  less  money  to  develop  than  larger,  more  intricate  machines. 

However, by distributing tasks among multiple smaller robots, the same amount of work can be 

accomplished as if we designated the same task to a single rover. The problem of imprecise 

movement can be alleviated by using multiple robots to interpolate their estimated surroundings 

with existing data instead of relying on a single machine's interpretation of its environments. By 

using a large network consisting of low-cost robots, we can take a more cavalier approach to the 

use  of  robots  of  exploration  and  reconnaissance:  since  even  an  inexpensive  sensor  on  an 

expensive machine might be irreplaceable and therefore limit the possible applications of a given 

robot,  a member of a swarm can disappear without inconveniencing its brothers unduly. 

This  thesis  examines  several  different  swarm  network  configurations  and  their 

performance at tasks analogous to real-world applications of swarm technology. This is achieved 

using a low-cost modular robotic controller developed by LEGO Mindstorms known as the NXT, 

and installing a Java Virtual Machine on it to provide a hassle-free development platform. The 

benefits of swarm technology are fully explored in the swarm's implementation as their collective 

sensory input is used to form a “hive mind” accessible by any given member of the swarm. 

I  focused  on  the  task  of  searching  for  an  object  in  the  physical  environment,  and 

compared the time spent and general effectiveness of the swarm to a single bot equipped with 

more sensors doing the same task.  



INTRODUCTION

I. The growing role of robots in human society

Humanity has come to rely on robots in many aspects of society. In the industrial sector, 

we have intricate, precise, robotic installations designed to either manufacture or inspect various 

goods, such as automobiles. In the commercial sector, floor-crawling rovers vacuum floors, freely 

available to anyone with the inclination and disposable income to do so. On the surface of Mars, 

the twin observational rovers Spirit and Opportunity scour the dusty red landscape, transferring 

the  results  of  their  examinations  to  NASA geologists.  The U.S.  Military  deploys  unmanned 

aircraft for the purposes of reconnaissance without risking human life in the process. Surgical 

robots  are  employed  to  aid  doctors  with  delicate  operations.  Even  everyday  consumers  can 

purchase a Roomba robot to methodically vacuum their houses with no additional input on their 

part besides turning it on. Robots are capable of performing tasks unsuitable or too dangerous for 

humans to directly get involved with, and can even be called upon to undertake tasks that humans 

deem too tedious or menial to waste human effort on. However, there are prominent difficulties 

that arise where robotic technology is concerned that must be addressed in any attempt to harness 

its benefits. This is especially true when considering mobile robots like rovers and walkers, the 

primary types of automata used in swarm applications of robotic technology.

In January of 2004, NASA sent two robotic rovers to the surface of Mars – Spirit and 

Opportunity. For the past six years they have been gathering vital geological data that will be 

invaluable for any attempts to terraform the desert-like surface of the red planet. They have even 

found potential evidence of former water bodies or even microbial life. Relying on robots to do a 



job too costly, dangerous, and time-consuming for humans to perform is one of the foremost 

applications of robotic technology. (Mars Exploration Rover project)

Robot-assisted or completely unmanned surgery has become a way for doctors to reliably 

perform different operations with a degree of precision impossible to duplicate by human hands 

alone. Robots can delicately perform minimally invasive tasks that human hands cannot, simply 

because of the smaller size and locations of interaction that can be handled by machine. Robotic 

surgical  assistants  are  now  frequently  used  in  neurological,  cardiological,  and  orthopedic 

surgeries where even small  amounts of error are intolerable.  (Ahmed K; Khan MS; Vats A; 

Nagpal K; Priest O; Patel V; Vecht JA; Ashrafian H, 2009)

The  Roomba,  an  autonomous  vacuuming  robot  designed  for  ordinary  consumers  has 

become incredibly popular. As of September 2009, manufacturer iRobot has sold over 3 million 

robots. Perhaps more importantly, thanks to this considerable presence in the consumer sector, 

many Roomba users have taken an interest in robotics, going to far as to “hack” them with the aid 

of introductory programming books available at any bookstore. This growing trend of humans 

life becoming intertwined with robots even in everyday life is indicative of the advances made in 

robotic technology over the past few decades. (http://www.irobot.com/sp.cfm?pageid=203)

II. Swarm robotics as opposed to conventional robotics

Swarm robotics is the application of many small, primitive robots to a problem as 

opposed to using a single robot. Its study is derived from the inner workings and characteristics 

of social insect swarms such as ants or bees. One of its goals is to replicate the swarm 

intelligence that is naturally found in these organisms, and using this aspect to produce various 

useful behaviors. For example, a “hive mind” can be formed by members of a swarm sharing 

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.irobot.com/sp.cfm?pageid=203


their sensory data with each other. (K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, 2007)

Applications for swarm robotics present themselves at many levels of technology. Where 

primitive swarm members are appropriate for doing a basic physical task - such as mining, 

surveying, or foraging – swarms can be a preferable alternative to using human labor due to 

health risks or general tedium. Where miniaturization is a factor, swarm robotics can be applied 

to nanotechnology or micromachinery to handle distributed sensory tasks in the human body. By 

decentralizing intelligence we allow for more primitive swarm members, instead relying on 

parallel computation to perform tasks using macroscopic control over the entire swarm. As a 

whole, however, swarm robotics has yet to emerge outside of the research sector, and there are no 

current commercial, military, or recreational implementations of it. (Waldner, Jean-Baptiste ,

2007)

Current developments in swarm robotics include JASMINE, an open-source effort in 

coordinating emulating biological swarm behavior using robots smaller than 3cm by 3cm. The 

JASMINE robots themselves are incredibly primitive, sending wireless messages to each other on 

rudimentary Bluetooth chips. For sensors, each is equipped with an array of IR devices that serve 

as eyes. For locomotion the JASMINE robot only has two tiny electric servos, each one moving a 

single wheel. These robots aren't truly capable of meaningful interaction with the physical world, 

and are instead used to simulate and examine swarm behavior from a biological standpoint.  They 

can be compared in terms of complexity to either single cells such as members of a mold fungus. 

