
Primality Testing and Sub-Exponential
Factorization

David Emerson

Advisor: Howard Straubing

Boston College Computer Science Senior Thesis

May, 2009

Abstract

This paper discusses the problems of primality testing and large number

factorization. The first section is dedicated to a discussion of primality test-

ing algorithms and their importance in real world applications. Over the

course of the discussion the structure of the primality algorithms are devel-

oped rigorously and demonstrated with examples. This section culminates

in the presentation and proof of the modern deterministic polynomial-time

Agrawal-Kayal-Saxena algorithm for deciding whether a given n is prime.

The second section is dedicated to the process of factorization of large com-

posite numbers. While primality and factorization are mathematically tied

in principle they are very di⇥erent computationally. This fact is explored and

current high powered factorization methods and the mathematical structures

on which they are built are examined.

1 Introduction

Factorization and primality testing are important concepts in mathematics.

From a purely academic motivation it is an intriguing question to ask how

we are to determine whether a number is prime or not. The next logical

question to ask is, if the number is composite, can we calculate its factors.

The two questions are invariably related. If we can factor a number into its

pieces then it is obviously not prime, if we can’t then we know that it is

prime. The definition of primality is very much derived from factorability.

As we progress through the known and developed primality tests and

factorization algorithms it will begin to become clear that while primality

and factorization are intertwined they occupy two very di⇥erent levels of

computational di⇧culty. The study and development of tests for primality

has been focused on fast and deterministic algorithms. However, even early

on in the development of factorization algorithms the idea of very fast and

deterministic algorithms was relegated to the background as it became more

and more accepted that these algorithms may not exist to solve factoriza-

tion. A problem is in P or is said to have polynomial time complexity if it

can reach a decision with a O bounding measured in polynomials of n and

ln n. For a long time the decision problem of whether a number was prime

or not was thought to be in P but it was not until 2002 with the release

of the AKS algorithm and its proof that this fact was completely demon-

strated. Polynomial time algorithms are much more e⇧cient than the more

di⇧cult problems of which P is a subset known as NP problems. As for

the problem of factorization it is believed that no general polynomial timed

algorithm exists to fully factor a given composite number. This is the reason

that, as we develop the more sophisticated factorization algorithms we slip

away from fully deterministic algorithms to more e⇧cient probabilistic ones.

The computational complexity of these two problems is drastically di⇥erent.

Primality is a relatively e⇧cient problem when compared to that of factor-

ization. We will see how di⇥erent these two processes are as we move all in

our development of both branches of algorithms.

While primality and factorization are studied in many branches of math-

ematics much of the recent study has been spurred by advances in cryptogra-

phy and number theory. It is this application that has motivated the recent

interest in e⇧cient primality and factorization algorithms . Primality and

factorization theory have had their greatest impact on modern encryption

methods and the public key systems. In early encryption coding, the en-

coding and decoding were done by one key. This key was the encoder that

allowed the sender and receiver to hide their messages when communicating.

But by using one key at least two people held the code at one time. Even

1

worse, the unsolved problem of how to securely transmit the key to a remote

party exposed the system to vulnerabilities. If the key was intercepted then

the messages sent thereafter would no longer be secure. There was no way

to protect the key transmission because in order to encrypt anything both

parties needed to confer first. The modern public key system is responsible

for solving this problem and maintaining the security of messages passed be-

tween two or more persons. The basic principles of the public key system,

also known as asymmetric encryption, were conceived independently in 1976

by Di⇧e and Hellman of Stanford University and by Merkle at the University

of California. See [Di⇧e and Hellman 1976].

In the new crypto-system, the encryption and decryption keys are unique

and therefore do not need to be traded before messages can be sent. The

method is called a public key system because while it has two unique encryp-

tion and decryption keys one of them is made public. Which key is made

public depends on the type of message passing that one would like to do.

The first application of the system is a way to have people send you encoded

messages. If this is the goal then you publish the encryption key for people

to encode their messages with and you keep the decryption key yourself. In

this way you will be able to receive encoded messages that no one else can

read but you. The second application of the key system is to turn around

the first concept to obtain a ”signature”. That is, if we publish the decryp-

tion key but keep the encryption key secret we will be able to send messages

stamped with our, hopefully, unique encryption signature. As an example,

say that you are trying to send a message to a bank. You know who you

would like to send the message to so you publish the decryption key and give

it to them. Thereafter when the bank receives messages from someone they

believe is you it will attempt to decrypt the message with the key that you

gave them. If the message makes sense then it must have been encrypted

with your unique key and therefore the bank can ”safely” assume that you

created the order. While the second method allows messages you send to be

read by anyone, it allows you to have sole control over what content is put

out under your name. In this way you obtain a unique signature with which

to sign your messages.

When it was first conceived, it was believed that the public key crypto-

system would completely outdate the old symmetric key systems. However,

in today’s encryption most algorithms still use the symmetric key system

for their encryption. The public key crypto-system is too slow for most

exchanges. What the public key crypto system is most often responsible

for is the transmission of the symmetric key to the remote party. This key

system solved the largest problem for the symmetric system, transmission of

the shared key.

2

The scheme that is most widely recognized is by Rivest, Shamir, and

Adleman. It was developed at MIT in 1977 and is referred to as the RSA

algorithm, see [Rivest Shamir and Adleman 1978]. It is widely used as the

basis for modern encryption. The scheme is based on a theorem of Euler

that will be proven later in this paper.

The algorithm works as follows: Let p and q be distinct large primes

and n = p · q. Assuming we have two integers, d for decryption and e for

encryption such that

d · e ⇧ 1 (mod ⌃(n)). (1)

The symbol ⌃(n) denotes the Euler function of n. That is, the number of

integers less than n that are relatively prime to n. The integers n and e are

published. The primes p, q and integer d are kept secret.

Let M be the message that we would like to encrypt and send. We need

M to be a positive integer less than n and relatively prime to n. If we keep

M less than the p or q used to create n then we will be guaranteed that

(M, n) = 1. However, the sender will not have access to p or q in practice for

reasons that will become clear soon. So it is enough to have M < n because

the probability that p or q divides M , if it is less than n, is extremely small.

If we encode our message in an alpha-numeric scheme that is recognizable to

the party that we are sending the message to, then our M can be encoded

and sent.

The sender encrypts the message by computing, E, the encrypted message

E = M e mod n.

The message is decoded simply by applying d

Ed mod n.

The following theorem by Euler, that will be used to demonstrate that

Ed mod n is equal to M , is proven later. If n and b are positive and rel-

atively prime this implies that

b⇤(n) ⇧ 1 (mod n). (2)

By the above relation (2) and equation (1)

Ed ⇧ (M e)d ⇧M e·d ⇧M (k·⇤(n))+1 (mod n)

⇧ (M (k·⇤(n))) · M1 (mod n)

⇧ 1 · M (mod n)

⇧M (mod n).

3

We know that M and Ed mod n are both strictly less than n and so they

must be equal.

To choose our e and d all we need to know is ⌃(n). If we choose e
relatively prime to ⌃(n) then we are guaranteed a d that satisfies equation

(1) by Euclid’s algorithm. If we know the factorization of n, that is n = p · q
where p, q are distinct, then it is a property of the Euler function that

⌃(n) = (p� 1)(q � 1).

There is no easier way of computing ⌃(n) without the factorization of n.

Therefore, the way to find d is to know, or find, the factorization of n. After

creating our encryption keys we merely throw out the p, q, and ⌃(n) used in

their creation.

It is easy to see how important primality and factorization are to the

creation and security of this algorithm. In order to create our n we need

to be able to generate and test very large prime numbers e⇧ciently and

e⇥ectively. In this paper we examine the number theory and implementation

behind some of the modern approaches to primality testing. The feasibility

of the RSA system rests on the fact that it is possible to e⇧ciently generate

large primes. Its security is based on the conjecture that there is no e⇧cient

algorithm for factoring a large integer into its prime decomposition. As we

stated above, we can compute ⌃(n) if we can calculate the factorization of

n. Thereby, we can compute d. Because we display n publicly with e, if

n could be factored quickly then our decryption key would not be secure

for very long. It should be noted that this is why p and q must be large

primes, among other things, since taking out small factors is much easier

than large ones. In the second section of this paper modern factorization

implementations and their mathematical foundations are explored.

2 Primality

Recognizing when a large number is prime or composite is a fundamental

task in number theory and sits at the heart of many mathematical systems

like cryptography. During the encryption process it is important to be able

to generate large prime numbers to create ”hard” to factor, large composite

numbers. In factorization, essentially the opposite process, primality testing

is fundamental to modern techniques like the Multiple Polynomial Quadratic

Sieve. These algorithms require the ability to generate long lists of large

prime numbers in a relatively short time.

For small numbers, it is generally easy to intuit an answer to the primality

question by merely looking at the number. We all do the same thing. If the

4

number is even we know that it is not prime. If it is odd we consider the

number and ask ourselves, does 3 go into that number? What about 5? This

process is essentially trial division. We go through a small amount of prime

numbers in our head and ask ourselves it the number in question is divisible

by them. It is easy to see the problem with this sort of method if we would

like to prove primality for any n let alone the large n needed to create our

encryption keys. Trial division is a deterministic algorithm for primality

testing. Unfortunately, it has an extremely ine⇧cient runtime. If we want to

prove that n is prime we must trial divide n by every prime less than
⇡

n. If

none of them divides n then nis prime. As n gets larger so does the number

of primes that we will need to test. Indeed, The Prime Number Theorem

states that

lim
x⇧⌥

⇧(x)

x/ ln(x)
= 1 .

Therefore ⇧(x) ⌅ x
ln(x) . So, the number of primes we must test grows signifi-

cantly as n does. If we were to try to factor a composite n of 100 digits using

trial division we would have to perform approximately
⇡

10100/ ln
⇡

10100
8.68588964 ⇤ 1047 trial divisions to fully determine whether n were prime

or composite. This leads us to consider the properties of prime numbers in

order to come up with a test that will prove primality more e⇧ciently than

just through trial division.

We begin our discussion of primality testing with an observation first

made by Fermat while studying Mersenne primes.

Theorem 1. If p is an odd prime then 2p�1 ⇧ 1 (mod p).

We will not give the proof of this immediately, but instead will prove a

more general result below. This theorem illuminates a particular property

of prime numbers. Consider using this theorem as a primality test. The

algorithm could be defined as follows.

Algorithm 1. Given an n

1. Calculate k = 2n�1 mod n
2. if(k is equal to 1)

return prime
else return composite

This algorithm will run quickly even for very large n since we can perform

repeated squaring and reduce mod n after each squaring. Theorem 1 must

hold if n is prime and therefore this algorithm will give no false negatives.

On the other hand, it is not su⇧cient to prove that n is a prime. Numbers

5

such as 341 = 11 · 31 satisfy this condition and are clearly composite. So

this algorithm can err by classifying an integer as prime when it is actually

composite.

A more general case of the above theorem holds. Indeed, we consider the

theorem due to Euler that we proposed earlier

Theorem 2 (Euler). Let n and b ⇣ Z and (n, b) = 1 then b⇤(n) ⇧ 1 (mod n).

Proof. Let t = ⌃(n) and let a1, a2, . . . , at be those integers which are less

than n and (ai, n) = 1. Let r1, r2, . . . , rt be the residues of those ai · b. That

is

b · ai ⇧ ri (mod n).

It should be noted that each r is pairwise distinct. Indeed, if they were not

distinct mod n we would have

b · ai ⇧ b · aj (mod n).

But since (n, b) = 1 we can divide by b

ai ⇧ aj (mod n).

If ai, aj < n
ai = aj but ai and aj,

but ai and aj are distinct so we derive a contradiction. Further, each ri is

relatively prime to n. To see this consider (n, ri) ⌘= 1. That is, consider

(n, ri) = m for some m ⇣ Z

b · ai � ri = nk implies b · ai = nk � ri for some k ⇣ Z.

But (n, ri) = m and so m | nk � ri meaning that m | b · ai. This would

imply that ai and n share a common divisor (we know that (n, b) = 1 by
our theorem assumptions) which is a contradiction. So each ri is coprime to

n. Therefore r1, r2, . . . , rt is a set of size ⌃(n) distinct integers coprime to n.

That is, the set of ri’s is the same as our set of ai’s.

Hence,

a1 · a2 · a3 · . . . · at = r1 · r2 · r3 · . . . · rt.

Therefore,

r1 · r2 · . . . · rt ⇧ b · a1 · b · a1 · . . . · b · at (mod n)

⇧ bt(a1 · a2 · a3 · . . . · at) (mod n)

⇧ bt(r1 · r2 · r3 · . . . · rt) (mod n).

6

Divide both sides by our sequences of ri’s and we have

bt ⇧ 1 (mod n)

b⇤(n) ⇧ 1 (mod n).

Theorem 1 is simply the special case where b = 2.

The result of Euler’s more general conditions from Theorem 2 allow us

more flexibility within the base of the congruence. We can now restate our

algorithm with a slightly more general calculation step.

Algorithm 2 (The Pseudoprime Test). Given n and a base b

1. Calculate k = bn�1 mod n
2. if(k is equal to 1)

return prime
else return composite

Composite integers that pass this test for a given base b are called Pseu-
doprimes. An integer like 341 is called a pseudoprime for base 2. While these

integers are very bad for our test, it is encouraging that these kinds of com-

posites are relativley rare. Below 1 million there are only 245 pseudoprimes

as compared to 78498 primes.

Another good result from Euler’s criterion is that it gives us a larger pool

of bases to draw from and the congruence must hold for each base if n is

prime. It is conceivable that changing the base will reveal more composite

numbers because we are guaranteed that a prime will pass this test for all

b such that (b, p) = 1. Pseudoprimes like 341 are revealed in this manner.

3341�1 ⇧ 56 (mod 341). So the question is how many bases b should we test

before strongly believing that our number is prime. Examining this we run

into a problem. There are numbers that pass the base test for all b where

(b, p) = 1. A number with this property is called a Carmichael number.

These numbers are very rare but pose a problem in that they could pass

every test regardless of the base b and yet be composite.

In order to get around this problem the Strong Pseudoprime test was

developed by Pomerance, Selfridge, and Wagsta⇥.

Consider an n that is a pseudoprime relative to a base b. This imples

that bn�1 ⇧ 1 (mod n). So

n | bn�1 � 1.

we know that n is odd (otherwise it is not prime). So, n = 2m + 1 for some

m, and thus n | b2m � 1, but b2m � 1 = (bm + 1)(bm � 1). This implies

7

that n divides (bm + 1)(bm � 1). If n is prime it must divide at least one of

these factors. Further, n cannot divide both of them or it would divide their

di⇥erence. So consider (bm + 1)� (bm � 1) = 2. We know that n > 2 then n
cannot divide both. So, if n is prime then n | bm + 1 or n | bm � 1. That is,

either

bm ⇧ �1 (mod n) or bm ⇧ 1 (mod n). (3)

If n is composite there is a good chance that some of its factors divide bm +1

and some bm�1. If this is the case then the factors combined would pass the

pseudoprime test and since (bm + 1)(bm � 1) combines the factors, n would

divide b2m � 1 but would fail to hold Equation (3) from above.

Ex 1. Consider n = 341, so m = 170

We know that 341 passes the pseudoprime test. To use our new criterion
we look at 2170 reduced mod n, but 2170 ⇧ 1 (mod n). So 341 passes this
test, but we can apply the same trick that we used above because 2170� 1 can
be factored further. We know that 341 | 2170 � 1 but

2170 � 1 = (285 � 1)(285 + 1).

If 341 were a prime it divides exactly one side of this equation for the same
reasons as above. So either

341 | 285 � 1 � 285 ⇧ 1 (mod 341)

or

341 | 285 + 1 � 285 ⇧ �1 (mod 341).

but 285 ⇧ 32 (mod 341)

We see from this example that we reduce even exponents to their furthest

factorization and if n is prime then it will divide exactly one of said factors.

Therefore, we write n = 2a · t + 1 (since n is an odd) where t is odd and

a > 1 since n > 2. We can write

bn�1 � 1 = (b2a�1t � 1)(b2a�1t + 1).

If n has passed the pseudoprime test, then n must divide exactly one of

these. Looking back at the example we see that if n passes the prime test

for b2a�1t � 1 and 2a�1 is even then we can factor further and n will divide

exactly one of the factors if it is prime. So split it

b2a�1t � 1 = (b2a�2t � 1)(b2a�2t + 1).

8

Hence we consider the complete factorization of bn�1 where n = 2a · t + 1.