(Schmickl and Crailsheim, 2006)

SYMBRION is another swarm configuration, based on swarm members sharing physical 

resources by docking together to form structures and share energy. It explores the notion of 

artificial evolution to see what behaviors the swarm will develop to accomplish a given task. 

SYMBRION's entire platform is built on the concept of pervasive adaptiveness. When one 



swarm member (or a subset of the swarm) 'figures out' how to accomplish something, the entire 

swarm is able to capitalize upon this knowledge. This combination of simulating social insect 

behavior with artificial evolution allows SYMBION swarms to perform tasks such as linking up 

to form a bridge to transport virtual 'resources' or even members of the swarm itself. (Ficici, 

Watson, Pollack, 1999)

REPLICATOR, a swarm designed to be fully self-sufficient by exhibiting self-assembling 

and self-programming behavior. The individual robotic modules are larger and heavier than in 

JASMINE or SYMBRION, but the same principles of interconnectedness and adaptation are 

applied. REPLICATOR is more focused on creating sensor- and communication-rich modules 

capable of assembling and programming new swarm members instead of relying on a fixed 

number of swarm members or outside assistance for a given task. It is similar in configuration to 

SYMBRION insofar that it relies on adaptive behavior to direct the overall intelligence of the 

swarm, but the approach is different as a result of the greater complexity of individual swarm 

members. (Jason Teo, 2004)

.

III. Problems with conventional robotic technology

The use of mobile robots – robots not permanently installed like factory assemblers – 

carry in tow a significant number of problems that must be addressed to have their application to 

any given problem worth the trouble. Mobile robots are not typically attached to any constant 

power source, and so they are subject to the limitations of the whatever battery they are equipped 

with. The movements of rovers and walkers tend to be rather imprecise and unreliable, making it 

rather difficult to maneuver a robot to a specific, absolute location. Due to the time required to 

design, calibrate, and then program and test these robots for whatever tasks and environments 



they are required to encounter, robots tend to be rather costly to engineer in terms of time and, 

subsequently, currency. As a result of these costs, it often becomes difficult to justify subjecting 

these machines to harsh environments that may damage them. While addressable, these concerns 

must  weigh  heavily  in  the  mind  of  any  engineer  before  making  any  attempt  to  approach  a 

problem from a robotic point of view.

Power  consumption  is  one  of  the  largest  barriers  to  effectively  applying  robotic 

technology to humanity's problems. Batteries simply do not last long enough to power a robot's 

motors and sensors for many tasks, especially those which last a long time such as exploration. A 

common solution is to use solar panels, such as on the Mars rovers Spirit and Opportunity, but 

solar  panels  don't  generate  enough energy to keep robots  functioning constantly,  and certain 

environmental factors can render them useless altogether. Robots need access either to a constant 

energy source or intermittent contact with an energy source in order to maintain function as 

much as possible. Robotic swarm networks have methods of circumventing this restriction. (Mei, 

Lu, Hu, Lee  2005)

The  electric  motors  utilized  on  rovers  and  walkers  lead  to  problems  with  imprecise 

movement that stunt robots' usefulness when it comes to reconnaissance and charting an area. 

Even motors with tachometers that can specify precisely what angle to move the motor to can be 

foiled by a change of topography, or uneven terrain. Conventional methods to circumvent this 

problem involve using some sort of absolute locating method such as GPS, but this only helps a 

robot know where it is, not where a given set of motor movements will take it. Some sort of 

reckoning  needs  to  be  enforced,  as  the  collective  error  accumulated  by  imprecise  motor 

movements will cause a robot to get “lost” very quickly. (Chung, Ojeda, Borenstein, 2001)

Another problem that must be overcome in order to find a reasonable robotic solution to a 

given task is the cost to design, produce, and program a given robot. Once the actual hardware is 



produced (after great care is taken to select the right array of motors and sensors to accomplish 

the task at hand), a great deal of time is required to calibrate and program the robot to perform a 

task as aptly as a human would. And even then, the final product of all this time and money is a 

robot that handles a very specific task. Often we must make a decision of making a robot that 

performs a single or limited subset of tasks as well as or better than a human, or making a robot 

that can be applied less adeptly at a greater range of endeavors.  

As a result of these imposing costs, we further limit the applications of robots in “unsafe” 

environment. A team of engineers who spent fifteen million dollars on a rover would certainly be 

reluctant to send it to observe a lava flow, especially when humans are quick-footed enough to do 

it themselves without undue risk. Why program an automated unmanned airborne vehicle when 

we  can  simply  remote-control  it  and  eliminate  losing  large  financial  investments  due  to  an 

uncaught  buffer  overflow?  For  the  most  part,  building  large  intricate  machines  leaves  us 

completing tasks with robots that humans could accomplish as well or better, but are simply too 

menial or tedious. 

IV. The benefits of a robotic swarm as compared to a conventional robot

Luckily,  swarm robotics  provides  many  methods  to  circumvent  these  restrictions.  By 

spreading work out over many robots instead of using just one robot, we can distribute power 

consumption in a manner that doesn't require the swarm to stop doing work. By using multiple 

robots,  we can use multiple  perspectives  as  an additional  form of  reckoning to  alleviate  the 

problem of imprecise mobility. Smaller, more primitive robots are less expensive to manufacture; 

as a result individual swarm members  are expendable and can therefore be sent to perform tasks 

that could result in their incapacitation or destruction more readily.



In terms of power consumption,  robotic  swarms tend to have many advantages  when 

compared to larger, more complicated robots. Their smaller, more primitive motors, sensors, and 

CPUs simply use less energy, although they are also typically equipped with smaller batteries. 

However, since the swarm is composed of many smaller units, allowing one to rest and recharge 

via solar panels or some sort of energy source allows the swarm to continue its work relatively 

unimpeded. The collective capacity to do work before recharging in a swarm will be greater than 

that done by a single robot, and work will always still be done even as individual members have 

entered an inactive mode in order to recharge their batteries. (Schmickl and Crailsheim, 2006)

Imprecise movement is still a problem for robotic swarms, but swarms are better equipped 

to meliorate  the impact of the issue than singular robots.  By being able to pinpoint or even 

estimate each robot's position relative to its brothers, we can construct a much more reliable 

model of a given robotic operation than relying on one robot's impressions of its surroundings. 

Multiple  cameras  can be used to  create  a  stereoptic  analysis  of  a  system, and the collective 

estimations  therein  can  be  averaged  to  provide  a  realistic  if  imperfect  snapshot  of  the 

environment the swarm is deployed to. This way, we can have a proficient system of reckoning 

without having to rely on a costly absolute system such as GPS or radar. (Moeslinger, Schmickl 

and Crailsheim, 2009)

The emphasis on using many smaller, less sophisticated robots to perform a task in swarm 

robotics is often a more cost-effective solution than having one or two intricate machines. Swarm 

members are typically not designed with durability or multi-tasking in mind, and can therefore be 

equipped with inexpensive sensors, motors, and CPUs. Some sensors can become very expensive 

as higher qualities are necessary, such as cameras and infrared detectors, but we need not equip 

every member of the swarm similarly. Indeed, using the sensor network of the entire swarm, it is 

possible to have robots not equipped with sensors at all – individually blind, but directed by the 



“hive-mind” of the swarm. (Schmickl and Crailsheim, 2006)

Because of the low cost of individual machines, members of a swarm can be viewed as 

expendable,  allowing them to perform tasks that one might think twice about using a single 

expensive  robot  for.  While  we  might  be  hesitant  to  send  a  multi-million  dollar  automated 

submersible to examine undersea volcanic vents, a member of a swarm can perform this task ably 

with  a  cheap camera  and whatever  relevant  sensors  while  transmitting  any data  back  to  his 

brothers before getting destroyed. This allows us to completely automate certain tasks that are 

normally left to humans themselves – or at least humans remotely controlling robots – without 

worry.

Aside  from  providing  methods  to  overcome  the  main  issues  with  mobile  robotic 

technology, swarm robotics gives us ways to perform tasks that would simply be infeasible for 

normal robots. Robots tend to move sluggishly, and where time is an issue their employment is 

often unattractive. One or two robots, no matter how sophisticated, are not an optimal way to 

search  for  survivors  in  collapsed  mine,  to  sniff  out  explosive  devices  in  a  sprawling  urban 

landscape,  or to alert  soldiers of intruders along a wide perimeter.  A swarm, made of many 

subunits, can cover ground much more quickly and survey a greater area, casting a wide sensor 

net to find its objectives. The area covered by having multiple nodes contribute to the “hive 

mind” of the entire swarm is a vital resource when time is a factor. 

V. The drawbacks of using swarm technology

Swarm technology, however, is not without its drawbacks. Having to account for multiple 

interconnected  robots  introduces  many  implementation  difficulties,  such  as  accounting  for 

missing nodes and needing to calibrate the sensors of many robots individually. As a result, the 



number of variables that could cause something to go horribly wrong increase greatly, and must 

be accounted for to have any reasonable application of swarm technology. Using more primitive 

sensors and motors can also degrade the quality of the work done by the swarm. They are not 

suitable  for  undertaking  tasks  that  require  very  specific  observations  or  sensory  input,  like 

exhaustively exploring an entire area and surveying it to produce an accurate map.

With a single robot, one must only account for one set of sensors, one CPU, and one body 

of code. This is sadly not so in a swarm. By having multiple robots equipped with a variety of 

sensors on a robot-by-robot basis, there are several different protocols that must be accounted for 

as  the  individual  machines  interact.  In  a  completely  networked  approach  this  raises  a  great 

number  of  possible  interactions  that  must  be  taken  into  account,  and  even  in  a  structured, 

hierarchical swarm a different set of code is necessary for each level of command. Moreover, 

simply  having  robots  rely  on  each  other  for  awareness  of  their  surrounding  raises  several 

networking issues that must be addressed. If we are assuming a node can disappear at any time – 

expendability being one of the main reasons to employ a swarm – we must also provide a swarm 

with the means to restructure itself when one of its members becomes absent.

Because there are so many robots in a swarm, there are a great many more variables that 

must be accounted for when implementing any sort of swarm application. Unless all of the robots 

in the swarm have the exact same hardware configuration, there will need to be multiple bodies 

of code that must be designed, implemented, and debugged separately. Even if we encapsulate all 

of the common elements of the swarm into one code base, the problems that arrive from the 

different  sets  of  sensors  or  motor  configurations  can  lead  to  many  problems.  Time  spent 

debugging is increased dramatically as each build has to be uploaded to every bot in the swarm. 

For example, it's easy to misdiagnose the odd behavior of one robot as a hardware fault when it 

was simply overlooked while uploading the latest build.



Because the physical hardware swarm robots are equipped with tend not to be terribly 

sophisticated,  more  problems  arise.  The  lack  of  high-quality  sensors  and  motors  can  make 

swarms unsuitable for tasks that require detailed sensory feedback or delicate movement. For 

example,  equipping every robot  in  the swarm with a  high resolution,  telescopic lens  camera 

defeats  the purpose of using a swarm as a cost-effective alternative to a single sophisticated 

robot. They are better suited to tasks that merely require imprecise calculation: searching for the 

general location of a resource, or estimating the depth of a cave, for example. 



METHODOLOGY

1. The NXT Brick from LEGO Mindstorms

All swarm implementation was done in Java using ten Lego NXT “bricks” equipped with 

leJOS  firmware.  These  relatively  inexpensive  computers  come  in  packages  with  modular, 

interchangeable sensors and motors that made it easy to test different configurations. Moreover, a 

third-party camera designed for the NXT was also used. Ten skeletal robots were assembled, and 

several different network models were tested.  

The  NXT  Brick  itself  possesses  an  ARM7  microprocessor  clocked  at  the  relatively 

unimpressive speed of 46 megahertz and a meager cache of 32 kilobytes. While this is more than 

enough computing power to handle basic motor, sensor, and communication routines, it severely 

limits any sort of complicated data processing that can be done by the swarm without relying on 

an external source. Luckily, the distributed nature of the swarm helps alleviate this drawback, as 

computational tasks can be relegated to inactive members.

NXT Bricks can currently only interface with one type of motor, which is included in the 

Mindstorms kit. It's an electric servo motor with a high degree of motion accuracy thanks to its 

on-board tachometers: accurate to within one degree of specificity. Any sort of locomotive task – 

either moving the robot itself or manipulating an object – was undertaken using one or more of 

these motors.