Which is

bn�1 = (bt � 1)(bt + 1)(b2t + 1)(b4t + 1) . . . (b2a�1t + 1). (4)

If n is really prime then it must divide exactly one of these factors. Meaning

if n is prime one and only one of these congruences holds

bt ⇧ 1 or � 1 (mod n) or b2t ⇧ �1 (mod n) . . . etc.

So we can now fully define our Strong Pseudoprime Test.

Algorithm 3 (Strong Pseudo Prime Test). Given n and a base b

1. Write n = 2a · t + 1

2. Reduce bn�1 to its complete expansion as in Equation (4)

3. Test each factor’s individual congruence to determine if n divides exactly
one of these factors

4. If n does divide one of the factors
return prime

else return composite

It is natural wonder if there are composites that will pass the Strong

Pseudoprime test. Unfortunately these composites do exist. We say that

an integer is a Strong Pseudoprime if it is composite and passes the Strong

Pseudoprime Test for a base b. Though Strong Pseudoprimes exist they are

even more rare than regular pseudoprimes. There are 21853 pseudoprimes

and only 4842 strong pseudoprimes base 2 under 25 ⇤ 109. If we string

together multiple bases and test an n against each of them we eliminate

even more composite numbers that are strong pseudoprimes only some of

the bases. There is only one composite number that is a strong pseudoprime

for the bases 2, 3, 5 and 7 under 25 ⇤ 109 . That strong pseudoprime being

3215031751 = 151 · 751 · 28351.

The good news for the strong pseudoprime test is that there is no analogue

to Carmichael numbers. That is, there are no composite numbers that will

pass the strong pseudoprime test for every base. To prove this some theorems

need to be established first. We must also define a quadratic residue. Given

an integer n and a prime p with (n, p) = 1, if there exists an integer t such

that n ⇧ t2 (mod p) then we say that n is a quadratic residue modulo p

Theorem 3. Let p be an odd prime such that p = 2m + 1 and let b be a
positive integer not divisible by p so that (p, b) = 1, then bm ⇧ 1 (mod p) if
and only if there exists a t ⇣ Z+ such that b ⇧ t2 (mod p) (that is b is a
quadratic residue mod p)

9

Proof. (�)

If there exists a t ⇣ Z+ such that b ⇧ t2 (mod p) then bm ⇧ t2m ⇧ tp�1

(mod p) since 2m = p� 1. We know that t cannot be divisible by p since if

p | t� pk = t

� (pk)2 = t2

� p2k2 = t2

� p(pk2) = t2

� p | t2

� p | b.

but this is a contradiction to our assumption that (p, b) = 1. So t is relatively

prime to p. By Euler’s theorem and Fermat observation

bm ⇧ tp�1 ⇧ 1 (mod p).

The other direction of the theorem is informed by the following two ideas

and so is deferred.

Lemma 1. Given i2 ⇧ j2 (mod p) then i ⇧ j (mod p) or i ⇧ �j (mod p)

Proof. If i2 ⇧ j2 (mod p), we know that i2 � j2 = (i + j)(i � j) = pk for

some k ⇣ Z. Therefore p | (i + j)(i� j) but since p is prime it divides one or

the other. So i ⇧ j or � j (mod p).

Each quadratic residue comes up exactly twice since each quadratic residue

can be formed by squaring the integers 1 up to p�1 and taking their residues.

Hence the number of quadratic residues that are positive and less than p is
(p�1)

2

Theorem 4 (Wilson’s Theorem). The integer n divides (n � 1)! + 1 if and
only if n is prime

Proof. (�)

Consider the contrapositive. That is, if n is not prime (composite) then it

does not divide (n� 1)! + 1. There are two cases:

If n is composite and n = 4, n � (n� 1)! + 1 since 3! + 1 = 7 and 4 � 7.

Now consider the case when n > 4

(n� 1)! = (n� 1)(n� 2)(n� 3) . . . (2)(1). (5)

10

If n is composite it can be uniquely decomposed into a factorization of prime

powers. That is, n = pa
1 · pb

2 · pc
3 · . . . for some primes pi with associated

a, b, c, . . . ⇣ Z+. If each factor is strictly less than n, that is, each px
i < n,

then each of the factors will occur on the right hand side of Equation (5). In

this way we see that n | (n�1)!. If, however, n is a prime power, for example

cases like n = 9, it has a single factor whose exponent makes it equal to n.

That is to say n = pa. Consider first is a = 2 then p occurs on the right hand

side of Equation (5) since it is less than n. Also, since n is not 4 then p > 2.

So, 2 ·p also occurs on the right hand side of Equation (5) and so n | (n�1)!.

Now for the more general case. We know that pa�1 exists on the right hand

side of Equation (5) since pa�1 < n. Also p must exist in our expansion (5).

So, pa�1 · p occurs in the expansion (5). Thus n | (n� 1)!. But if n | (n� 1)!

it cannot divide (n� 1)! + 1.

(�)

If n is prime, for each i < n there exists a unique positive integer j < n
such that i · j ⇧ 1 (mod n). This is by the uniqueness of inverses in Zn.

Further, if i ⌘= 1 or n� 1, then i and j are distinct. If they were not then

i = j � i2 ⇧ 1 (mod n)

� n | i2 � 1

� n | (i� 1) or (i + 1).

but this is not possible since i by definition is strictly less than n.

Thus consider our expansion from equation (5). We pair up the integers

2 through n� 2 with their inverses mod n. Reducing mod n we see

(n� 1)! ⇧ 1 · (product of ones)↵ ⌦ �
reduction of inverse pairs modn

·(n� 1) (mod n)

⇧ n� 1 (mod n)

⇧ �1 (mod n).

So n | (n� 1)! + 1.

It may be observed that this is, in essence, a primality test but given the

need to calculate factorial expansions of order n and the division step it’s

time and space complexity are limiting at best.

Now we can finish the other direction of Theroem 3.

Proof. (�)

Beginning again with the contrapositive. We will suppose that b is not a

quadratic residue mod p, and will prove that bm ⇧ �1 (mod p) (recalling

11

that if p is a prime of the form 2m + 1 then either p | bm � 1 or p | bm + 1

but not both). So the statement bm ⇧ �1 (mod p) is exactly the negation

of bm ⇧ 1 (mod p).

For all positive i < p there exists a unique positive j < p such that i·j ⇧ b
(mod p). This statement can be seen through manipulation of the uniqueness

of inverses in Zp. Indeed, in order to find j we consider j⌃ such that i · j⌃ ⇧ 1

(mod p) and multiply through by b so that i · bj⌃ ⇧ (mod p). This can be

done because (b, p) = 1. Reduce bj⌃ mod p and call this j. Hence, i · j ⇧ b
(mod p). j is unique. If it were not we would have i · j ⇧ i · k ⇧ b (mod p)

for some k. Multiply by the inverse of i mod p so that

(i�1)(i)(j) ⇧ (i�1)(i)(k) (mod p) � j ⇧ k (mod p),

but both j and k are less than p. So j=k. Thus j is unique mod p. Also,

since b is not a quadratic residue mod p, i ⌘= j
Now, pair those positive integers whose product is b mod p and multiply

them together. We obtain

(p� 1)! ⇧ b · b · . . . · b (mod p).

There are m of these b’s since our p = 2m + 1 Yielding

(p� 1)! ⇧ bm (mod p). (6)

By Theorem 4 we know that n | (n � 1)! + 1 if and only if n is prime. So

p | (p� 1)! + 1. Said di⇥erently, (p� 1)! ⇧ �1 (mod p). Because of this and

congruence relation (6) we have shown that that bm ⇧ �1 (mod p).

Our Strong Pseudoprime test constitutes a much stronger criterion for pri-

mality as it eliminates many of the normal pseudoprimes that we dealt with

in the more naive test. However, the question of whether we will be plagued

by composite numbers that are strong pseudoprimes for all b where (b, n) = 1

still remains. The most significant improvement for our strong pseudoprime

test is that it does not have any numbers analogue to Carmichael numbers.

The proof of this fact if n has atleast 2 distinct prime factors is considered

below. The case where n is a prime power is excluded because methods like

Newton iterations can be used to e⇧ciently determine whether a given n is

a prime power. For the full proof see [Bressoud 1989].

To prove this theorem we will first need another small lemma.

Lemma 2. Let r, s ⇣ Z+ with g = gcd(r, s). Also let p be a prime and b be
an integer not divisible by p.

If br ⇧ 1 (mod p) and bs ⇧ 1 (mod p) then bg ⇧ 1 (mod p)

12

Proof. g = a · r + c · s and so bg = ba·r+c·s. We see then that

(br)a · (br)c ⇧ 1 (mod p).

Theorem 5. Let n be an odd composite number with at least two distinct
prime factors say p and q. Let m be any integer relatively prime to n such
that m is a quadratic residue modp and is not a quadratic residue modq. n
will fail the Strong pseudoprime test for base m.

Proof. We know that m exists by the Chinese Remainder Theorem that will

be proven later. p and q can be written p = 2a · s+1 and q = 2b · t+1 where

a, b ⌥ 1 and s, t are odd. Without loss of generality we can assume a ⌃ b.
Write n as 2c ·u + 1 where n ⌥ 3 and u is odd, hence c ⌥ 1. We know that if

n is a strong pseudoprime base m then each prime factor of n divides exactly

one of

mu � 1, mu + 1, m2u + 1, m4u + 1, . . . ,m2c�1·u. (7)

Further n passes this test if and only if each prime factor divides the same

one (Since n must divide it as well). Now, if an odd prime divides m2j�1·u +1

then it divides

m2j ·u � 1 = (m2j�1·u + 1)(m2j�1·u � 1).

But does not divide

m2j�1·u � 1 = (m2j�1·u + 1)� 2. Since, of course, n � 2.

Let j be the smallest integer such that p | m2j ·u � 1.

Let k be the smallest integer such that q | m2k·u � 1.

We know that 0 ⌃ j, k ⌃ c. We have that m is a quadratic residue modp
so we know by Theorem 3, Euler’s Criterion, that

m2a�1·s ⇧ 1 (mod p)

� p | m2a�1·s � 1.

Now consider, 2j · u and 2a�1 · s with Lemma 2. m is relatively prime to p
and we have

m2j ·u ⇧ 1 (mod p),

and

m2a�1·s ⇧ 1 (mod p).

So,

mgcd(2j ·u,2a�1·s) ⇧ 1 (mod p).

13

If a were less than j then

gcd(2j · u, 2a�1 · s) = 2a�1 · gcd(u, s),

since the factors of 2 that divide both will be taken out by 2a�1 and all that

will be left is an odd s in (2a�1 · s). So we are left with finding the factors

that divide both u and s but that is precisely gcd(u, s). Hence, we know that

2a�1 · u is a multiple of gcd(2j · u, 2a�1 · s).
Thus, m2a�1·u ⇧ 1 (mod p). To see this consider

(2a�1 · u) = gcd(2j · u, 2a�1 · s) · k � (mgcd(2j ·u,2a�1·s))k ⇧ m2a�1·u

⇧ (1)k (mod p)

⇧ 1 (mod p).

But this congruence contradicts the minimality of j. Therefore a > j.
Now consider q. m is not a quadratic residue mod p implies q � m2b�1·t�1.

So q must divide m2b�1·t +1 and therefore it must also divide m2b·t�1. Again

applying Lemma 2 we know that

q | m2k·u � 1 and q | m2b·t so,

q | mgcd(2k·u,2b·t) � 1.

If b is larger than k

gcd(2b · t, 2k · u) = 2kgcd(t, u).

This implies that m2b�1 ⇧ 1 (mod q). This is because 2k · t is a multiple

of the gcd(2k · u, 2b · t) making 2b�1 · t a multiple since it can be written,

(2b�1 · t) = (2k · t)2z where z = (b � 1) � k. We recognize that z is positive

since b > z. If 2b�1 · t is a multiple of gcd(2k · u, 2b · t)thisimpliesm2b�1·t ⇧ 1

(mod q). This contradicts our assumption that m is not a quadratic residue

modq. So b ⌃ k and we get j < a ⌃ b ⌃ k. This implies that j ⌘= k.

Therefore p and q divide di⇥erent factors in our list in Eq.(7). So n fails the

Strong Pseudoprime test for base m

The fact that there is no analogue to Carmichael numbers for the Strong

Pseudoprime test is significant. We have seen that the conditions of our test

for primality can be used to rule out many composite numbers given a base

b. Further, if we vary this base b we find that Strong Pseudoprimes become

even more rare. This theorem guarantees that we do not have the issue of

Carmichael numbers. That is, there will be a base b relatively prime to a

composite n for which n will fail the Strong Pseudoprime test. Therefore, we

14

can prove the compositeness of an n if we can find this b. In general, to prove

the primality of an n using only this fact we must go through every base b that

is relatively prime to n and test n against each b. This naive algorithm takes

⌃(n) iterations to pass through each base if n is prime (⌃(p) = p � 1 if p is

prime). So we still have a very slow way of deterministically testing whether

a given n is actually prime. We have a lot of confidence that if a composite

n passes the Strong Pseudoprime test for a large number of bases that it is

probably prime because of how rare they are. So it is possible to only test a

fraction of the bases in the set ⌃(n) and claim with high probability that n is

prime. To test this idea we can examine real data produced by implementing

the Strong Pseudoprime test.

In actual practice an implementation of the pseudoprime test can pro-

duce probable primes extremely quickly without switching bases very often.

Indeed during experimentation a random number generator was used to cre-

ate pairs of large numbers that were multiplied together to produce a list of

composite numbers. The Strong Pseudoprime test was run with a random

prime base that was pulled from a large list of primes. The test was run

for each composite number in our generated list coprime to that prime. If

the prime was not a witness to the compositeness of n, a first order change

of base was recorded. Another prime p was then picked from our list and

those n which were coprime to p and had yet to be proven composite were

tested again. If that number had already been tested and still passed the

test for the current base a second order change of base was recorded. Due

to the already rare nature of Strong Pseudoprimes the necessity of changing

bases to prove compositeness was already very small. Sample sizes of 1000 or

more were often needed to engender even one base switch. As the order of the

base changes increased the tally of numbers needing that many base switches

decreased significantly. It was rare to get even one number that needed 3

base changes. This phenomenon clearly follows the reduction estimates of

base switches over the primes 2, 3, 5, and 7 in Bressoud’s ”Factorization and

Primality Testing”.

This suggests that our ⌃(n) estimate for the number of base changes

needed to deterministically classify a composite number is pessimistic. Our

experiments and intuition indicate that we should not have to go through

⌃(n) test steps to find a witness to n’s compositeness.

Definition 1. S(n) =
�
a mod n | n is a strong pseudoprime base a

⇥

Abusing notation we will let S(n) also denote | S(n) |.

Theorem 6. For all odd composite integers n > 9, S(n) ⌃ 1
4⌃(n)

15

This theorem suggests that at least 3
4 of all integers ⇣ [1, n� 1] coprime

to n are witnesses for n. That is, n would fail the strong pseudoprime test

for around 3
4 of all integers relatively prime to n ⇣ [1, n�1]. To see the proof

of this theorem see [Crandall and Pomernace 2005].

This bound on S(n) is extremely powerful. It implies that in order to

produce a witness to the compositeness of n we need only, at most, test
1
4⌃(n) + 1 bases (those bases being unique and elements of Z⇤

n) and we will

either produce a witness to n’s compositeness or n is prime. This gives

us a deterministic primality test. However, it has a non-polynomial time

complexity. The profitable use for this algorithm comes from its application

as a probabilistic primality test. Indeed, versions of this and other algorithms

it are still used in practice for real time cryptographic key production. While

it is not a guarantee, the lower bound on the cardinality of S(n) means that

we can produce witnesses to a composite number rather quickly since the

individual computation of each test is quite fast. The resulting algorithm is

know as the Miller-Rabin Test.

Algorithm 4 (Miller-Rabin Test).
Given n > 3 and a number of iterations k

1. for(i = 0; i < k; i++)
Choose a random integer a in the set of integers relatively prime to n
and less than n
Using Algorithm 3 test is n passes the Strong Pseudoprime test
for base a

2. if(n passed Algorithm 3 for all of the bases)
return prime

else return composite

If the Miller-Rabin test is done with a random base and conducted over

25 iterations, by Theorem 6 we have less than a 1
425 chance that n is a strong

pseudoprime for each base. This is less than a one in 8.88 ⇤ 1016 chance

that n is actually a composite number after passing all of the tests. This

chance is so small that the risk of a false prime is generally outweighed by

the time a deterministic algorithm, such as the Agrawal-Kayal-Saxena (AKS)

Algorithm, though polynomial, will take to prove primality for the very large

n needed for RSA cryptography.