The Mindstorms kit comes with a variety of sensors, and many third-party sensors have 

been developed for the NXT brick. Included are:

● A touch sensor that simply gives binary feedback for touch or release.

● A light sensor that gives quantitative feedback of light intensity overall,  or the 



light intensity of certain colors.

● A sound sensor that gives quantitative levels of sound in either dB or dBA.

● An ultrasonic  sensor  that  approximates  the  distance  of  an  external  object  by 

emitting an infrared “ping”.

● An accelerometer that measures the rotational position of the robot.

● A compass sensor to tell the heading of the robot with regards to magnetic north.

● An RFID sensor that gives feedback to match a given RFID frequency.

Moreover,  cameras have been developed via  third parities to  give the robot a way of 

visually interfacing with its environment. For this thesis, the NXTCam developed by <> was used 

for  this  purpose.  The  proprietary  sensors  used  were  limited  to  the  ones  included  in  the 

Mindstorms  kit:  the  touch,  light,  sound,  and  ultrasonic  sensors.  This  is  because  of  the  cost 

associated with extra sensors whose function was either limited for the scope of this thesis or 

could readily be duplicated with the other sensors. 

The NXT brick has seven ports designed for 4-conductor cables to connect to: three for 

motors labeled A,B, and C, and four for sensors with numeric labels. To keep the solution of 

cost-effectiveness in mind, most of the bricks were equipped with only 2 motors and 2 or less 

sensors. Many members of the swarm were not equipped with sensors at  all.  This kept each 

member's functionality at bare minimal levels in order to demonstrate the power of the swarm as 

a whole.  

The NXT bricks have important limitations that accentuate the problem of using more 

primitive hardware for a swarm as compared to a single robot. The most drastic limitation by far 

is  the  connection  limit  of  the  NXT's  on-board  Bluecore  chip  that  handles  Bluetooth 

communication. A given NXT brick may only maintain three connections at once, whether they 

are to other NXT bricks or other Bluetooth devices such as a GPS receiver or a laptop. As such, 



swarm  structures  were  inherently  limited  to  hierarchical  configurations  rather  than  fully-

connected graphs that a swarm would ideally possess. This could be worked around by deleting 

and  reinstating  connections  at  runtime,  but  the  significant  increase  in  running  time  wasn't 

justified when any data could be relayed through the hierarchy more quickly with the proper 

network implementation.

The other limitation was the memory capacity of the NXT brick. Each brick only has 

256K of flash memory, more than half  of which was taken up by the leJOS firmware. This 

limited not only the amount of Java classes that could be used in implementing the swarm's 

behavior, but also the amount of persistent image data that could be relayed back to an external 

source.   

II. The leJOS custom firmware

The leJOS firmware is an open source project that enables the ability to put a Java Virtual 

Machine on each NXT brick. This portable version of the JVM greatly eases the networking 

issues of robotic implementation by allowing for the opportunity to keep code as high-level as 

possible. Although other custom NXT firmware platforms were available, leJOS is currently the 

only one that allows direct access to the NXT's Bluecore Bluetooth communications chip, which 

was irreplaceable in allowing the individual members of the swarm to communicate with each 

other.

leJOS can handle code for any class in the Java API as well as its own API that has 

classes implemented for different kinds of motors and sensors. The code for a given class is 

included at compile-time, so it's not hard-coded into the meager amount of memory used by the 

firmware. Since we only have 256K worth of flash memory on the NXT – nearly half of it being 



used up  by the  firmware itself  –  steps  must  be  taken to  conserve the  remaining  amount  of 

memory carefully. As such, it often is a smarter solution to use predefined arrays instead of 

relying on generic Java List classes. 

III. The CommandCenter Abstract Class

The  abstract  class  that  I  designed  to  encapsulate  swarm  behavior  is  called 

CommandCenter. It handles all of the communication between members of the swarm and is 

responsible for making sure all messages and commands go to their intended recipients. It is 

attached in its entirety in the appendix. Its design is that of a union of state machines that take 

input from each other, so that once initiated the entire swarm is fully automated until its task is 

complete or – in the case of a task that doesn't necessarily have a completion condition – shut 

down externally.

CommandCenter  –  an  abstract  class  –  has  any  communication-related  methods 

implemented  directly  in  the  class.  Subclasses,  however,  must  implement  swarm  behavior 

specifically  by  overriding  the  abstract  method  executeCommand().  In  a  loop,  this  method 

essentially acts as state transition by using input from another robot to govern its own behavior to 

put it in a different state, such as DOCUMENT_LOCATION, INVESTIGATE_POSITION, or 

PERFORM_PHYSICAL_TASK. Three separate swarm configurations were implemented across 

three separate  levels  of command,  and so nine separate  subclasses of  CommandCenter  were 

implemented. 

Each robot in  the swarm is  initialized with a x/y location and a facing vector.  These 

values are maintained by a MovementCenter object that each CommandCenter subclass object 

has its own instance of. These positions are predetermined as there's no simple way to change 



these at runtime thanks to the leJOS's lack of command line interface. The top member of the 

swarm hierarchy maintains a list of all positions of members of the swarm, and the swarm is 

initialized via the masters' requests for every member's position. After this, the swarm begins to 

act autonomously, although behavior varies by swarm configuration.

The master maintains three separate connections to the mid-level members of the swarm, 

and by alternating these it receives input for his CommandCenter state machine. The general 

format for any commands or date sent are an operation code followed by a series of parameters, 

usually a source/target robot, a location to move to, or even image data. The overall design of 

swarm  behavior  is  to  make  sure  the  master  can  force  as  much  work  as  possible  onto  his 

subordinates, who in turn find subordinates who are currently not doing anything. So, instead of 

having a robot with a camera spend time processing image data, it instead distributes each color 

channel to a separate subordinate so that it may continue on to the next objective point and take 

more pictures. In a hierarchical swarm this process is absolutely necessary to keep the top-level 

robot by being completely inundated with work. 