The AKS algorithm was first published in 2002. Its announcement cre-

ated a significant stir in mathematics and computer science. The AKS pri-

mality test was the first fully proven deterministic polynomial time primality

test. Earlier deterministic algorithms were released before the AKS algo-

rithm but their proofs and time complexity relied on the Extended Riemann

16

Hypothesis. The generalized Riemann Hypothesis is one of the million-dollar

millennium problems o⇥ered by the Clay Mathematics Institute and remains,

as of yet, unproven. The Miller-Rabin test expects to prove compositeness

in polynomial time but this time estimate still remains probabilistic since it

is conceivable, if we are unlucky, that we will have to go through the full
1
4⌃(n) + 1 bases to prove compositeness. The Gauss sums primality test is

a fully proved deterministic primality test that runs very close to polyno-

mial time, see [Crandall and Pomernace 2005]. Its time bound estimate is

(ln n)c·ln ln ln n where ln ln ln n is non-polynomial but grows extremely slowly

relative to n. The AKS algorithm surpassed all of its predecessors. To add

to its accomplishment its algorithm and principles are relatively simple when

considered against its achievement. As a quick discussion of notation o(n)

with n being an element of a group G means the order of the element n in

G. Also, f(x) ⇧ g(x) (mod xr � 1, n) means that the remainder of f(x)

synthetically divided by xr � 1 with coe⇧cients reduced modn is congruent

to g(x). The notation lg n denotes the log2 of n. Finally, the notations Z[x]

denotes the integer polynomial ring and F[x] denotes the field of polynomials.

The AKS algorithm,

Algorithm 5. (AKS)
Given n ⌥ 2

1. if n is a square or higher power

return composite

2. Calculate the least r ⇣ Z such that o(n) ⌥ lg2 n in Z⇤
r

If n has a proper factor ⇣ [2,
�

⌃(r) lg n]

return composite

3. For(i ⌃ a ⌃
�

⌃(r) lg n)
If((x + a)n ⌘⇧ xn + a (mod xr � 1, n))

return composite

4. return prime

The theorems and proofs that follow demonstrate the correctness of this

algorithm.

Theorem 7. If n is prime then g(x)n ⇧ g(xn) (mod n)

17

For our algorithm it will only be necessary to consider g(x) ⇣ Z[x] such that

(x + a)n ⇧ xn + a (mod n). (8)

This holds for all a ⇣ Z if n is prime.

Proof. Consider the expansion of (x + a)n

(x + a)n =

n⌃

k=0

⇤
n

k

⌅
xn�kak =

⇤
n

0

⌅
xn +

⇤
n

1

⌅
xn�1a1 + . . . +

⇤
n

n

⌅
an

= xn +
n!

1!(n� 1)!
xn�1a + . . . + an.

the coe⇧cients of the middle terms are given by n!
k!(n�k)! for 1 ⌃ k < n. Thus

k! and (n� k)! contain no terms large enough to cancel n in the numerators

of the factorial expansion. Further, since n is prime it remains undivided.

Thus the middle coe⇧cients can be rewritten
(n�1)!

k!(n�k)! · n ⇧ 0 (mod n). By

Theorem 1, that we proved earlier we know that an ⇧ a (mod n) since an =

an�1 ·a and an�1 ⇧ 1 (mod n) if n is prime. So we can write (x+a)n ⇧ xn+a
(mod n) if n is prime

The more general statement of Theorem 7 can be seen using the multi-

nomial coe⇧cient.

Proof. Consider the general polynomial (amxm + . . .+a0)
n. The multinomial

expansion looks like

⌃

k1,k2,...,km

⇤
n

k1k2 . . . km

⌅
(amxm)k1(am�1x

m�1)k2 . . .

each term has the following as its coe⇧cient

⇤
n

k1k2 . . . km

⌅
=

n!

k1!k2! . . . km!
where

n⌃

i=1

ki = n.

But if n is prime the only way that the n in the numerator cancels is if one

of the k’s is n and the rest are zeroes. Otherwise, n remains uncanceled and

this makes those terms congruent to 0 mod n. Those terms drop out and so

only those individual terms raised to the n will be left. It should be noted

that the coe⇧cients am ↵ a0 will be raised to the n but again by Theorem 1

we know that an ⇧ a (mod n) if n is prime.

18

Again we will only be concerned with the simpler equation(8) from above.

It turns out that the converse of this statement is also true. Therefore if

equation(8) holds for any value of a such that gcd(n, a) = 1 then n must

be prime. Unfortunately if n is large, and generally it will be, (x + a)n is a

long expansion calculation but if we consider (x + a)n with f(x) ⇣ Z[x] an

arbitrary monic polynomial then

(x + a)n ⇧ xn + a (mod f(x), n),

holds if n is prime for every integer a. If the degree f(x) is not too large

the time to calculate this congruence will not be too great. Unfortunately,

while this congruence is necessary for the primality of n it is not su⇧cient.

So by adding the polynomial we significantly increase speed but we lose our

complete guarantee of primality.

For the following theorem we will consider f(x) = xr � 1.

Theorem 8 (Agrawal, Kayal, Saxena). Suppose n ⇣ Z, n ⌥ 2 and r ⇣ Z+

coprime to n such that the order of n in Z⇤
r is larger than lg2 n and (x+a)n ⇧

xn + a (mod xr � 1, n) holds for each a ⇣ [0,
�

⌃(r) lg n]. If n has a prime
factor p >

�
⌃(r) lg n then n = pm for some m ⇣ Z+.

This implies that if n has no prime factors in [2,
�

⌃(r) lg n] and n is not

a proper power (that is a square, cube, etc.) then n must be prime.

Proof. Consider a composite n with a prime factor p >
�

⌃(r) lg n. Let

G =
�
g(x) ⇣ Zp[x] | g(x)n ⇧ g(xn) (mod xr � 1)

⇥
.

By our assumptions x + a ⇣ G. Further we can see that G is closed under

multiplication. Take f(x), g(x) ⇣ G

g(x)n ⇧ g(xn) (mod xr � 1).

f(x)m ⇧ f(xm) (mod xr � 1).

Set k(x) = f(x) · g(x)

k(x)n = (f(x) · g(x))n = f(x)n · g(x)n

= f(xn) · g(xn) = k(xn) (mod xr � 1).

So k(x) ⇣ G.

This implies that every monomial expression of the form

⌥

0⌅a⌅
⇡

⇤(r) lg n

(x + a)�a where ⇤a ⇣ Z+, (9)

19

is in G by closure under multiplication.

Further since p >
�

⌃(r) lg n these polynomials are distinct and and

non-zero in Zp[x]. Indeed, they are all non-zero because p is prime and

so Zp[x] is a principal ideal domain. That is, there are no zero divisors

(a, b ⇣ Zp[x] with a ⌘= 0, b ⌘= 0 � a · b ⌘= 0). Since Zp is a principal ideal

domain each of its elements factors uniquely into irreducible elements. So

we will only get repeated elements of x + a in our factorization if x + (a + p)

also occurs in our factorization but a < p so no elements are repeated in the

factorization.

We now show that G is a union of residue classes modulo xr�1. That is,

if g(x) ⇣ G and f(x) ⇣ Zp[x] and f(x) ⇧ g(x) (mod xr � 1) then f(x) ⇣ G.

Examine, f(x) ⇧ g(x) (mod xr � 1) and replace x with xn. we obtain

g(xn) ⇧ f(xn) (mod xnr � 1)(⌅) but we know that xr � 1 | xnr � 1 so this

congruence holds mod(xr � 1) as well. We see that

f(x)n ⇧ g(x)n

↵ ⌦ �
by closure of congruence

(mod xr � 1)

⇧ g(xn)↵ ⌦ �
by g(x)�G

(mod xr � 1)

⇧ f(xn)↵ ⌦ �
by (⇤)

(mod xr � 1).

Let

J =
�
j ⇣ Z+ | g(x)j ⇧ g(xj) (mod xr � 1) for each g(x) ⇣ G

⇥
.

By definition of G, n ⇣ J . Trivially 1 ⇣ J . p ⇣ J since p is prime and for every

g(x) ⇣ Zp[x], g(x)p = g(xp) under our modulus by Theorem 7. We know

that the relation in the theorem must hold modxr � 1 for every g including

those elements in G since p is prime. J is closed under multiplication. Take

j1, j2 ⇣ J and g(x) ⇣ G. g(x)j1 ⇣ G since G is closed under multiplication.

Since g(x)j1 ⇣ G this implies that g(x)j1 ⇧ g(xj1) (mod xr � 1). Then

g(xj1) ⇣ G since G is the union of residue classes. So since j2 ⇣ J

g(x)j1j2 ⇧ g(xj1)j2
↵ ⌦ �

since g(x)j1�G

(mod xr � 1)

⇧ g((xj1)j2)↵ ⌦ �
since g(xj1)�G

(mod xr � 1)

⇧ g(xj1j2) (mod xr � 1).

So j1 · j2 ⇣ J .

20

Let K be the splitting field for xr�1 over the finite field Fp. The splitting

field is the smallest field which contains the roots of xr � 1. Since K is over

Fp it is of characteristic p. That is, arithmetic is done mod p and it contains

the r-th roots of unity. Let ⌅ ⇣ K be the primitive r-th root of 1. ⌅, then, is

a generator for the roots of unity.

Let h(x) ⇣ Fp[x] be the minimum (irreducible) polynomial for ⌅, so that

h(x) is also an irreducible factor of xr � 1.

K = Fp(⌅) =
�
a0 + a1⌅ + . . . + ak�1⌅

k�1 | ai ⇣ Fp

⇥
, (10)

where k is the degree of h(x).

Note that Fp[x]/(h(x)) are those elements Fp[x] mod h(x). That is, those

r(x) defined by f(x) = g(x)h(x) + r(x) as the remainder polynomial from

synthetic division. The power r(x) is strictly less than deg(h(x)) = k. We are

guaranteed a primitive root in our splitting field since (r, n) = 1 which means

(r, p) = 1 and if this holds then the set of roots will be cyclic. Therefore, it

contains a generator which we call ⌅. The roots are generated by Fp(⌅) =�
a0 + a1⌅ + . . . + ak�1⌅k�1 | ai ⇣ Fp

⇥
because powers of ⌅a, a ⌥ k can be

expressed in terms of this polynomial. Consider, F5 and r = 6

x6 � 1 = (x� 1)(x2 + x + 1)(x + 1)(x2 � x + 1).

both of these factors are irreducible over F5. If they were reducible they

would contain zeros over elements of F5, but it is easy to check that it does

not. So we form K as follows

F5[x]/(x2 � x + 1) =
�
a0 + a1⌅ + a2⌅

2 | a0, a1, a2 ⇣ F5

⇥
.

Clearly ⌅, and ⌅2 are in F5, but if x2 � x + 1 is our minimum polynomial

and ⌅ is its root, we know ⌅2 � ⌅ + 1 = 0. Multiply through by ⌅ and we

get ⌅3 � ⌅2 + ⌅ = 0 � ⌅3 = ⌅2 � ⌅. Further if we multiply through by ⌅2

we get ⌅4 � ⌅3 + ⌅2 = 0 � ⌅4 � ⌅2 + ⌅ + ⌅2 = 0 � ⌅4 = �⌅ etc. So the

powers of ⌅ will be covered and therefore all of the zeros will be in the field.

Equation(10) gives us the way to form our splitting field K.

We know that Fp(⌅) �= Fp[x]/(h(x)). Consider the function

� : Fp[x] �↵ Fp(⌅).

The image of �(f) = f(⌅) We know that

f ⇣ ker� ✏ f(⌅) = 0.

but f(⌅) is only zero if h(x) | f(x). This is because h(x) is the minimum

polynomial over Fp for ⌅, and therefore h(x) divides all polynomials for which

⌅ is a root.

h(x) | f(x) ✏ f ⇣ (h(x)),

21

where (h(x)) is the ideal ring generated by h(x). Indeed, if we know that

h(x) | f(x) then f(x) = h(x) · g(x) for some g(x) ⇣ Fp[x], but (h(x)) denotes

the ideal generated by h(x) over Fp[x]. That is, the ideal generated in the

manner h(x) · Fp[x]. We know that g(x) is and element of Fp[x], so f(x) ⇣
(h(x)). Because h(x) is irreducible (h(x)) is a maximal ideal and is therefore

a field so it is a division ring. Therefore, f ⇣ (h(x)) implies h(x) | f(x). This

means that the ker� is exactly the maximal ideal (h(x)). � is clearly onto

since plugging ⌅ in will generate our set. So by the Fundamental Theorem

of Ring Homomorphisms Fp[x]/(h(x)) �= Fp(⌅)

We know that K is the homomorphic image of the ring Fp[x]/(xr � 1).

This is because our function � is onto K and h(x) | xr � 1. Thus we see

that Fp[x]/(xr � 1) ⌦ Fp[x]/(h(x)) since clearly division over a larger degree

polynomial is a smaller set. So the image of the coset x sent to ⌅ is K.

Let G denote the image of G the homomorphism taking the coset of x

from Fp[x]/(xr � 1) and applying ⌅ to it.

G =
�
⇥ ⇣ K | ⇥ = g(⌅) for some g(x) ⇣ G

⇥
.

Further, let d denote the order of the subgroup of Z⇤
r generated by n and p

where Z⇤
r =

�
t | (t, r) = 1

⇥
in mod r space (to say generated by n and p of

course means elements of the form napb, a, b ⇣ Z). Now, let

Gd =
�
g(x) ⇣ G | g(x) = 0 or deg(g(x)) < d

⇥
.

d ⌃ ⌃(r) < r since ⌃(r) is the number of integers less than r that are relatively

prime to r. The elements of Gd must be distinct mod (xr � 1) since their

degree is strictly less than d < r. We want to show that the homomorphism

to K is one-to-one when restricted to Gd.

Consider g1(x), g2(x) ⇣ Gd and say that they map to the same element

on the homomorphism. That is, g1(⌅) = g2(⌅) (⌅). If j = napb for a, b ⇣ Z+,

then j ⇣ J since n, p ⇣ J and J is closed under multiplication. So

g1(⌅
j) = g1(⌅)j

↵ ⌦ �
since g1�G and j�J

= g2(⌅)j

↵ ⌦ �
by (⇤) and closure of G

= g2(⌅
j)↵ ⌦ �

since g2�G and j�J

.

the equalities are given because these elements are equal in K. This equality

holds for d distinct values of j mod r since d is the order of the subgroup

22

generated by napb mod r. But since ⌅ is a primitive r-th root of 1, ⌅j is

distinct as long as j is distinct modr. Thus g1(x) � g2(x) has at least d
distinct roots in K, since plugging in ⌅ to powers of j will yield g1(⌅j) =

g2(⌅j). In a field, the number of roots for a polynomial is bounded by the

polynomials degree. Since, g1(x), g2(x) ⇣ Gd their degree is strictly less than

d therefore g1(x) must be equal to g2(x).

Hence, restricting the domain of our homomorphism to Gd we have our

one-to-one correspondence with elements in K, specifically all of G.

Consider, then, the polynomials

g(x) = 0 or g(x) =
⌥

0⌅a⌅
↵

d lg n

(x + a)�a .

where each ⇤a is 0 or 1. Because d ⌃ ⌃(r), and ⌃(r) was our previous

bound for a in the functions defined in equation(9) we know that g(x) ⇣ G.

Moreover, we know that d > lg2 n by our assumption that the order of n is

greater than lg2 n in Z⇤
r. So

d > lg2 n � d2 > d lg2 n � d >
⇡

d lg n.

If we do not choose all the ⇤a to be one the exponent on (x + a) will not

exceed d and therefore g(x) ⇣ Gd for all g(x) of this form. Because each g(x)

is distinct there are at least

1↵⌦ �
g(x)=0

+(2
↵

d lg n⌦+1
↵ ⌦ �

powers 0⌅a⌅
↵

d lg n

� 1↵⌦ �
case of all �a=1

) > 2
↵

d lg n = n
↵

d,

members in Gd and due to the one-to-one correspondence Gd � G there are

more than n
↵

d members of G.