For  example,  if  a  subcommander  or  leaf  robot  receives  a  DOCUMENT_LOCATION 

signal from its superior, it then reads two more integer values – the target X and Y positions for 

the  target  location.  After  individually  deciding  how  to  approach  that  position  and  taking  a 

picture,  it reports back to its commander before re-entering the READY state, waiting for input 

from its superior once more.

Each  level  of  command  had  a  different  subclass  of  CommandCenter,  although  each 

command level uses the same subclass in a given swarm configuration. The uniformity therein 

makes each level much easier to manage. There is a different type of CommandCenter structure 

for  each  swarm  configuration  as  well.   As  stated,  this  resulted  in  nine  total  subclasses  of 

CommandCenter.



Each CommandCenter has an object called MovementCenter that track's the robots facing 

and position and handles each robot's movement subroutines. It can be calibrated for any given 

surface, and uses a Cartesian grid system relative to the starting position of the master robot in 

the swarm. It can be told to go to a point, or to simply face a point. The amount of rotation and 

movement are handled by using simple Cartesian distance formulas to calculate the distance, and 

uses vector products to calculate  the difference in degrees between the target facing and the 

current facing. There are also several extra methods for moving away from a given point, or to 

simply approach a point  (which is  useful  for swarms equipped with cameras,  since taking a 

picture when the robot is at the point where the objective is supposed to be is often somewhat 

less than useful.

IV. Swarm configuration Triforce

The first sensor configuration for the ten-strong swarm I used for this thesis is called 

“Triforce”. Triforce features three camera-equipped robots that are directly subservient to the root 

commander  of  the swarm. At the leaves  of the swarm are 6  sensorless  bricks that  are  used 

primarily to store and calculate image data from the three camera robots. Relevant conclusions 

(image blob location, etc) are sent back upwards through the swarm network and stored on the 

leaves for later access by an external source. While equipped with motors, they are primarily 

immobile, but can be used to interact with the environment on a basic level (such as holding a 

position or pushing an object.) This leaves the root node to act as the sole investigator, looking 

for appropriate areas or objects to send the cameras to using the ultrasonic sensor and the light 

sensor. This multiple-camera setup can be used to simulate binocular (or trinocular) vision to 

approximate real-world distance to an object, or to give a fuller perspective on a given object. It 



could also be used to simply document an object or an environment from multiple perspectives 

for the sake of completeness or redundancy of information.

V. Swarm configuration Parker

The second sensor configuration for the swarm is called “Parker”. It works essentially as 

an inversion of the Triforce configuration. The root node is equipped with camera instead of the 

second command level, and the second command level function as investigators using the light 

and ultrasonic sensors. As in Triforce, the leaf robots are used to process data and perform simple 

mundane tasks, as they are sensorless. Most importantly, however, they are used to relay objective 

data  to  outside  sources,  alerting  them  to  the  position  and  condition  of  a  given  objective. 

Compared  to  Triforce,  Parker's  strength  lies  in  the  ability  to  cover  ground to  find  potential 

objectives  to document as quickly as  possible.  It  is  akin to a  search-and-rescue or resource-

locating swarm as opposed to the observational nature of the Triforce configuration.

VI. Swarm configuration Gaga

Gaga, the last swarm configuration, differs from Triforce and Parker in that it is designed 

to accomplish work by physically interacting with its environment. Here, the leaf robots are used 

as worker drones to accomplish work. Its overall sensor configuration is similar to Parker: the 

root node has a camera, and each of the subcommanders has a ultrasonic sensor and a light 

sensor used to find objectives. The leaf node behavior is entirely different, however. Rather than 

be used simply for calculating data from their respective parents, Gaga's leaf robots travel to 

locations  of interest  designated by the swarm and simulate  performing a physical  task.  This 



swarm configuration is best-suited to a wide-scale environmental task such as taking soil samples 

or agricultural foraging.

VII. The tasks

One task was chosen for each swarm configuration. The time taken to complete each task 

was recorded for both the corresponding swarm and a single bot equipped to do each task on its 

own. All of the “objectives” used in these tasks are simply red plastic cups placed at random 

locations in the environment that the swarm (or single robot) explores. Three timed trials for each 

swarm were taken. 

The task for Triforce involves documenting an objective from several perspectives. For the 

Triforce  swarm,  the  root  node  is  used  to  locate  these  objectives  while  the  subcommanders 

simultaneously document it using cameras. For the analogous  single robot, the robot must do all 

of the documentation from different perspectives himself. Leaf robots were used for the purpose 

of simulating physical work.

The task for Parker involves thoroughly documenting and processing information about 

objectives.  The  Parker  root  node  handles  documentation  while  the  subcommanders  handle 

detection of objectives. Computation and processing this information is done by the leaf nodes. 

In the corresponding single bot, all of this work – detection, documentation, and processing is 

done by a single machine. Because image data can't be transferred using the NXTCam at runtime 

due to the IC2 sensor port restrictions, dummy images of the NXTCam resolution was processed 

to account for run-time. Capture time and transfer time are still taken into account for the swarm. 

The  data  is  then  relayed  to  an  external  source,  in  keeping  with  Parker's  theme  of  quickly 

reporting objective locations for search-and-rescue style tasks.



The task for Gaga is similar to Parker's, but instead physical work must be performed on 

the objectives. To simulate these actions, any robots defined as workers spin in place for 30 

seconds at the objective to demonstrate a physical task, such as drilling or gathering a sample. 

The singe robot must wait  until  this  work is  completed before it  can continue searching for 

another objective. In all other aspects, at the root commander and subcommander level, the task 

is the same as that undertaken by the Parker swarm.



RESULTS

I. Multi-perspective documentation with a single investigator

Trial Number Swarm Time Single Robot Time

1 1:46 3:32

2 1:53 3:56

3 2:38 3:28

4 --- 3:36

5 2:07 3:45

II. Single-perspective documentation with multiple investigators

Trial Number Swarm Time Single Robot Time

1 1:23 1:53

2 1:34 2:12

3 2:01 2:34

4 1:46 2:59

5 1:16 1:57

III. Environment interaction with multiple investigators

Trial Number Swarm Time Single Robot Time

1 2:38 4:57

2 --- 4:01

3 --- 5:12

4 2:45 4:53

5 2:26 4:33



IV. Conclusions

The general trend with the NXT swarms was that they were consistently able to perform 

their given tasks significantly faster than single robots. However, this only applies when the tasks 

themselves  were  completed.  Due  to  problems  with  pathing,  reckoning,  synchronization  and 

communication, colliding swarm members inhibited the swarm's ability to actually finish the task 

at hand.