Recall that K �= Fp[x]/(h(x)). If we denote the deg(h(x)) = k then

K �= Fpk . So take j, j0 such that j ⇧ j0 (mod pk � 1). If we eliminate zero

from K the order of K is pk � 1 by our isomorphism. But fields with 0

removed are cyclic and K has pk � 1 elements, if 0 is removed, thus for a

� ⇣ K, �j = �j0 ✏ j ⇧ j0 (mod pk � 1). Let

J ⌃ =
�
j ⇣ Z⇤ | j ⇧ j0 (mod pk � 1) for some j0 ⇣ J

⇥
.

If j ⇧ j0 (mod pk � 1), j0 ⇣ J and g(x) ⇣ G then

g(⌅)j = g(⌅)j0

↵ ⌦ �
since g(⇥)�K

= g(⌅j0)↵ ⌦ �
since g(x)�G and j0�J

= g(⌅j)↵ ⌦ �
since g(⇥j0)�K

.

23

Since J is closed under multiplication so is J ⌃ since J ⌃’s members are congru-

ence classes of the j0 ⇣ J and congruence is closed under multiplication. Here

we recognize that n/p ⇣ J ⌃ since npk�1 ⇧ n/p (mod pk � 1) and npk�1 ⇣ J
since n, p ⇣ J and J is closed under multiplication. This implies that

npk�1 � n/p = m(pk � 1)

npk � n

p
=

n(pk � 1)

p
= m(pk � 1).

Clearly m is well defined since p | n by our original assumptions. Thus we

know that J ⌃ contains 1, p trivially, and n/p. Also, for each j ⇣ J ⌃, g(x) ⇣ G
we have g(⌅)j = g(⌅j)

Finally, consider the integers pa(n/p)b where a, b are integers in [0,
⇡

d].

p, n/p are in the ordered-d subgroup of Z⇤
r generated by p and n. p�1 is an

element because subgroups have well-defined inverse and p generates Z⇤
r with

n. Now there are more than d choices for a and b, that is, if a and b range

from 0 to
⇡

d there are exactly (
⇡

d + 1)2 = d + 2
⇡

d + 1 combinations of a
and b. So there must be two choices (a1, b1), (a2, b2) with j1 = pa1(n/p)b1 and

j2 = pa2(n/p)b2 congruent mod r. These j1, j2 exist because the order of Z⇤
r

is d so the generation of more than d elements implies repeated values and

since ⌅ is a primitive r-th root of unity, ⌅j1 = ⌅j2(@) due to their congruence.

Further, j1, j2 are elements of J ⌃ since p, n/p ⇣ J ⌃ and J ⌃ is closed under

multiplication. So

g(⌅)j1 = g(⌅j
1)↵ ⌦ �

since j1inJ ⇥

= g(⌅j2)↵ ⌦ �
by the equality (@)

= g(⌅)j2

↵ ⌦ �
since j2�J ⇥

.

This holds for all g(x) ⇣ G. This implies that ⇥j1 = ⇥j2 , for all ⇥ ⇣ G since

⇥ corresponds to a g(⌅) for some g(x) ⇣ G. However, G has more than n
↵

d

elements and j1, j2 ⌃ p
↵

d(n/p)
↵

d = n
↵

d. Thus, the polynomial xj1 � xj2 has

all ⇥ ⇣ G as roots. But the cardinality of G > n
↵

d. So xj1 � xj2 has too

many roots since the equation is of degree ⌃ n
↵

d. So it must be the zero

24

polynomial. Therefore, j1 = j2 which implies

pa1(n/p)b1 = pa
2(n/p)b2

pa1nb1p�b1 = pa1nb2p�b2

nb1�b2 = pa2�a1�b2+b1 .

Since our pairs (a1, b1) and (a2, b2) are distinct we know that b1 ⌘= b2. This

is because if b1 = b2

nb1�b2 = n0 = 1 = pb1�b2�a1+a2 = pa2�a1 . (11)

Equation(11) is equal to 1 if and only if a2�a1 = 0 which means that a2 = a1

If this were true then the pairs would not be distinct. So b1 ⌘= b2. We have,

then, n expressed in terms of p. By unique factorization in Z, n must be a

power of p

Theorem 8 demonstrates that correctness of the AKS algorithm. We first

check that n is not a proper power. If it is, then it is obviously composite.

If not we find our r and check to see if n has a factor over the interval

[2,
�

⌃(r) lg n]. If it does have a factor in this interval then, again, we know

that it is clearly composite because we have found a factor. The last step is

to check the binomial congruences. As discussed, the congruences (x+a)n ⇧
xn + a (mod f(x), n) must hold for all a if n is prime. Clearly this holds

for the less general congruence, (x + a)n ⇧ xn + a (mod xr � 1, n). So over

the interval [1 ⌃ a ⌃
�

⌃(r) lg n] if the binomial congruences do not hold

for any a then n is composite. However, by Theorem 8 if it holds for all

a ⇣ [1 ⌃ a ⌃
�

⌃(r) lg n] and n has a prime factor p >
�

⌃(r) lg n (if n is

composite we’ve already ruled out factors less than
�

⌃(r) lg n in the previous

step) then it must be a proper power of that prime. We have already checked

that n is not a proper power so n must be prime.

We have seen that the AKS algorithm works and is a very elegant algo-

rithm that will deterministically tell us whether or not a number is prime.

On the other hand it seems very complex and actually involves doing some

trial division which we had shied away from because of its time constraint

di⇧culties. The algorithm is significantly more complex than the Strong

Pseudoprime test and can appear less attractive because of this. While the

algorithm is more complex it relies on deep number theory to carve out its

result and thus provides us with a unique and outstanding approach. As

mentioned before the AKS algorithm runs in fully proven polynomial time.

What follows is a loose computation of the upper bound of the AKS’ time

complexity that demonstrates a polynomial runtime.

25

The time complexity of the primality test relies on checking the congru-

ences (x + a)n ⇧ xn + a (mod xr � 1, n) but first we need to show that

our search for r can be done in polynomial time in lnn. This bounding is

obtained through application of the following theorem.

Theorem 9. Given an integer n ⌥ 3, let r be the least integer with the o(n)

in Z⇤
r exceeding lg2 n. Then r ⌃ lg5 n.

Proof. Let r0 be the least prime that does not divide

N = n(n� 1)(n2 � 1) . . . (n lg2 n⌦ � 1).

Since r0 is prime and does not divide N we know that r0 � n. So (r0, n) = 1

which implies n ⇣ Z⇤
r0

. We know that, n2 ⌘= 1 in Z⇤
r0

. Say that n2 ⇧ 1

(mod r0) � n2� 1 = kr0 � r0 | n2� 1. But if r0 | n2� 1 then r0 |. Thus we

derive a contradiction. So n2 ⌘= 1 in Z⇤
r0

. This process can be continued up to

the last factor, (n lg2 n⌦�1). n lg2 n⌦ ⌘= 1 in Z⇤
r0

since if it were n lg2 n⌦�1 = kr0.

By the same reasoning as above, n lg2 n⌦ ⌘= 1 in Z⇤
r0

. This implies that o(n)

in Z⇤
r0

is greater than lg2 n and r ⌃ r0 since it is the least integer such that

o(n) > lg2 n in Z⇤
r0

.

Note that the product of primes dividing N is at most N clearly since

either N decomposes into a unique factorization of primes of power 1 or it has

repeated prime factors and the product of the unique primes will be strictly

less than N . Further, we know that N < n1+1+2+...+lg2 n because

n(n� 1)(n2 � 1) . . . (n lg2 n⌦ � 1) < n(n)(n2) . . . (n lg2 n⌦).

Further, n1+1+2+...+ lg2 n⌦ = n1/2 lg2 n⌦2+1/2 lg2 n⌦+1. This is by the summation

formula
⇧n

k=1 k =
n(n+1)

2 . Applying this yields

1+2+3+ . . .+ ✓lg2 n◆ = (✓lg2 n◆+1) ·1/2✓lg2 n◆ = 1/2✓lg2 n◆2 +1/2✓lg2 n◆.

We add one to our sequence because it is repeated in the exponent sequence.

So we get, n1/2 lg2 n⌦2+1/2 lg2 n⌦+1, which is clearly less than nlg4 n = 2lg5 n.

Hence we get

N < n1+1+2+...+ lg2 n⌦ = n1/2 lg2 n⌦2+1/2 lg2 n⌦+1 < nlg4 n = 2lg5 n.

Now we take into consideration the Chebyshev-type estimate, see [Crandall and Pomernace 2005],

on the product of primes less than a given x

⌥

p⌅x

p > 2x, where x ⌥ 31.

26

That is, the product of primes [1, x] exceeds 2x if x ⌥ 31. Consider our

N < 2lg5 n. The product of the prime factors of N are less than or equal to

N . If we choose x = lg5 n, then the product of primes less than or equal

to x exceeds 2lg5 n by the Chebyshev-type estimate. 2lg5 n is strictly greater

than N so this list of primes less than or equal to x in the product contains

non-factor primes of N . Choose r0 to be the least of said primes. Therefore

r0 ⌃ lg5 n if lg5 n ⌥ 31. As long as n ⌥ 4, lg5n ⌥ 31. If n = 3 the least r is 5

since in Z⇤
5

35 = 243 mod 5 = 3

lg2 3 = 2.51211 < 5

5 ⌃ lg5 n = lg5 3 = 10.00218.

The powers test in step 1 of the AKS algorithm can be done very simply

with a kind of binary search approach. This approach involves solving ab �
n = 0 by a simple educated guessing. For example if we are trying to

determine if n is a square. We deal with the equation a2 � n = 0. We first

guess the prime p1 closest to n/2. We plug it in and check to see if it is n. If

it is higher than n, we guess p2 to be the closest prime to p1/2. If it is lower

we guess p2 to be the closest prime to (n � p1)/2. We repeat this until we

find a p value that works or the high and low bounds of our search converge

so that no p exists. This application of binary search is bounded by O(lg n).

We will perform this for k power steps. We know 2k < ak = n. So k < lg n.

So this algorithm to perform step 1 is bounded by O(lg2 n).

Our proof of finding an integer r with order of n in Z⇤
r exceeding lg2 n in

polynomial time shows that step 2. can be done in polynomial time. This

is because r is bounded by lg5 n by Theorem 9 and we need only check the

primes up to
�

⌃(r) lg n as factors of n.

As discussed earlier, the third step is the most crucial. We have done the

first two steps in polynomial time and have set the necessary groundwork

to fit Theorem 8. When discussing the congruence testing earlier we men-

tioned that the expansion of (x + a)n is very expensive and time consuming.

We added the extra modulus of a monic polynomial with the intention of

decreasing the expansions time complexity. The time saved can be seen by

considering an example. Take the polynomial (x + 1)n to be expanded and

examine the time to check the congruence associated with it.

Ex 2. If n = 10001 and r = 3

(x + 1)10001 (mod x3 � 1, 10001). This can be expanded very quickly by re-
peated squaring and modulus reduction. (x + 1)2 = x2 + 2x + 1 reduce the

27

polynomial mod x3�1 and the coe⇥cients mod 10001. (x+1)4 = (x2+2x+

1)2 = (x4 + 4x3 + 6x2 + 4x + 1) reducing mod x3 � 1 we get, 6x2 + 5x + 5.
Now, (x + 1)8 = (6x2 + 4x + 1)2 and reduce mod x3 � 1. We can continue
this process to obtain the complete expansion under the modulus conditions.

The expansion will never be larger than degree r because of our modulus.

This is why we take the least r to create our monic polynomial, if the size of

r is not too large it greatly reduces the number of terms to be expanded at

each squaring step.

The number of repeated squaring steps that we will have to perform

is approximately lg n. At each step we must first expand our polynomial

which requires at most r2. This is because our polynomial has at most

r terms because it is bounded in degree by r. After expanding our poly-

nomial at each squaring step we must reduce it mod(xr � 1) by synthetic

division. Synthetic division is bounded by O(ln2 n). We must also reduce

the coe⇧cients of our polynomials. This takes approximately 2r lg n steps.

Now we can derive our complete bounding. Our approximate step count is

lg n(r2 lg2 n + 2r lg n) = r2 lg3 n + 2r lg2 n. This leads to a complexity esti-

mate of O(r2 lg3). If we consider that these congruences are checked over the

interval 0 ⌃ a ⌃
�

⌃(r) lg n and
�

⌃(r) is bounded by r1/2, this complexity

is repeated, less than, r1/2 lg n + 1 times. So we can say that the time com-

plexity for the congruences is O(r2.5 ln4 n). Using our result from Theorem 9,

r = O(ln5 n). Thereby we observe a very rough estimate of O(ln16.5 n).

This bounding is large but it is clearly and definitively polynomial. For

a more precise time bounding estimate see [Crandall and Pomernace 2005].

With optimization and tighter bound criterion the actual time-complexity

bound for the AKS algorithm is significantly lower. However, the fact of the

matter still remains, even under naive upper bound assumptions and over-

estimation of the time needed for the algorithms steps, the algorithm still

exhibits polynomial-timed characteristics.

The AKS primality test was a breakthrough in primality testing and num-

ber theory. The algorithm, in its entirety, is much simpler than many of its

predecessors that attempted to approach deterministic polynomial run-time.

Finally its proof, while relying on concepts in algebra, is complete and un-

derstandable. Nonetheless, while the AKS primality test is deterministic and

polynomial it still remains to be seen whether it will be e⇥ective in proving

primality under more rigorous time constraints. As mentioned before, the

strong pseudoprime test is still widely used in RSA key generation. This

is because the cryptographic key process often demands the generation of

large primes for key creation in a very small amount of time. Under such

conditions the speed of algorithms, like the Miller-Rabin test, outweigh the

28

miniscule chance of a false negative in proving compositeness.

3 Factorization

While primality testing is important to the creation of RSA keys, factoriza-

tion is equally important to those systems’ security. Primality contributes

to the security of the RSA system with what it can do and how fast. Fac-

torization is important for what it cannot do quickly. Currently there are

no polynomial-time algorithms to factor a large integer n into its prime fac-

tors. It is believed that there is no deterministic polynomial factorization

algorithm. This is extremely important to the RSA security system as men-

tioned earlier. If factorization were easy then the decryption key d can be

reverse engineered from the known factorization of n and the public encryp-

tion key e. The problem of factoring n, if n is large, it is so di⇧cult in fact

that the largest ”hard” number factored to date in a regulated setting is

RSA-200. A ”hard” number to factor is one of the form n = p ·q where p and

q are large primes. It is no coincedence that numbers used in the public key

system take this form. RSA-200 was one of the RSA challenge numbers. It is

the largest of these challenge numbers factored to date at 200 digits long and

composed of two 100 digit primes. It was factored in 2005 using state of the

art techniques and a cluster of more than 80 2.2 GHz processing computers.

Even with this parallel computing strategy it took nearly two years to split

the number according to the note released announcing the accomplishment

[Kleinjung Franke Boehm and Bahr 2005].

In order to understand some of the more complex factorization algorithms

we will need to look at the Chinese Remainder theorem.

Theorem 10. Let m1, m2, . . . mr be positive integers that are pairwise rela-
tively prime, that is, no two mi’s share a common factor other than one. Let
a1, a2, . . . ar be integers, then there exists a ⇣ Z such that

a ⇧ a1 (mod m1)

a ⇧ a2 (mod m2)

...

a ⇧ ar (mod mr).

Moreover, a is unique mod M = m1 · m2 · . . . · mr.

Proof. Define Mi = (M/mi)
⇤(mi).

We know that M/mi is relatively prime to mi. This is because

M/mi = (m1 · m2 · . . . · mi�1 · mi+1 · . . . · mr)
⇤(mi).

29

None of these shares a common factor with mi since they are pairwise rela-

tively prime. Moreover, M/mi is divisible by mj for all j ⌘= i. So we have

that

Mi ⇧ 1 (mod mi)

Mj ⇧ 0 (mod mj) for j ⌘= i.

We proceed by forming a. So let a = a1 · M1 + a2 · M2 + . . . + ar · Mr. If we

construct a in said manner it satisfies all of our modulo criteria. Consider

a mod m1 = a1 · M1 + a2 · M2 + . . . + ar · Mr mod m1

= a1 · M1 + 0 + . . . + 0 mod m1

= a1 · 1 mod m1

= a1 mod m1

� a ⇧ a1 (mod m1).

a is unique. If it were not we would have another integer b satisfying our

congruence. Then for each mi, a ⇧ b (mod mi) implies mi | a � b. If this is

true of every i we know that M | a�b (this is because each of the mi have no

common factors and therefore make up unique factors of a� b). This implies

a ⇧ b (mod M). Therefore a is unique mod M .

The first instinct in factorization is the same first instinct that one has

when approaching primality testing: trial division. While this process seems

quite quick for small numbers it has obvious drawbacks as the numbers get

larger. As discussed earlier, even with a large list of primes and testing only

those primes less than
⇡

n, we must still perform a large number of division

steps which grows very quickly as n increases. The first algorithm to consider

is not used very often anymore but is an improvement on trial division and

contains the logical foundations of the more modern techniques.

Fermat’s algorithm begins by trying to split an integer n into the integer

product of a · b. If this can be done, then a and b can be broken again into

factors, if indeed they are composite, more quickly than n. Thus, a prime

factorization can be iteratively determined. The idea behind the algorithm

is to write n as the di⇥erence of two perfect squares.

n = x2 � y2 = (x� y)(x + y)

Hence we have two smaller factors of n. Further, if n is odd (which it will

be most of the time, since if n is even we divide by a power of 2 to obtain

30

an odd n⌃ to factor) then every n can be expressed as such. Indeed, consider

n = a · b and x =
(a+b)

2 , y =
(a�b)

2

x2 � y2 =
a2 + 2ab + b2

4
� a2 � 2ab + b2

4

=
a2 � a2 + 4ab + b2 � b2

4

= a · b
= n.

Given an odd integer n, we start with x = 
⇡

n� and try increasing y until

x2 � y2 ⌃ n. If x2 � y2 = n, we have our factorization. However, if it

is less than n we reseed x = x + 1 and start increasing y again from 1.

This algorithm can be sped up, avoiding calculating the squares, by initially

setting

r = x2 � y2 � n,

and u = 2x+1, v = 2y +1 thereafter. u is the amount r increases as a result

of (x + 1)2 since x2
2 will be equal to x2

1 + 2x1 + 1 = x2
1 + u. Likewise, v is the

amount r decreases as y is augmented (y + 1)2. This avoids costly squaring

in the run-time of the algorithm. Nevertheless, it requires a large number of

loops, depending on n, especially if the factors of n are far away from 
⇡

n�.
Either way, we do not perform costly trial division and if n has two large

factors Fermat’s algorithm will outperform trial division.

Kraitchik observed that finding a factor for n using Fermat’s algorithm

could be sped up by attempting to find an x and y such that

x2 ⇧ y2 (mod n).

This pair no longer guarantees a factorization of n, but it does imply that

n | x2 � y2 which further implies that nk = (x� y)(x + y). We have at least

a 50-50 chance that the prime divisors of n are distributed between these

two factors and therefore the gcd(x � y, n) is a non-trivial factor of n. The

other possibility is that all of n’s factors could be in one or the other giving

a gcd(x � y, n) = 1 or n. If we can find a systematic and e⇧cient way to

produce these x, y values then this relation gives us a good chance of finding

factors of n.

Before considering the powerful application of Kraitchik’s improvement

on Fermat’s algorithm we need to consider two algorithms that are extremely

e⇧cient at producing factors to composites on the order of 1010 to 1020. Both

algorithms are due to J.M. Pollard. The first is the Pollard Rho algorithm.

31

We start with a composite number n and denote a non-trivial factor of n
as d. Let f(x) be a small irreducible polynomial over Zn. Starting with an

x0, we create a list of xi’s such that

xi = f(xi�1) (mod n) (12)

Equation(12) is the reason why it is important that f(x) is irreducible over

Zn.

Ex 3. x0 = 3 f(x) = x2 + 1 n = 799

x0 = 3 x5 = 383

x1 = 10 x6 = 473

x2 = 101 x7 = 10

x3 = 614 x8 = 101

x4 = 668 . . .

Let yi = xi mod d. If we choose d = 17, then our sequence of yi’s will be

y0 = 3 y5 = 9

y1 = 10 y6 = 14

y2 = 16 y7 = 10

y3 = 2 y8 = 2

y4 = 5 . . .

We have xi ⇧ f(xi�1) (mod n) and yi ⇧ xi (mod d). This implies that

xi = nk+f(xi�1) for some k. So we can write yi = nk+f(xi�1) (mod d) but

d is a factor of n so yi ⇧ f(xi�1) (mod d). There are only a finite number

of congruence classes for d, that is, at most d of them. So eventually in our

list of yi’s we will have a yi = yj. But once this happens we will keep cycling

and for all t ⇣ Z
yi+t = yj+t.

If yi = yj then

xi ⇧ xj (mod d).

This can be seen by yi = xi mod d = yj = xj mod d. So, d | xi � xj and

hence we have a good chance that xi, xj are not equal outside of Zd space.

If they are not, gcd(n, xi � xj) is a non-trivial factor of n (since d divides

xi � xj and is a divisor of n). The problem is that we don’t know d. If

we did it would not make sense to run the algorithm. We are, nonetheless

guaranteed to have infinitely many pairs of i, j for which yi, yj are equal since

it is infinitely cyclic. If we have a cycle length c, the di⇥erence between the

i and j indices for which xi ⇧ xj (mod d), once we are in the cycle any pair

32

(i, j) such that c | j�i will work. So we just need to find the i, j combination

that is within the cycle and are spaced at the cycle length. There are many

ways to approach searching for this pair. The form of choosing pairs (i, j)
and computing the gcd(n, xi � xj) to follow is due to Brent. His suggestion

is compute the following xi’s checking if the gcd(xi � xj, n) is a non-trivial

factor.

x1 � x3 c = 2

x3 � x6 c = 3

x3 � x7 c = 4

x7 � x12 c = 5

x7 � x13 c = 6

x7 � x14 c = 7

x7 � x15 c = 8

In general taking pairs

x2k�1 � xj, 2k+1 � 2k�1 ⌃ j ⌃ 2k+1 � 1.

With this approach we can state our algorithm completely.

Algorithm 6. Given n, x0, and f(x), i = 1

1. for(2i+1 � 2i�1 ⌃ j ⌃ 2i+1)

compute x2i�1 and xj

compute gcd(x2i�1 � xj, n) = g
if(g ⌘= 1 and g ⌘= n)

return g
else continue with the for loop

2. i = i + 1 and start step 1 over

The beauty of this method is that while the index of the first x is in-

creasing to guarantee that we get o⇥ the tail (that is, the part of the yi’s

that are not part of the cycle) the di⇥erence between i and j is increasing

by one each time searching for the proper c value. This systematic approach

attempts to save space while testing all the gcd’s necessary to find d. This

test is probabilistic and known as a Monte Carlo method because our success

in factorization depends heavily on our choice of f(x). In the Example 3 at

the beginning we can see that we have made a bad choice for f(x) since our

xi’s are equal within the cycle. When we take the gcd(xi� xj, n) we will get

n. In this case, we must choose a new f(x) and start again.

33

Ex 4. x0 = 3 f(x) = x2 + 2 n = 799

x0 = 3 x5 = 640

x1 = 11 x6 = 514

x2 = 123 x7 = 300

x3 = 749
...

x4 = 105

Yielding a list of yi’s

y0 = 3 y5 = 11

y1 = 11 y6 = 4

y2 = 9 y7 = 1

y3 = 1
...

y4 = 3

So the gcd(105� 3, 799) = 17

With our new choice of f(x) we obtain the cycle that we want and using

the first repeated values we obtain the non-trivial factor of n that we wanted.

As mentioned, the algorithm’s approach to the solution is not quite as simple.

Our examples used the fact that d = 17 to obtain the y congruences which

help us choose the (i, j) pair. Brent’s approach to the cycle testing for the

Pollard-Rho algorithm will typically take a little longer to find the factor

since we do not know the tail or cycle lengths and therefore do not know

which (i, j) pair to use..

We implemented the Pollard-Rho algorithm to test its e⇧ciency. In the

java implementation the calculations were done using the big integer class to

avoid run over in binary digits as the numbers tested grew beyond the double

precision 32-bit representation. Further, the algorithm included a max num-

ber of iterations limit in order to avoid problematic run-time engendered by

unlucky x0 or f(x) picks. For simplifications sake the irreducible polynomial

used was f(x) = x2 +c where c was a user input integer. It is easy to see that

this polynomial is always irreducible over Zn and while it limits the kinds

of f(x)’s available it o⇥ers a good way to vary the generating polynomial

without having to constantly perform reducibility tests.

In practice, as the numbers grew larger the run-time of the algorithm also

grew significantly. This is because the cycle length is generally dependent on

the size of the smallest factor of n. If n is a two factor composite number

its factors grow along with the size of n. The Pollard-Rho algorithm was

e⇧cient on numbers up to around the order of 1019 (that is around 19 digits

long) but after that it was harder to find factors under any maximum number

34

of iterations in a reasonable time. While this constitutes a large number it

is no where near the size needed to break our target numbers of 100 digits

or more. This is also slightly under the estimate in Bressoud’s Factorization

and Primality Testing of 1020. This is most likely due to the fact that the

implemented algorithm does not utilize some of the optimization strategies

like time saving gcd calculations or running out the polynomial generations

before starting cycle testing to get o⇥ the tail more quickly. These suggestions

would, no doubt, increase e⇧ciency especially on larger n. While these time

saving techniques were not employed we were still able to approach the limit

set by Bressoud. This is most likely due to the large jumps in computing

power and memory storage since the algorithm was initially proposed. These

leaps in memory capacity and processing speed have benefitted the Quadratic

Sieve and Multiple Polynomial Quadratic Sieve still more.

Similar results were achieved with the second algorithm suggested by

Pollard. The Pollard p-1 algorithm is similar to the Pollard-Rho algorithm

and shares a similar factoring threshold of about 1010�1020. The correctness

of the algorithm rests on Theorem 1

2p�1 ⇧ 1 (mod p). (13)

We consider our n to be factored. Suppose that n has a prime factor p such

that the primes dividing p � 1 are less than 10000. We will work with the

slightly more restrictive condition that p � 1 | 10000!. If this holds we can

compute

m = 210000! mod n.

very quickly since this constitutes exponentiation mod n. Such exponentia-

tion can be done quickly even though 10000! is a very large number, since

we calculate

(((21)2)3 . . .)10000 mod n,

where we reduce modulo n after each exponentiation calculation. One should

note that p�1 | 10000! is only a slightly larger restriction over the statement

that p� 1 has factors below 10000 since it only rules out factorizations with

repeated large factors like 9999a for some a such that 9999a > 10000!

If m = 210000! mod n and we know that 10000! = r(p�1), these conditions

imply

nk + m = 210000! � nk + m = 2r(p�1)

� m = 2r(p�1) � nk

� m ⇧ 2r(p�1) � nk ⇧ 2r(p�1) � 0 (mod p) since p | n

� m ⇧ 2r(p�1) ⇧ (2p�1)r ⇧ (1)r

↵ ⌦ �
by Equation(13)

⇧ 1 (mod p).

35

Therefore p | m�1. There is a good chance that n does not divide m�1 and

thus t = gcd(m� 1, n) will be a non-trivial divisor of n. 2 is simply a special

case. Referring back to Theorem 2 we see that these calculation should hold

for any base. That is, our observations will hold for b10000! for any b relatively

prime to n.

In actual implementation we have no way of telling how close we need

to get to 10000 before we find our p such that p � 1 divides 10000! and p
divides n. We do not want to compute the full 10000! if we don’t have to for

two reasons. The first is that extra computation and wasted e⇥ort is never

good for an algorithm implementation. Second, if all of n’s factors are picked

up by computing m fully our gcd(m � 1, n) will yield n which is a useless

result in terms of actually splitting n. So we’ve done all of the computation

work without coming up with a useful result. For these reasons it is best to

continually check the gcd(bk! � 1, n) and augment k, up to 10, 000!, between

assessments. If the gcd is 1 then we know that we haven’t picked up our

primes. If it is n then we have picked up all of them and either we must

subtract from k and recalculate the gcds more often or try a di⇥erent base

value for b. As we proved above, if the gcd is anything but 1 or n we have

our non-trivial factor of n.

Algorithm 7 (Pollard P-1). Given n and base b, i = 10

1. Calculate m = bi! mod n
2. Calculate t = gcd(m� 1, n)

3. If(t > 1 and t < n)

return t
else i = i + 10 and repeat from step 1

Like the Pollard-Rho algorithm, the Pollard p-1 algorithm assumes that

n is known to be composite. Both the Pollard-Rho and p-1 algorithms can

have extremely long and ine⇧cient run-times if n is prime.

Our p�1 algorithm is plagued by the same problems that the Pollard-Rho

algorithm had. That is, the gcd step calculation may return n as a value and

therefore we will need to go back and change the base value to a di⇥erent

integer and retry our calculations. Even worse, if our initial assumption

of p � 1 having factors of less than 10, 000 does not actually hold. We may

never be able to find a factor of n and this algorithm will continue indefinitely

without producing a usable result. To handle this we could increase our value

of 10, 000, but this spreads our calculations farther and farther, slowing the

algorithm.

It should be noted that there is an extra caveat on RSA key generation

that both primes, p and q, used to create the keys have the property that

36

p � 1 and q � 1 have large factors for just this reason. If these two values

had small integer factors then n can be factored very quickly by the p � 1

algorithm. To form such p and q values we start with a large prime value p1

and q1 such that p = 2p1 + 1 and q = 2q1 + 1 are also prime. Forming p and

q in this manner makes them resistant to quick factorization by the p � 1

method. For more on this method and formation of cryptographic keys see

[Stinson 2006].

These two algorithms represent a change in the basic philosophy of the

factoring methods discussed so far. While trial division and Fermat’s ap-

proach are both deterministic, Pollard’s two factoring algorithm’s are proba-

bilistic. That is, for bad polynomial choices for the Pollard-Rho and unlucky

base choices or high p � 1 factor values for the factors of n we may have

to rerun the algorithm or, worse, the process may run forever. All of the

modern high power factoring methods are based on probabilistic approaches.

A fast deterministic factoring algorithm simply does not exist yet. The trick

is finding a way to improve our luck and take faster algorithmic approaches

for large values of n.

Before beginning our discussion of the Quadratic Sieve we must discuss

one last property called Quadratic Reciprocity. Earlier we discussed Euler’s

criterion which involved the definition of a quadratic residue. Recall that b
is a quadratic residue if there exists a t ⇣ Z such that b ⇧ t2 (mod p).

We would like to find a way to tell when an integer b is a quadratic residue

for a given prime p. Euler’s criterion gave a deterministic algorithm by

reducing the question to finding the residue of b(p�1)/2 mod p. The problem

is such exponentiation, though fast, is relatively expensive when weighed

against the important but small fact of deciding if b is a quadratic residue.

A simpler algorithm should exist. To start we will introduce some notation

Let p be an odd prime and n ⇣ Z. The Legendre symbol (n/p) is defined

to be 0 if p divides n, +1 if n is a quadratic residue mod p, and �1 if it is

not. Therefore, we can restate Euler’s criterion as follows

n(p�1)/2 ⇧ (n/p) (mod p).

If we set n = �1 we come up with the following Lemma,

Lemma 3. The Legendre Symbol (�1/p) is 1 if p ⇧ 1 (mod 4) and is �1 if
p ⇧ 3 (mod 4)

With this new definition we can also see the following properties of the

Legendre Symbol.

Lemma 4. Given a, b ⇣ Z then, (a · b/p) = (a/p) · (b/p)

37

Lemma 5. If a, b ⇣ Z and a ⇧ b (mod p) then (a/p) = (b/p).

Lemma 6. If p does not divide a ⇣ Z then (a2/p) = 1

Our next theorem to consider is due to Gauss. It is extremely important

to our goal of an algorithm to very quickly decide whether an integer is a

quadratic residue quickly. It is used to prove Quadratic Reciprocity which

will be defined later.

Theorem 11 (Gauss’ Criterion). Let p be an odd prime and b ⇣ Z+ not
divisible by p. For each positive odd integer 2i � 1 less than p let ri be the
residue of b · (2i� 1) mod p. That is

ri ⇧ b · (2i� 1) (mod p) 0 < ri < p.

Further let t be the number of ri which are even. Then

(b/p) = (�1)t.

The Legendre symbol can be proven out for small numbers like 2 so that

no complex calculations need to be carried out. By investigation it can be

observed that 2 is a quadratic residue mod p when p ⇧ 1 or � 1 (mod 8)

and is not a quadratic residue when p ⇧ 3 or �3 (mod 8). Using Theorem 11

we this fact can easily be proven. This implies the following Lemma.

Lemma 7. If p is an odd prime then

(2/p) = (�1)(p2�1)/8

To see that this formula holds just verify that (p2 � 1)/8 is even if p ⇧
1 or � 1 (mod 8) and odd if p ⇧ 3 or � 3 (mod 8).