Parker,  however,  was  unaffected  by  this  as  its  immobile  leaf  robots  and  inherently 

divergent subcommander movement patterns prevented any collisions. Triforce and Gaga, due to 

their more active leaf robots, were more likely to experience a fatal crash that rendered their task 

not completable. 

This  problem  could  have  been  alleviated  by  more  efficient  pathing  algorithms,  or 

allowing the swarm to give a more thorough estimation of its current density at given locations as 

environmental features to avoid.
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APPENDIX

import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

abstract class CommandCenter{ 
protected List<BTConnection> con; 
protected List<DataInputStream> in; 
protected List<DataOutputStream> out; 

public int botID; 

protected MovementCenter thisBot; 

public static final int BUSY=240; 
public static final int NO_CHANGE=241; 
public static final int CONFIRMED = 242; 

public static final int INITIALIZE_LOCATIONS=250; 
public static final int INVESTIGATE = 251; 
public static final int DOCUMENTED = 252; 
public static final int REPORT = 253;
public static final int WORK = 254;

public CommandCenter(int id, MovementCenter bot){ 
con = new ArrayList<BTConnection>(); 
in = new ArrayList<DataInputStream>(); 
out = new ArrayList<DataOutputStream>(); 
botID = id; 
thisBot = bot; 

} 

public void addConnection(BTConnection btc){ 
if (con.size()<3){ 

con.add(btc); 
in.add(btc.openDataInputStream()); 
out.add(btc.openDataOutputStream()); 

} 
} 
abstract void executeCommand() throws IOException,InterruptedException; 



public void initialize() throws IOException{ 
//botLocation.add(botID, new Point(thisBot.getX(),thisBot.getY())); 

//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
//connect to children 
for (int i = 1; i<3;i++){ 

RemoteDevice rd = Bluetooth.getKnownDevice("Gadsby" +(i+botID)); 
addConnection(Bluetooth.connect(rd)); 

} 
//good to go 
ready = true; 

} 
public boolean isReady(){ 

return ready; 
} 

}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class TriforceCommand extends CommandCenter { 
private UltrasonicSensor ultra; 
private LightSensor light; 
private Random gen; 

private List<Point> botLocation; 

private boolean autonomous; 

public TriforceCommand(int id, MovementCenter bot){ 
super(id,bot);
gen = new Random(); 
ultra = new UltrasonicSensor(SensorPort.S1); 
light = new LightSensor(SensorPort.S3); 
botLocation = new ArrayList<Point>(); 
autonomous=true; 
ready =true; 

} 

public void executeCommand() throws IOException, InterruptedException{ 
if(autonomous){//explore, then send 

Thread.sleep(200); //let sensors warm up 
if (ultra.getDistance() < 160 || light.readValue()>40){ 

Sound.playTone(1760,1000); 
//found something, send notify children of coordinates! 
this.requestInvestigation(); 

} 
int dX = gen.nextInt(3); 
int dY = gen.nextInt(3); 
if (gen.nextInt()%2==1) 

dX = dX*-1; 
if (gen.nextInt()%2==1) 

dY = dY*-1; 
if (!locationOccupied(thisBot.getX()+dX,thisBot.getY()+dY)) 

thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY); 

} 
else{ //get data from children, interpret and act accordingly. 



this.waitForDocumentation(); 
} 

} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 
if (response != CommandCenter.BUSY && response != 

CommandCenter.NO_CHANGE){ 
//get botID and point, add it to locations. 
botLocation.add(dis.readInt(),new 

Point(dis.readInt(),dis.readInt())); 
dos.writeInt(CommandCenter.CONFIRMED); 

} 
}catch(IOException e){ 

LCD.drawInt(34,0,0); 
} 

} 
} 

private void requestInvestigation()throws IOException, InterruptedException{ 
for (int i = 0; i<3;i++){ 

out.get(i).writeInt(CommandCenter.INVESTIGATE); 
out.get(i).writeInt(thisBot.getX()); 
out.get(i).writeInt(thisBot.getY()); 
out.get(i).flush(); 

} 
//move away from average swarm location 
Point p = averageLocation(); 
thisBot.moveAwayFromPoint(p.x,p.y,4); 
autonomous = false; 

} 

private Point averageLocation(){ 
int x=0; 
int y = 0; 
for (Point p : botLocation){ 

x += p.x; 
y += p.y; 



} 
return new Point(x/botLocation.size(),y/botLocation.size()); 

} 

private boolean locationOccupied(int x, int y){ 
for (Point p : botLocation){ 

if (x == p.x || y == p.y) 
return true; 

} 
return false; 

} 

private void waitForDocumentation()throws IOException{ 
while (true){ 

for (int i = 0; i<3;i++){ 
int c = in.get(i).readInt(); 
if (c == CommandCenter.DOCUMENTED){ 

LCD.drawString("Bot " + i + " finished",i,i); 
} 

} 
Button.waitForPress(); 

} 
} 

}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class TriforceSubcommand extends CommandCenter{ 
private NXTCam cam; 

private boolean selfreported; 
private boolean child1reported; 
private boolean child2reported; 

public TriforceSubcommand(int id, MovementCenter bot){ 
super(id,bot); 
cam = new NXTCam(SensorPort.S1); 
ready =false; 
selfreported = false; 
child1reported = false; 
child2reported = false; 

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.INVESTIGATE) 
investigate(); 

}catch (IOException e){ 
} 

} 
} 

private void initializeLocations() throws IOException{ 
LCD.drawInt(0,0,0); 
if (!selfreported){ 

out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
selfreported=true; 



} 
else if (!child1reported){ 

out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
child2reported=true; 

} 
else if (!child2reported){ 

out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
child2reported=true; 

} 
else{ 

out.get(0).writeInt(CommandCenter.NO_CHANGE); 
out.get(0).flush(); 