We can continue proving these properties for larger and larger numbers

but the Lemma statements become increasingly complex and harder and

harder to prove. What is really needed is a more general property that will

allow for systematic reduction and from which we can use our compilation

of Lemmas to produce an e⇧cient algorithm.

From Lemma 4 we know that computing (n/p) for an odd prime q can

be reduced to finding (pi/q) for those primes pi that divide n if n’s prime

factorization is known. In order to help us with this calculation we need the

following theorem due to Gauss known as Quadratic Reciprocity.

Theorem 12 (Quadratic Reciprocity). If p and q are odd primes and at
least one of them is congruent to 1 mod 4 then

(p/q) = (q/p)

if both p and q are congruent to 3 mod 4 then

(p/q) = �(p/q)

38

While this result is nice when combined with our previous theorems and

Lemmas, it is not particularly useful in calculating (n/p) unless we know

the prime factorization of n. If we are going to use the Legendre Symbol in

our factorization algorithms for a composite n we will obviously not have its

prime factorization handy. This problem was resolved by Carl Jacobi with

the Jacobi Symbol.

Definition 2. Let n be a positive integer and m be any positive odd integer
such that

m = p1 · p2 · . . . · pr

where pi are odd primes that can be repeated. The Jacobi Symbol (n/m) is
computed

(n/p) = (n/p1) · (n/p2) · . . . · (n/pr)

where (n/pi) is the Legendre Sybmol

While the Jacobi symbol does not indicate whether n is a quadratic

residue modulo m, it does have two very important implications. The first

is that if m is prime then the Jacobi symbol is exactly the Legendre Sym-

bol. The second important fact is that the Jacobi symbol satisfies the same

computational properties as the Legendre symbol. These properties are

1. (n/m) · (n/m⌃) = (n/(m · m⌃))

2. (n/m) · (n⌃/m) = ((n · n⌃)/m)

3. (n2/m) = 1 = (n/m2), given that (n, m) = 1

4. if n ⇧ n⌃ (mod m), then (n/m) = (n⌃/m)

5. (�1/m) = 1 if m ⇧ 1 (mod 4), = �1 if m ⇧ �1 (mod 4)

6. (2/m) = 1 if m ⇧ 1 or � 1 (mod 8), = �1 if m ⇧ 3 or � 3 (mod 8)

7. (n/m) = (m/n) if n and/or m ⇧ 1 (mod 4), = �(m/n) if n and m ⇧ 3

(mod 4)

What this implies is that aside from pulling out factors of 2 as they arise

in the Legendre symbol reductions, we do not need to worry about whether

the numerator is prime and can proceed with quadratic reciprocity regardless.

Here is an example.

39

Ex 5.

(1003/1151) = �(1151/1003)

= �(148/1003) = �(4/1003) · (37/1003)

= �(37/1003) = �(1003/37)

= �(4/37)

= �1

So we can now build our algorithm.

Algorithm 8 (Calculation of the Jacobi/Legendre symbol).
Given n, m we return (n/m)

1. [Reduction using Lemmas]

n = n mod m;

t = 1;

while(a ⌘= 0){
while(a%2 == 0){

a = a/2;

if(m mod 8 == 3 or == 5) t = �t;
}
(a, m) = (m, a) (variable swap)
if(a ⇧ m ⇧ 3 (mod 4) t = �t;
a = a mod m;

}
2. [Termination Stage]

if(m == 1) return t;
return 0;

This algorithm finds the Jacobi symbol of (n/m) and if m is an odd

prime (n/m) is also the Legendre symbol [Crandall and Pomernace 2005].

The logical next question after determining if n is a quadratic residue mod p
is what the value of t is for n ⇧ t2 (mod p). We will discuss the algorithm

to calculate these square roots in Zp in the next sections.

Even with our original definition of the Legendre symbol from Euler’s

criterion we can calculate the symbol directly from modulus arithmetic in

O(ln3 p) time complexity. Using our corllaries and Quadratic reciprocity we

can achieve a bit complexity of O(ln2 m) when | n |< m.

Now that we have an e⇧cient algorithm to decide whether a number is a

quadratic residue mod p where p is a prime, we can proceed to the Quadratic

sieve. It is one of the fastest and most powerful factoring algorithms available.

The Quadratic Sieve is one of our best options when it comes to factoring

40

numbers of immense size where trial division, Pollard-Rho, Pollard p-1, and

other mid-range factorization approaches become impractical. While the

Quadratic Sieve is extremely powerful and significantly more e⇧cient on

these larger numbers than our other algorithms, it takes almost as much

work to factor numbers of large magnitude as it does to split numbers of

smaller magnitude. As such, the QS algorithm should be used in place of

our earlier algorithms only if they have failed or the number is very large.

To start let’s recall the suggestion that Kraitchik made to improve Fer-

mat’s factoring algorithm. If we could find ”random” integers x and y such

that

x2 ⇧ y2 (mod n),

then we have a good chance that the gcd(n, x�y) is a non-trivial factor of n.

The Quadratic Sieve is a systematic approach to finding such x and y values

relatively e⇧ciently. Its method is built on a slightly simpler algorithm due

to John Dixon.

To start we choose a random integer r and compute

g(r) = r2 mod n.

Now we attempt to factor g(r). Dixon’s algorithm demands a lot of g(r)
values and therefore we do not spend very much time trying to factor each

individual g(r). Instead we set a limit for trial division of each computed

value. Say that limit is 5, 000. If g(r) does not factor under our limit then

we will simply choose a di⇥erent r and try again. This process is repeated

until we have more completely factored g(r)’s than primes below our limit

of trial division. In the case of 5, 000 there are 669 primes under this limit

and hence we would need more than 669 r values for which we can factor the

corresponding g(r).
For our example let p1, p2, . . . , p669 be the first 669 primes. If g(r) factors

completely under our limit then each g(r) can be written

g(r) = pa1
1 · pa2

2 · . . . · pa669
669 .

We can simplify our representation of g(r) to the vector

v(r) = (a1, a2, a3, . . . , a669).

If all of the entries in v(r) are even then we have our answer since

g(r) ⇧ r2 (mod n),

and g(r) is a square number. This is, however, a rare occurrence. The

scarcity of this happening is the reason why we are required to have more

41

g(r)’s than primes below our trial division limit. If we have more v(r) vectors

than the length of any of the vectors respectively then by linear algebra we

are guaranteed a sum of distinct v(r)’s that have all even entries. This can

be achieved by creating a new vector, call it w(r). Each w(r) will be created

by reducing each entry in every v(r) mod 2. Yielding

w(r) = (b1, b2, . . . , b669), such that

bi = 1, if ai is odd

bi = 0, if ai is even.

Performing Gaussian elimination in Z2 with these new vectors we can find a

combination of r values for which the sum of their v(r) vectors has all even

elements and therefore is a perfect square. Observe that our vectors over Z2

are guaranteed to be linearly dependent because the matrix has more rows

than columns.

Since the sum of our selected v(r)’s has all even components the product

of the corresponding g(r)’s will combine to a perfect square. If we have kept

track of our g(r)’s and r values correctly we find a congruence that represents

our sought-after x and y values

g(r1) · g(r2) · . . . · g(rk) ⇧ r2
1 · r2

2 · . . . · r2
k (mod n).

We now have the good odds, which Kraitchik recognized, that this will yield

us a non-trivial factor of n. If we are unlucky and it does not then we

can continue our Gaussian elimination to find another linearly dependent

combination of w(r)’s. While this algorithm is probabilistic, in practice it

will find a large factor of n much faster than any deterministic approach.

This algorithm’s strategy was refined by Carl Pomerance with the addi-

tion of a sieving procedure that gives this algorithm its name. Instead of

choosing our r’s at random we will let

k = ✓
⇡

n◆,

and take k + 1, k + 2, . . . for values of r. We define f(r) as

f(r) = r2 � n.

We see that f(r) = g(r) if r ranges between k and
⇡

2n. Our goal is to once

again find f(r)’s that factor completely under our trial division limit. So let

p be an odd prime under 5, 000 that does not divide n. This is a reasonable

assumption since before using the Quadratic Sieve we should have already

42

tried some small scale trial division to pull out any small factors of n that

may exist. If p divides f(r) then

p | r2 � n � n ⇧ r2 (mod p). (14)

Therefore the Legendre symbol (n/p) must equal +1. So we need only con-

sider those primes for which (n/p) is equal to +1 for our factoring of each

f(r). This set of primes is called our factor base. An f(r) is known as B-

smooth if all of its prime factors are less than or equal to a limit B. If n is

a quadratic residue mod p then there exists a t such that

n ⇧ t2 (mod p).

Therefore by equation(14)

r ⇧ t or � t (mod p).

Moreover, if r ⇧ t or � t (mod p) then p must divide f(r) since

r ⇧ t or � t (mod p) � r2 ⇧ t2 ⇧ n (mod p) � p | r2 � n.

We can now make two passes through our list of f(r)’s for each prime in our

factor base. Once we find the first r in our list congruent to the corresponding

t modulo p, we know that its associated f(r) and every pth f(r) thereafter

(since each pth r afterwards also maintains the congruence) will be divisible

by p. This constitutes the first pass. Then we find the first r congruent to

�t and make a similar second pass through our list recording prime factors

into our v(r) vectors as we find them. Because prime powers may also divide

into our f(r) list it is important to also solve the congruences

t2 ⇧ n (mod pa),

where p is an odd prime in our factor base. In our implementation of the

Quadratic Sieve Bressoud’s estimation for how far a should range and the

resulting extent of congruences solved was used. That is, these congruences

should be resolved for each a running up to about

2 log L

log p
,

where L is the largest prime in the factor base.

The QS algorithm can be summarized as follows.

Algorithm 9 (Quadratic Sieve).

43

1. Build our factor base with primes such that (n/p) = +1 and solve the
congruences

t2 ⇧ n (mod pa), 1 ⌃ a ⌃ 2 log L

log p

2. Perform the sieving procedure recording the v(r) vectors for each f(r) to
find enough f(r)’s that factor completely over our factor base.
3. Perform Gaussian elimination in Z2 to find a combination of f(r)’s
which is a perfect square.
4. Solve for x and y and compute gcd(x� y, n) = k.

If (k is not 1 or n) return k
else repeat step 3

We will go into the details of each of these steps sequentially.

Building the factor base is easy since we already have a compact and

e⇧cient way of determining the Legendre symbol thanks to the theorems we

have already developed. What remains somewhat unclear is how big to make

our factor base. We do not want to make it too small or we will decrease the

chances of our f(r)’s completely factoring. We must also avoid making the

factor base too large so as to reduce the number of f(r)’s that we need to

produce dependence in the Gaussian elimination step. A complete discussion

of this is deferred until we discuss the actual implementation of the algorithm.

After constructing the factor base we need to solve the quadratic congru-

ences

t2 ⇧ n (mod p), (15)

for each p in our factor base. To solve these congruences quickly we can use

the following algorithm.

Algorithm 10. Given an odd prime p and an integer a with (a/p) = 1

1. [Check the simple cases of p ⇧ 3, 5, 7 (mod 8)]
a = a mod p
if(p ⇧ 3, 7 (mod 8){

x = a(p�1)/4 (mod p)

return x
}
if(p ⇧ 5 (mod p) and n2k+1 ⇧ 1 (mod p)){

x = nk+1 (mod p)

return x
}
if(p ⇧ 5 (mod p) and n2k+1 ⇧ �1 (mod p)){

x = (4n)k+1 · (p+1
2) (mod p)

44

return x
}

2. [Case p ⇧ 1 (mod 8)]
Find a random integer d ⇣ [2, p� 1] with (d/p) = �1

p� 1 = 2s · t, where t is odd
A = at mod p
D = dt mod p
m = 0

for(0 ⌃ i < s){
if((ADm)2s�1�i ⇧ �1 (mod p)) m = m + 2i

}
x = a(t+1)/2 · Dm/2 mod p
return x

This algorithm is an amalgamation of two di⇥erent approaches, see [Crandall and Pomernace 2005]

and [Bressoud 1989]. This algorithm will deterministically and in polynomial

time calculate the answer to Equation(15). In our implementation that will

be discussed later this is the exact algorithm use to calculate the square roots

in Zp for a prime p.

Step 2 in our QS algorithm is the sieving operation. The easiest way

to fully explain this operation is by a small example. Take n = 799. So

✓
⇡

n◆ = 28. If we want a factor base of 5 primes and 20 f(r) values rather

than taking r values between [29, 49] it is advantageous to take r values that

straddle the square root

18 < r < 39

r = 18 + i, 1 ⌃ i ⌃ 20.

This straddling of r gives us better values for f(r) = r2 � n since it keeps

the values closer to zero. They are, therefore, more likely to factor over our

factor base. We do come up with negative f(r) values with this range but

we can factor out the �1 and treat �1 as the first prime in our factor base.

We will also automatically insert 2 into the factor base since it is a special

prime. In the sieving process all of the f(r)’s will be reduced to f(r) = 2s · t.
The value of s will be recorded in the v(r) and further sieving will be done

on t. For our example we come up with our factor base of

�1 2 3 5 7.

For each of the odd primes in our base we solve n ⇧ t2 (mod p) with Algo-

45

rithm 10.

3, t = 1

5, t = 3

7, t = 1.

Solving n ⇧ t2 (mod pa) we get

t2 ⇧ 799 ⇧ 7 (mod 32), t = 4 t2 ⇧ 799 ⇧ 16 (mod 33), t = 4

t2 ⇧ 799 ⇧ 70 (mod 34), t = 31 t2 ⇧ 799 ⇧ 24 (mod 52), t = 7

t2 ⇧ 799 ⇧ 15 (mod 72), t = 8

The procedure used to find these values is called Hensel lifting and will be

discussed in depth later. The last thing to do is find the first r values con-

gruent to our t’s modulo their corresponding p’s. This process is simple and

very quick. We must also remember that �t is also valid. The r values are

as follows

r = 19 ⇧ 1 (mod 3) r = 32 ⇧ 7 (mod 52)

r = 20 ⇧ �1 (mod 3) r = 18 ⇧ �7 (mod 52)

r = 22 ⇧ 4 (mod 32) r = 18 ⇧ 3 (mod 5)

r = 23 ⇧ �4 (mod 32) r = 22 ⇧ �3 (mod 5)

r = 31 ⇧ 4 (mod 33) r = 22 ⇧ 1 (mod 7)

r = 23 ⇧ �4 (mod 33) r = 20 ⇧ �1 (mod 7).

There is no r is our range ⇧ 8 or � 8 (mod 72).

Now we are ready to begin sieving. We run over each f(r) generated in

our list, starting with the first r ⇧ t (mod p), factoring out p from every pth

f(r). This process is done for every p in our factor base and we come up

with this list of f(r)’s

f(19) = 192 � 799 = �438 = �1 · 2 · 3 · 73

f(20) = 202 � 799 = �399 = �1 · 3 · 7 · 19

f(21) = 212 � 799 = �358 = �1 · 2 · 179

f(22) = 222 � 799 = �315 = �1 · 32 · 5 · 7
f(23) = 232 � 799 = �270 = �1 · 2 · 33 · 5
f(24) = 242 � 799 = �223 = �1 · 223

f(25) = 252 � 799 = �174 = �1 · 2 · 3 · 29

f(26) = 262 � 799 = �123 = �1 · 3 · 41

f(27) = 272 � 799 = �70 = �1 · 2 · 5 · 7
f(28) = 282 � 799 = �15 = �1 · 3 · 5
f(29) = 292 � 799 = 42 = 2 · 3 · 7

46

f(30) = 302 � 799 = 101 = 101

f(31) = 312 � 799 = 162 = 2 · 34

f(32) = 322 � 799 = 225 = 32 · 52

f(33) = 332 � 799 = 290 = 2 · 5 · 29

f(34) = 342 � 799 = 357 = 3 · 7 · 17

f(35) = 352 � 799 = 426 = 2 · 3 · 71

f(36) = 362 � 799 = 497 = 7 · 71

f(37) = 372 � 799 = 570 = 2 · 3 · 5 · 19

f(38) = 382 � 799 = 645 = 3 · 5 · 43.

It should be noted that several values (e.g. f(20) or f(21)) do not completely

factor over the factor base. Our sieving process leaves us with a selection of

7 f(r)’s that are completely factored over our base.

The final step in our process is Gaussian elimination on our v(r) vectors

reduce mod 2. Our selected f(r)’s looks as follows

f(22) = �1 · 32 · 5 · 7 11001

f(23) = �1 · 2 · 3 · 5 01111

f(27) = �1 · 2 · 5 · 7 11011

f(28) = �1 · 3 · 5 01101

f(29) = 2 · 3 · 7 10110

f(31) = 2 · 34 00010

f(32) = 32 · 52 00000.

We write our vectors so that the element in the right most column is the

power for �1 and the ascending primes in our factor base are recorded there-

after starting from the right. In order to keep track of what combination of

f(r)’s gives us the perfect square we adjoin an identity matrix to our existing

matrix with dimensionality equal to the number of B-smooth f(r)’s. So our

matrix looks like this

11001 1000000

01111 0100000

11011 0010000

01101 0001000

10110 0000100

00010 0000010

00000 0000001

In this example, we are lucky; we have an f(r) with all even exponents al-

ready. If we were not so lucky we would have to perform Gaussian elimination

47

in Z2 to find a linear combination of f(r)’s that lead to a perfect square as

follows. Starting with the first column, we locate the first vector with a 1

in that column and eliminate down the column by adding that row in Z2 to

those vectors with a 1 in that column. Now there will be no 1’s in the first

column. This step is repeated for each column until we get a vector with the

non-identity part zeroed out. The identity part of the vector will contain 1’s

in column’s indicating the row from which each f(r), in the perfect square

product, came from in the original matrix. In our example

00000 0000001,

there is a 1 in the 7th column of the identity part of the vector indicating

that it is the 7th f(r) in our list that gave us the perfect square. Continuing

with our example we perform the final step of our algorithm.

322 ⇧ 32 · 52 (mod 799)

(322) ⇧ (15)2 (mod 799)

Performing our 4th step in the QS algorithm we compute

32 mod 799 = 32 and 15 mod 799 = 15

gcd(32� 15, 799) = 17.

17 is a non-trivial factor of 799.

Our implementation of the Quadratic Sieve algorithm was done in java.

The first decision that had to be made was how to determine the size of the

factor base and the length of the interval that would be used to generate

our f(r) values. Initially it was easiest for testing and simplicity’s sake to

have a user input the value for the factor base size and the number of f(r)’s
to be generated. While this is a viable option for the algorithm it requires

the user to execute mathematical estimation or trial and error. After the

initial testing periods the suggested interval lengths in Crandall and Pomer-

ance were implemented. For the Quadratic Sieve algorithm they recommend

calculating a limit B = L(n)1/2� where L(n) = e
↵

ln n ln ln n and building the

factor base by taking those primes pi less than B such that (n/pi) = +1. The

interval over which our r values will run is then calculated [�M, M] where

M = B2 = L(n). It is noted in [Crandall and Pomernace 2005] that this is

an estimate of the optimal values for the factor base size and the interval

length. There were cases in testing when these values were insu⇧cient to

split a given n. The good part about these estimates for B and M is that

they are easily automated and adjust based on the size of our given n.

48

The first step for the algorithm implementation was to establish the con-

stant values needed to begin. From the given input n the value for r = ✓
⇡

n◆
had to be calculated. Because of the magnitude of the numbers being used the

primitive int representation was not su⇧cient. As a result many of the num-

ber values had to be done in the BigInteger java class. As a class BigInteger

does not have a square root function built in. Because of this a static func-

tion was built based on Algorithm 9.2.11 in [Crandall and Pomernace 2005]

to calculate the integer part of a square root. After this calculation and

storing values for B and M the algorithm proceeds to building the factor

base.

The factor base is stored as a Linked List of BigIntegers. Its first two

values are initialized to always be �1 and 2. The subsequent primes are

pulled from a text file list of primes. The current list is one million primes

long but can easily be expanded. The list of primes was generated using

a simple iterative algorithm and the isProbablePrime function provided by

the java BigInteger class. Starting with 3 the algorithm increases its testing

value by two each pass. It then tests whether that value is a probable prime

with a confidence value of 25. With a confidence value of 25 the probability

of a false prime designation is 1/225 = 2.980232239 ⇤ 10�8. This kind of

probability estimation suggests that the IsProbablePrime function merely

calculates some version of the Miller-Rabin Test that we discussed before.

With this level of confidence the risk of a false positive is almost negligible.

Once a prime is pulled from the list the Legendre symbol (n/p) is calculated

using Algorithm 8. If the symbol is +1 then it is added to the factor base. If

it is not then the next prime is drawn from the list until we have a satisfactory

number of primes in our factor base.

The next step in the algorithm is to find, for each p in the factor base,

values of t such that

n ⇧ t2 (mod pa), for 1 ⌃ a ⌃ 2 log L

log p
.

To store the values of t another Linked List was used but an object called a

pair was created to hold the values. The pair class holds a number of values

in order to do things like associate a t value to a specific p value. The variables

in the pair class are the value pa, the t value for that pa, the exponent a, the

base p, and the index of that p in our factor base linked list. It also holds the

first r value for which r ⇧ t (mod p) and the first r value such that r ⇧ (�t)
(mod p) but these will be set later. To solve for our t values each prime p in

our factor base is cycled through and the maximum exponent needed to be

solved is estimated using Bressoud’s suggested formula. There are two cases

to deal with when solving for t. The first is the simpler case, which can use

49

Algorithm 10 that was discussed earlier

n ⇧ t2 (mod p).

The second case is

n ⇧ t2 (mod pa), (16)

where a runs over [2, 2 log L
log p]. In general, it is a very hard problem to solve

quadratic congruences modulo a composite number, but in this case we don’t

have an ordinary composite number. It is a prime power, and we have already

solved the square root for that prime. It turns out there is a relationship

between these two congruences and it can be exploited using a form Hensel

Lifting.

Suppose that we have an odd prime p and an A such that A2 = n mod p
and we want to solve

x2 = n mod p2.

We are looking for a solution in the range of 0, . . . , p2 � 1. So we can write

x in the form Bp + A where 0 ⌃ B < p. Indeed, we can write x in this form

since in general, if n ⇧ A2 (mod p) and we are looking for n ⇧ x2 (mod pa)

then the following will hold

n� A2 = kp � n = kp + A2

n� x2 = rpa � n = rpa + x2.

Setting them equal we have

A2 � x2 = rpa � kp

A2 � x2 = p(rpa�1 � k)

A2 ⇧ x2 (mod p).

So we plug x = Bp + A into our equation to get

(Bp + A)2 = n mod p2

B2p2 + 2ABp + A2 = n mod p2

2ABp = n� A2 mod p2. (17)

Since p is an odd prime, 2A has a multiplicative inverse modulo p2. Thus,

we can find an integer C such that 2AC = 1 mod p2. So multiply both sides

by C.

Bp = (n� A2)C mod p2.

50

Moreover, we know by our initial calculation that (n�A2) is divisible by p.

So we can write (n� A2) = kp for some k yielding

Bp = kpC mod p2

B = kC mod p.

Finally, we take this solution for B in the range 0, . . . , p�1 to get our answer

for x. Consider an example.

Ex 6. We have 62 = 17 mod 19 and we would like to solve x2 = 17 mod 192.
Using equation(17) from above we have

2 · 6 · 19 · B = �19 mod 361.

The multiplicative inverse of 12 mod 361 can be calculated very quickly using
Euclid’s algorithm. The inverse, C, is �30.

19B = (�19)(�30) mod 361

B = 30 mod 19.

So we take B = 11 and plugging it into our equation for x we see that
x = 11 · 19 + 6 = 215.

If we have a value for A2 = n mod p2. We can use the same procedure to

find x2 = n mod p3. We can use our calculations from the example above.

Ex 7. We would like to solve x2 = 17 mod 193. So we write x = 361B + 215

(using our previous solution for A) and proceed

(361B + 215)2 = 17 mod 193

530 · 361B = 17� 2152 mod 193.

The inverse of 530 mod 193 is 2213. Proceeding

361B = (17� 2252) · 2213 mod 193

B = �175 · 2213

= 2 mod 19.

So x = 2 · 361 + 215 = 937.

We can calculate each t value successively for equation(16) with this al-

gorithm. Once we calculate all of the t’s they are stored in the pair format

and added to our linked list. As mentioned above these square roots modulo

p must be found for every p in our factor base. This means that we have to

51

access each member of our factor base. This brings up a concern that must

be addressed before continuing the description of our algorithm. Indexing in

java for its list objects and arrays is done by simple ints. A problem will arise

then if we have more primes in our factor base than can be represented by a

32-bit int scheme. There would be no way to input a proper index into the

get function of java’s linked list if its size exceeded the largest primitive int.

It is not out of the question to believe that for very large n, say 90 digits long,

we may need a factor base of extremely large magnitude. The good news is

that if we use the estimation of B = L(n)1/2, then even for 90 digit numbers

the B value and therefore the number of primes less than B, is much less than

the maximum integer displayable by a primitive int. Generally speaking this

algorithm was programmed with a mind towards factoring a maximum of 90

digit composites. The bad news is that as the magnitude of n grows past 100

digits B begins to surpass the maximum integer representation of the java

primitive int. In order to solve this problem either a custom implementation

of a linked list must be written or a new language would have to be used.

The last step before we begin our sieving is to find the first r value for

which r ⇧ t (mod pa) and the first r value for which r ⇧ (�t) (mod pa). It

is in this step that we set the firstR variables in each of the pairs in our linked

list in order to associate the first r values with the correct pa. Finding the first

r’s for which these congruences hold is very fast and relatively simple. Using

the first r value in our range we calculate r mod pa and add or subtract the

appropriate amount given the t and �t values to obtain the proper r values.

These values are then stored inside each pair within the linked list of pairs.
Once this process is complete we can begin the sieving operation. The

simplest way to implement the sieving operation was to generate our values

for f(r) and store them in a large column vector. Then, iteratively, we would

start with every pair object in our list of pairs and make passes over the list

of stored f(r) values. Using the pair object we can access both of the first r
values and the correct associated pa value. If the r that generates the f(r)
value is equal to either of the first r values for pa or either of the first r values

plus a pth multiple then we divide our f(r) value by the stored pa value. In

this step we must be very careful because f(r) values that are divisible by

higher powers of p will obviously be divisible by the lower orders of p. That

is, if f(r) is divisible by p and p2, for example, then if we are not careful we

will sieve out p and p2 from f(r) but f(r) is not necessarily divisible by p3.

To avoid this problem we run over our linked list of pairs backwards. Since

the powers of each p are calculated in order they are also stored in order.

Going through the list backwards guarantees that we sieve out the highest

pa values first, and if we have already sieved out a higher power from an f(r)
then we simply do not sieve out the lower powers.

52

While performing the sieving operation we simultaneously build our factor

vectors. These vectors are another implemented object. They consist of a

primitive int row vector whose first part is the factor base component and

the second is the correct row of the identity matrix for the vector. As primes

are sieved from our list each vector is updated to include the newly sieved

out prime with its corresponding power a. The special cases of �1 and 2 are

handled slightly di⇥erently. If a number is negative then it is made positive

and the �1 position in our vector is set to 1. For 2 we simply divide out as

many powers of 2 as possible and record the highest power for which the f(r)
is divisible in our factor vector. When an f(r) value reaches 1, we know that

it has completely split over our factor base. Its vector and associated r value

are then added to a Gaussian matrix object. The object is simple carrying

a linked list of vector objects and a list of associated r values. Each time a

vector is added to the list the corresponding r value is added to the list of r
values. In this way the r values occupy the same index in their list as their

associated vectors do in the vector linked list. This will become important

later. When we have run through each element in our list of pairs then we

have finished sieving and have collected all of our B-smooth values of f(r).
This implementation of the sieving process mimics the one shown in our

example of sieving from above. While this process works well we run into

problems as we increase the magnitude of n. The number of r values in the

interval over which we generate our f(r)’s grows very quickly. Consequently,

the magnitude of the number of values to be stored in our column vector

gets extremely large and iterative operations, indexing of the values, and

arithmetic work get increasing slower and more di⇧cult. In order to solve

this storage problem we must take a di⇥erent approach to the sieve. Instead

of storing each f(r) value, we generate them one by one starting at the

center of our [�M, M] interval and slowly moving outward to the ends of

the interval. Note that we begin at the center and more outward on either

side because the center of the interval will contain the smallest function

values. Sieving over the complete list of pairs is then performed using the

same update procedure for the vectors. If the f(r) value completely factors

over our base then we add it to the Gaussian matrix. If not, we move on

to generate the next value to be sieved. This storage saving technique does

come with a time disadvantage. If we generate each of the f(r) values one

by one, then during the sieving process we must test if the r is equal to the

first r value that we have stored or a pth r value thereafter for each p value

in our list. This testing is in lieu of just finding the first r value and then

skipping down the list from there on. These calculations are very quick but

for each f(r) there are a lot of them and they will be repeated for each f(r).
In order to mitigate this volume of calculations most algorithms generate the

53

f(r) values in chunks so as to take advantage of skipping down part of the

list but also saving space.

There are two di⇥erent stopping conditions suggested for the sieving pro-

cess. The first is a complete sieve over the interval of r values. The upside

to this method is that it will give us the maximum number of completely

factorable f(r)’s over [�M, M]. The downside is, we will need to sieve and

run over every r value every time. The second is a time saving approach.

Instead of sieving over the entire interval of r values we instead stop the siev-

ing process when we have found s completely factored f(r)’s where s is equal

the size of our factor base plus one. As discussed earlier, having more f(r)
vectors than factors in the factor base guarantees linear dependence of our

vectors during Gaussian elimination over Z2. Under this termination condi-

tion we are still guaranteed to have at least one perfect square for which to

test the gcd, and we do not necessarily have to sieve over our entire interval

of f(r)’s. These two conditions are a matter of taste and time management.

In our algorithm we opted for the second technique.

The process of Gaussian elimination is handled completely by the Gaus-

sianMatrix class. The process looks very much like the one described in the

QS algorithm discussion. First we check if there is already a zeroed row in

our matrix like our example from above. If there is, we perform our gcd
calculations. If not then we proceed with the elimination steps. We look

through the matrix and find the first row-column pair with a 1 element and

eliminate down with that row by adding (in Z2) it to subsequent vectors

with a one in that column. The elimination row is then removed from the

linked list of vectors and thrown away. We then check if we have created

a zeroed row. In the event of a zeroed row then we check the gcd. If this

calculation yields a factor then we are done. If not, then we remove the

zeroed row and continue to eliminate. This process is repeated until either

we run out of vectors or find a factor. When we find a zeroed row the re-

trieval of our corresponding r values is made simple by our ordered storage

of associated r values in the other linked list. The appended identity vector

will contain the indices of those original rows responsible for combining to

form the perfect square value. To obtain the r values that go with these rows

we need only pull the encoded indices from the identity vector and use them

to extract the r values from our list. So we can now calculate our x and

y values and e⇧ciently check the gcd(x � y, n). Gaussian elimination goes

quickly in practice. The time complexity estimate is good but a somewhat

high, about O(n3) when our matrix is n ⇤ n. This time bound is actually

somewhat smaller for our application of Gaussian elimination since it is done

over Z2 and therefore lends itself well to computer calculation. However, as

the numbers that we try to factor grow the matrix that we must eliminate

54

on grows in two dimensions. This time bound begins to become problematic

and the elimination stage of the Quadratic Sieve begins to bog down. This

problem will be discussed later.

Sieving is the part of the algorithm that generally takes the longest to

run. One of the first Quadratic Sieve implementations was done in 1982

by Gerver at Rutgers, see [Bressoud 1989], on a 47 digit number. Solving

the congruences took seven minutes. The Gaussian elimination took six

minutes. However, the sieving process took about 70 hours of CPU time to

complete. The sieve is where much of the optimization work can be done.

There are a good many ways to improve our own implementation of the

Quadratic Sieve. Indeed, if we were going to attempt to crack a 90 digit

number these improvements would be imperative. If we were to go back and

attempt to improve our runtime e⇧ciency the first place to look would be

the actual division and reduction of the f(r) values. As it stands right now

the algorithm simply performs division on each of the f(r) values in order to

reduce them. We know that the value is completely factorable over the factor

base if we are left with a 1 where the original f(r) value used to be. The

problem with these calculations is that we must perform division on a very

large n. Division is an ine⇧cient algorithm in terms of computational speed.

In order to avoid strict division it is possible to instead store the logarithm

of f(r) to either double or single precision and subtract o⇥ the logarithms of

p. This is very much like division since

log(
x

y
) = log x� log y.