} 
if (in.get(0).readInt() != CommandCenter.CONFIRMED) //something went wrong 

Sound.playTone(1760,1000); 
} 

private void investigate() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(0).readInt(); 
int y = in.get(0).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
//add camera stuff here 
out.get(0).writeInt(CommandCenter.DOCUMENTED); 
out.get(0).flush(); 
break; 

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class TriforceLeaf extends CommandCenter{ 
public TriforceLeaf(int id, MovementCenter bot){ 

super(id,bot);
} 
public void executeCommand() throws IOException,InterruptedException{ 

while (true){ 
try{ 

int command = in.get(0).readInt(); 
if (command == CommandCenter.INITIALIZE_LOCATIONS) 

initializeLocations(); 
if (command == CommandCenter.INVESTIGATE) 

investigate(); 
}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void investigate() throws IOException,InterruptedException{ 



while (true){ 
try{ 

int x = in.get(0).readInt(); 
int y = in.get(0).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
out.get(0).writeInt(CommandCenter.DOCUMENTED); 
out.get(0).flush(); 
break; 

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import java.util.*; 

public class MovementCenter{ 
public static final int LATERAL_CONSTANT = 1500; 
public static final double RADIAL_CONSTANT = .13; 

private int posX; 
private int posY; 
private float dirX; 
private float dirY; 

public static void main(String[] args) throws InterruptedException{ 
MovementCenter thisBot = new MovementCenter(0,0,0f,1.0f); 
Thread.sleep(3000); //3 second delay 
thisBot.moveToFace(1,1); 
thisBot.moveToFace(-1,-1); 
thisBot.approachPoint(4,3); 
thisBot.approachPoint(0,0); 

} 

public MovementCenter(int px, int py, float dx, float dy){ 
Motor.A.setPower(50); 
Motor.C.setPower(50); 
this.posX = px; 
this.posY = py; 
this.dirX = dx; 
this.dirY = dy; 

} 

public void move(float munits) throws InterruptedException{ 
//positive is forward. Motors A and C are wheels. 
if (munits>0){ 

Motor.A.forward(); 
Motor.C.forward(); 

} 
if (munits<0){ 

Motor.A.backward(); 
Motor.C.backward(); 
munits = munits * -1; 

} 

Thread.sleep(Math.round(munits*LATERAL_CONSTANT)); 
Motor.A.stop(); 



Motor.C.stop(); 
//forced wait to keep motors from bucking with constant movement 
Thread.sleep(200); 

} 

public void rotate(int degrees) throws InterruptedException{ 
//positive is counterclockwise 
if (degrees>0){ 

Motor.A.forward(); 
Motor.C.backward(); 

} 
if (degrees<0){ 

Motor.A.backward(); 
Motor.C.forward(); 
degrees = degrees * -1; 

} 
Thread.sleep((long)Math.round(50*degrees*RADIAL_CONSTANT)); 
Motor.A.stop(); 
Motor.C.stop(); 
Thread.sleep(200); 

} 

public void goToPoint(int x, int y) throws InterruptedException{ 

float v2x = x - posX; 
float v2y = y - posY; 
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) - 

Math.atan2(dirY,dirX))); 
this.rotate(angle); 
float distance = (float)Math.sqrt((x-posX)*(x-posX)+(y-posY)*(y-posY)); 
this.move(distance); 
posX = x; 
posY= y; 
//make new direction vector via projection of onto destination 
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y); 
dirX= v2x/length; 
dirY= v2y/length; 

} 

public void moveToFace(int x, int y) throws InterruptedException{ 
//create vector, calculate angle 
float v2x = x - posX; 
float v2y = y - posY; 
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) - 

Math.atan2(dirY,dirX))); 

this.rotate(angle); 



//make new direction vector via projection of onto destination 
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y); 
dirX= v2x/length; 
dirY= v2y/length; 

} 

public int getX(){ 
return posX; 

} 
public int getY(){ 

return posY; 
} 

public void approachPoint(int x, int y)throws InterruptedException{//get within 3 units of 
target 

int dx = this.posX - x; 
int dy = this.posY - y; 
int targetX=x, targetY=y; 
if (dx > 0) 

targetX = x+1; 
if (dx < 0) 

targetX = x-1; 
if (dy > 0) 

targetY = y+1; 
if (dy < 0) 

targetY = y-1; 

this.goToPoint(targetX,targetY); 
this.moveToFace(x,y); 

} 

public void moveAwayFromPoint(int x, int y, float distance) throws 
InterruptedException{ 

//create vector, calculate angle and distance. 
float v2x = x - posX; 
float v2y = y - posY; 

int angle = 180 - (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) - 
Math.atan2(dirY,dirX))); 

this.rotate(angle); 
this.move(distance); 

posX = x; 
posY= y; 
//make new direction vector via projection of onto destination 
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y); 



dirX= v2x/length; 
dirY= v2y/length; 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class ParkerRootCommand extends CommandCenter{ 

private List<Point> botLocation; 
private List<Rectangle> rects; 
private NXTCam camera;

public ParkerRootCommand(int id, MovementCenter bot){ 
camera = new NXTCam(SensorPort.S1); 
botLocation = new ArrayList<Point>(); 
rects = new ArrayList<Rectangle>(); 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt(); 
if (command == CommandCenter.INVESTIGATE) 

investigate(); 
else 

reportResults(); 
} 

}catch (IOException e){ 
} 

} 
} 
private void reportResults() throws IOException{ 

//write results back to computer 
con.get(0).close(); //because of three-connection limit 
BTConnection c = Bluetooth.waitForConnection(); 
DataOutputStream dos = c.openDataOutputStream(); 
for (Rectangle rect:rects){ 

dos.writeInt(rect.x); 
dos.writeInt(rect.y); 
dos.writeInt(rect.width); 
dos.writeInt(rect.height); 
dos.flush(); 



} 
} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 
if (response != CommandCenter.BUSY && response != 

CommandCenter.NO_CHANGE){ 
//get botID and point, add it to locations. 
botLocation.add(dis.readInt(),new 

Point(dis.readInt(),dis.readInt())); 
dos.writeInt(CommandCenter.CONFIRMED); 

} 
}catch(IOException e){ 

LCD.drawInt(34,0,0); 
} 

} 
} 

private void investigate(int i) throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(i).readInt(); 
int y = in.get(i).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
//camera captures rect information and saves for later 
Rectangle rect = cam.getRectangle(0); 
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(), 

rect.height,rect.weight); //records size and location of each tracked object 
break; 

}catch(IOException e){} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class ParkerSubcommand extends CommandCenter{ 
private UltrasonicSensor ultra; 
private LightSensor light; 
private Random gen; 

private boolean autonomous; 
private boolean ready; 
private int botID; 

public ParkerSubcommand(int id, MovementCenter bot){ 
gen = new Random(); 
ultra = new UltrasonicSensor(SensorPort.S1); 
light = new LightSensor(SensorPort.S3); 
autonomous=true; 
super(id,bot);

} 

public void executeCommand() throws IOException, InterruptedException{ 
if(autonomous){//explore, then send 

Thread.sleep(200); //let sensors warm up 
if (ultra.getDistance() < 160 || light.readValue()>40){ 

Sound.playTone(1760,1000); 
//found something, send notify parent of coordinates! 
this.requestInvestigation(); 

} 
int dX = gen.nextInt(3); 
int dY = gen.nextInt(3); 
if (gen.nextInt()%2==1) 

dX = dX*-1; 
if (gen.nextInt()%2==1) 

dY = dY*-1; 
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY); 

} 
} 



 
private void requestInvestigation()throws IOException, InterruptedException{ 

out.get(0).writeInt(CommandCenter.INVESTIGATE); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

out.get(1).writeInt(CommandCenter.REPORT); 
out.get(1).writeInt(thisBot.getX()); 
out.get(1).writeInt(thisBot.getY()); 
out.get(1).flush(); 
out.get(2).writeInt(CommandCenter.REPORT); 
out.get(2).writeInt(thisBot.getX()); 
out.get(2).writeInt(thisBot.getY()); 
out.get(2).flush(); 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class ParkerLeaf extends CommandCenter{ 

public ParkerLeaf(int id, MovementCenter bot){ 
selfreported = false; 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.REPORT) 
report(); 

}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void report() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(0).readInt(); 



int y = in.get(0).readInt(); 

addConnection(Bluetooth.waitForConnection());
in.get(1).writeInt(x);
in.get(1).writeInt(y);

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class GagaRootCommand extends CommandCenter{ 

private List<Point> botLocation; 
private List<Rectangle> rects; 
private NXTCam camera;

public GagaRootCommand(int id, MovementCenter bot){ 
camera = new NXTCam(SensorPort.S1); 
botLocation = new ArrayList<Point>(); 
rects = new ArrayList<Rectangle>(); 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt(); 
if (command == CommandCenter.INVESTIGATE) 

investigate(); 
else 

reportResults(); 
} 

}catch (IOException e){ 
} 

} 
} 
private void reportResults() throws IOException{ 

//write results back to computer 
con.get(0).close(); //because of three-connection limit 
BTConnection c = Bluetooth.waitForConnection(); 
DataOutputStream dos = c.openDataOutputStream(); 
for (Rectangle rect:rects){ 

dos.writeInt(rect.x); 
dos.writeInt(rect.y); 
dos.writeInt(rect.width); 
dos.writeInt(rect.height); 
dos.flush(); 

} 



} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 
if (response != CommandCenter.BUSY && response != 

CommandCenter.NO_CHANGE){ 
//get botID and point, add it to locations. 
botLocation.add(dis.readInt(),new 

Point(dis.readInt(),dis.readInt())); 
dos.writeInt(CommandCenter.CONFIRMED); 

} 
}catch(IOException e){ 

LCD.drawInt(34,0,0); 
} 

} 
} 

private void investigate(int i) throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(i).readInt(); 
int y = in.get(i).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
//camera captures rect information and saves for later 
Rectangle rect = cam.getRectangle(0); 
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(), 

rect.height,rect.weight); //records size and location of each tracked object 
break; 

}catch(IOException e){} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class  GagaSubcommand extends CommandCenter{ 
private UltrasonicSensor ultra; 
private LightSensor light; 
private Random gen; 

private boolean autonomous; 
private boolean ready; 
private int botID; 

public GagaSubcommand(int id, MovementCenter bot){ 
gen = new Random(); 
ultra = new UltrasonicSensor(SensorPort.S1); 
light = new LightSensor(SensorPort.S3); 
autonomous=true; 
super(id,bot);

} 

public void executeCommand() throws IOException, InterruptedException{ 
if(autonomous){//explore, then send 

Thread.sleep(200); //let sensors warm up 
if (ultra.getDistance() < 160 || light.readValue()>40){ 

Sound.playTone(1760,1000); 
//found something, send notify parent of coordinates! 
this.requestInvestigation(); 

} 
int dX = gen.nextInt(3); 
int dY = gen.nextInt(3); 
if (gen.nextInt()%2==1) 

dX = dX*-1; 
if (gen.nextInt()%2==1) 

dY = dY*-1; 
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY); 

} 
} 



 
private void requestInvestigation()throws IOException, InterruptedException{ 

out.get(0).writeInt(CommandCenter.INVESTIGATE); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
//send workers
out.get(1).writeInt(CommandCenter.WORK); 
out.get(1).writeInt(thisBot.getX()); 
out.get(1).writeInt(thisBot.getY()); 
out.get(1).flush(); 
out.get(2).writeInt(CommandCenter.WORK); 
out.get(2).writeInt(thisBot.getX()); 
out.get(2).writeInt(thisBot.getY()); 
out.get(2).flush(); 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class GagaLeaf extends CommandCenter{ 

public GagaLeaf(int id, MovementCenter bot){ 
super(id,bot);

} 
public void executeCommand() throws IOException,InterruptedException{ 

while (true){ 
try{ 

int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.WORK) 
work(); 

}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void work() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(0).readInt(); 
int y = in.get(0).readInt(); 



//go to location 
thisBot.goToPoint(x,y); 
out.get(0).writeInt(CONFIRMED); 
out.get(0).flush(); 
thisBot.rotate(3600);
break; 

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}