Even though our floating point storage does not maintain exact arithmetic,

and therefore does not maintain this relationship perfectly, we have a good

number of decimal places in either precision. Therefore when the remaining

logarithm stored for a particular f(r) is su⇧ciently close to 0, then that

f(r) is completely factorable. This type of calculation is desirable because

instead of division we can calculate the log quickly and then perform simple

subtraction from then on.

To further build on this optimization we could also implement a sugges-

tion by Silverman. Rather than calculating the absolute logarithm of each

f(r), which can be expensive as the values grow larger we start with all of

the values equal to zero. Then for each f(r) that p should divide we add

log p. If we are sieving over the interval [�M, M] then the logarithm of the

absolute value of (✓
⇡

n◆�M + i)�n, which represents our f(r) calculation,

will be about

(log n)/2 + log M. (18)

55

When we are finished sieving we will simply look for values that are close

to this value. There will be su⇧ciently few of these so that trial division

can be done without hurting e⇧ciency to verify that they completely factor

over our factor base. For more on on this optimization modification and the

quantitative estimates of how close to Equation(18)’s value that we need to

get see [Bressoud 1989] and [Silverman 1987]. The Silverman modification

does mean that a few r values for which f(r) completely factors may be

missed but the increase in speed for the sieve compensates for this loss.

In Crandall and Pomerance’s discussion of the quadratic sieve. They

suggest that solving the congruences for and sieving over the higher powers

of the primes in our factor base might be skipped. That is, we would not solve

the congruence t2 ⇧ n (mod pa) for those a greater than 1. The claim is that

these prime powers do not contribute significantly to finding B-smooth f(x)

values [Crandall and Pomernace 2005]. If we were to ignore the calculation

of such prime powers and completely forgo sieving over these numbers then

we could in practice speed up our sieve even more.

At the end of our implementation example we examined very briefly the

run-time estimate of the Gaussian elimination step. As mentioned earlier

we can see a few problems developing with the Gaussian matrices that we

will be working with if the magnitude of n begins to grow very large. The

first problem is that the matrix that we will be eliminating on will also

begin to grow very large. In practice we will be storing a factor matrix

that has dimension A + 1⇤ A where A is the factor base size. This kind of

matrix demands a significant amount of storage. Therefore, as the size of the

matrix gets large so does the awkwardness of systematically manipulating

its elements. The initial factor matrix will be very sparse, containing only a

small number of ones while the rest is filled by zeros. To save space we can

keep track of the indices of the ones which implicitly indicates the location

of the zeroes. If there are a relatively small number of ones then through

this sparse matrix storage we significantly reduce the amount of information

needed to describe our matrix. As the elimination process begins we merely

throw out the indices of ones that are flipped to zeros and add the coordinates

of those zeros that are flipped to ones.

Because of the sparse nature of the matrix there will be very few oper-

ations carried out in the beginning. This is a huge calculation complexity

advantage. However, as Gaussian elimination over Z2 progresses, the matrix

begins to lose its sparse nature. Because sparse matrix calculations are so

quick it is advantageous to keep the matrix sparse for as long as possible.

Several techniques for Gaussian elimination have been discovered that can

be employed to help preserve matrix sparseness for as long as possible. Such

methods, often referred to as structured Gaussian methods, can be found in

56

[Odlyzko 1985]. The methods described in Odlyzko’s paper are founded on

a simple observation used in work with sparse matrices. That is, that if a

matrix is sparser on one end than the other, then it is better to start Gaus-

sian elimination from the more sparse end. Odlyzko suggests arranging the

columns of the matrix so that the columns with the least spareness are on

the left and the most are on the right. The algorithm to perform the sparse

matrix Gaussian elimination is detail in the paper and attempts to reduce

the complexity of solving the system. Other algorithms can also be found in

[Pomerance and Smith 1992].

While these methods speed up Gaussian elimination, alternative sparse-

matrix algorithms have been suggested that can often e⇧ciently solve linear

systems. These methods are intended to replace Gaussian elimination. Such

methods are the Conjugate Gradient method and Lanczos method, both of

which must be adapted to suit this specific problem.

The point of this discussion is that our implementation simply stores the

vector values in a large matrix form and so as n grows large so will the

space and time-complexity of our Gaussian elimination step. As n begins

to expand, our matrix the elimination step, without optimization, begins to

overtake the sieving stage in terms of computation time. In order to avoid

this we would certainly need to attempt an implementation of one of these

approaches.

During testing our Quadratic Sieve algorithm was never pushed the algo-

rithm to factor a really sizable composite. However, we were able to factor

a few numbers on the order of 35 digits around 3 hours. An example of one

of the larger numbers we were able to split was

156399666016133470387300503962731777

= 288691785595328641⇤ 541753086924909697.

This integer is quite large but falls well short of the magnitude of primes used

for cryptographic keys. Due to time constraints pushing the Quadratic Sieve

to its limit was not undertaken but given more time and more optimization

it is feasible that we could have attempted much larger numbers than this

and eventually split them.

The Multiple Polynomial Quadratic Sieve is an attempt to build on the

basic principles of the Quadratic Sieve in order to speed up the factoring

process on even larger n values. In the QS method our generating x values

run over integers within an [�M +
⇡

n, M +
⇡

n] interval in order to search

for B-smooth f(x). As stated earlier, the x values are taken to straddle

✓
⇡

n◆ in order to minimize the size of our function values. This is because

smaller integers are more likely to be completely factorable over our factor

57

base. The problem is that as x gets farther away from ✓
⇡

n◆ the values for

f(x) begin to grow rapidly. Therefore as our values of x get larger and larger

we will begin to see a steady decline in the number of completely factorable

f(x) = x2 � n. In the QS algorithm our sieving performance is hurt by the

rapid increase of f(x) values along our interval.

The multiple polynomial variant of the QS algorithm addresses this par-

ticular problem by considering a new family of polynomials. The following

idea is due to Montgomery. His idea is to intelligently construct a new poly-

nomial for f(x) that does not grow too rapidly as x moves towards the ends

of our interval.

Suppose we have integer coe⇧cients a, b, c with b2�ac = n. Now consider

the polynomial f(x) = ax2 + 2bx + c. Then we know that

af(x) = a2x2 + 2abx + ac = (ax + b)2 � n, (19)

since

(ax + b)2 � n = a2x2 + 2abx + b2 � n = a2x2 + 2abx + b2 � b2 � ac.

This implies that

(ax + b)2 ⇧ af(x) (mod n).

Now we notice that if we have a value of a that is a square times a B-smooth

number and an x for which f(x) is B-smooth then the exponent vector for

f(x), once it is reduced modulo 2, will give us a row in our Gaussian elimi-

nation matrix. Note that it must be a square times a completely factorable

number so that af(x) will still be a perfect square when Gaussian elimination

is finished. If, for example, a were not a square times a B-smooth number

we would end up with a vector which should be a perfect square after elimi-

nation but is thrown o⇥ because the part of a not included in the Gaussian

reduction is not necessarily square.

Moreover, the odd primes that can divide our f(x) and do not divide n
are those primes such that (p/n) = 1. Indeed, if p divides f(x) then

p | (ax + b)2 � n � (ax + b)2 ⇧ n (mod p).

So n is a quadratic residue mod p. This is very good since it means that our

set of p’s in our factor base does not depend on the polynomial we use but

only on the n we are trying to split.

We are using coe⇧cients a, b, and c with the restriction that b2 � ac = n
and a being a square times a B-smooth number but our main motivation for

redefining f(x) is to minimize the overall size of f(x)’s values. As such we

will want further conditions on a, b, and c so that over our sieving interval

58

we may achieve small f(x) integers. Our conditions on a, b, and c will clearly

depend on our x value interval length. So let the interval length be 2M .

By Equation(19) we can also decide that we will take b so that it satisfies

| b |⌃ 1/2a. So now we know that we will only be considering values of

x ⇣ [�M, M]. It should be noted that this interval is no longer centered

around ✓
⇡

n◆ but rather zero. It is easy to see that the largest absolute value

for f(x) will be reached at the interval endpoints. At these points

af(x) = (a(M) + b)2 � n a2M2 � n so,

f(x) = (a2M2 � n)/a.

The least value for f(x) is at x = 0 which yields

af(x) = (a(0) + b)2 � n �n so,

f(x) = �n/a.

So set the absolute values of these two estimates approximately equal in order

to calculate an approximate a. This gives us the equation

a2M2 � n �n � a2M2 2n � a
⇡

2n/M.

If a satisfies our approximation then the absolute value of f(x) is approxi-

mately bounded by (M/
⇡

2n) since

(a2M2 � n)/a = ((
⇡

2n/M)2M2 � n)/
⇡

2n/M

= ((2n/M2)M2 � n)/
⇡

2n/M

= (2n� n)/
⇡

2n/M

= nM/
⇡

2n.

We can compare this bounding to the original QS polynomial bounding. If

we use the interval [
⇡

n �M,
⇡

n + M] and f(x) = x2 � n, then we find an

approximate bounding of

(
⇡

n + M)2 � n = n + 2
⇡

nM + M2 � n = 2
⇡

nM + M2 2
⇡

nM.

where M is much smaller in magnitude than n. Just with our new polynomial

we have saved a factor of 2
⇡

2 in the size of our f(x) values over our previous

polynomial. But with our new ability to change polynomials we can also run

over a much shorter x interval.

In the basic QS method, as the values of f(x) continue to grow we have

no choice but to continue to compute f(x) until the end of the interval

even as the f(x)’s that completely factor over our base become scarcer and

59

scarcer. In our new approach we can change polynomials while still keeping

our previously discovered B-smooth f(x) values. We can keep our f(x)’s and

their associated prime factorization vectors because our factor base does not

depend on our polynomial. Thus the B-smooth numbers we discovered for

previous polynomials will still be completely factorable after we switch. In

this way, as we switch polynomials we will gather more and more B-smooth

values until we have enough to guarantee dependence. Since our bounds

on the absolute value of f(x) for our MPQS polynomials are smaller than

the normal QS polynomial and we can change our generating polynomial,

we can attempt to sieve on a much smaller M interval than the one we

used for the basic Quadratic Sieve. We can choose M = B = L(n)1/2, see

[Crandall and Pomernace 2005]. This is smaller by a factor of B than the

estimate discussed earlier for the Quadratic Sieve which was M = B2 = L(n).

The time savings for this algorithm are all very good but we still have

not prescribed a way to find the b and c coe⇧cients to match a. If we can

solve b2 ⇧ n (mod a) for b then we can find our b such that | b |⌃ a/2. If b
is defined as such then we know that

b2 � n = ak

b2 � ak = n

k =
n� b2

�a
=

b2 � n

a
.

So set c = k.

If a is odd, we know the prime factorization of a, and for each p that

divides a, we have (n/p) = 1 then we will be able to solve b e⇧ciently using

the Chinese Remainder Theorem and Algorithm 10.

One way to e⇥ectively create our coe⇧cients is to take a prime p
(2n)1/4/M1/2, with (n/p) = 1, and make a = p2. Then a meets all of our

criteria outlined before.

1. a is a square times a B-smooth number.

2. We have a = p2 ((2n)1/4/M1/2)2 = (
⇡

2n/M).

3. We can e⇧ciently solve for b2 ⇧ n (mod a) to obtain b.

The congruence b2 ⇧ n (mod a) will have two solutions if a = p2. However,

the two solutions will generate equivalent polynomials so we will use only

one, 0 < b < 1/2a.

While we have see that we gain speed through changing polynomials,

there is a problem with changing them too quickly. If we have 2M = B and

60

n is in the range of 50 to 150 digits, choices for B range from about 104 to

107. Sieving is very fast over intervals of this length. The sieve operation is

so fast in fact, that the computational overhead created by having to switch

the generating polynomial would become a burden to our overall e⇧ciency.

This overhead is due, in most part, to what is known as the initialization

problem. Given a, b, c we must determine if p | f(x). More precisely we must

solve

ax2 + 2bx + c ⇧ 0 (mod p),

for each p in our factor base. Then we need to determine the roots, r(p) mod p
and s(p) mod p, to this congruence relation. These roots are analogous to

those first r ⇧ t or � t (mod p) in the QS algorithm. So we solve

t(p)2 ⇧ n (mod p),

assuming that p does not divide a · n. More clearly, we assume that p does

not divide a nor does it divide n. If (ax + b)2 ⇧ n (mod p)

(ax + b)2 � n = pk � p | f(x).

But if t(p)2 ⇧ n (mod p) then

(ax + b) ⇧ t(p) and (�t(p)) (mod p).

So we can solve for x in either case calling the two solutions r(p) and s(p)

ax + b ⇧ t(p) (mod p)

ax ⇧ �b + t(p) (mod p)

x ⇧ (�b + t(p))a�1 (mod p).

But we want the first x so

r(p) = (�b + t(p))a�1 mod p. (20)

s(p) is derived similarly giving

s(p) = (�b� t(p))a�1 mod p. (21)

Since t(p) does not depend on our polynomial we can use the same residue

values for t(p) each time we switch and recalculate r(p) and s(p). So the main

work in our computation is calculating a�1 mod p for each pi and the two

mod p multiplications. While the inverse calculation can be done quickly

using Euclid’s Algorithm if there are a lot of primes in our factor base it is

enough work that we should avoid doing it too often if we can.

61

Self Initialization is an approach that can help minimize the number of

times these calculations must be repeated. The basic idea is to find several

polynomials for the same value of a. For every a value we calculate the

corresponding coe⇧cient b by solving b2 ⇧ n (mod a) and choose 0 < b <
a/2. We can say that the number of choices that we will have for such a b
with a given value of a is 2k�1 where k is the number of distinct prime factors

of a. In our initial creation of a = p2 there was only one distinct prime factor,

p, for a. So the number of choices for b were

2k�1 = 21�1 = 1,

which is what we had. This equation for the number of b values is guaranteed

by the Chinese Remainder Theorem that was discussed and proved earlier.

The Chinese Remainder Theorem states that if we have an M = m1 · m2 ·
. . . · mr then, the system comprised of r relations and the inequality

b ⇧ ni (mod mi) 0 ⌃ b < M,

has a unique solution modulo M. Applying this theorem we know that there

are k distinct p comprising a and

b2 ⇧ n (mod pi),

has two solutions for b. Thus we come up with 2k residue systems with unique

solutions. Only half of these solutions will be less than a/2 so we have a total

of 2k�1 viable solutions to b2 ⇧ n (mod a). Here is a very small example.

Ex 8. Say we want to solve b2 ⇧ 4 (mod 15), then we break 15 into its
distinct prime factors and set up those congruences.

b2 ⇧ 1 (mod 3) � b = 1, 2

b2 ⇧ 4 (mod 5) � b = 2, 3

Now we set up the systems and solve them

b ⇧ 1 (mod 3) b ⇧ 1 (mod 3) b ⇧ 2 (mod 3) b ⇧ 2 (mod 3)

b ⇧ 2 (mod 5) b ⇧ 3 (mod 5) b ⇧ 2 (mod 5) b ⇧ 3 (mod 5)

7 13 2 8

We then choose 7 and 2 since they are less than 1/2(15) = 7.5

Calculation of the solutions to these systems goes extremely fast because

the solutions are merely the formula used to prove the Chinese Remainder

Theorem.

62

Now suppose that we choose a to be composed of the product of 10

di⇥erent primes p. Then we will have 512 = 29 choice for the corresponding b.
Each of these b generates a new and distinct polynomial. Hence we need only

calculate a�1 mod p once and it can be used in the initialization calculation

problems for each of the 512 polynomials. Further, if we generate a from

10 primes in our factor base we can just include them in our factorization

vectors and we need not have a be a square times a B-smooth number.

There are two problems that arise from this discussion of Self Initializa-

tion. If we create a from primes in our factor base we must e⇥ectively take

them out of our sieving step. As we saw earlier when we solve for the roots

of Fp[x] in Equations(20) and (21) we must assume that p does not divide

an. If p | a then our calculations of r(p) and s(p) will fail since

r(p) = (�b + t(p))a�1 mod p,

but a�1 mod p = 0 since a ⇧ 0 (mod p). We see then that r(p) will equal

zero. Clearly this is a problem when performing our sieving. In our java

implementations of the MPQS we merely drop those pi that compose a from

our list and update the factor vectors accordingly.

The second problem that arises in the Self Initialization problem is how

to e⇥ectively generate our a values so that they satisfy a
⇡

2n/M and

are a product of k unique primes from our factor base. In our algorithm

the approach taken is to find a center prime p (
⇡

2n/M)1/k. Our search

through our factor base is done with a basic binary search since our list

of primes is ordered. A more e⇧cient search should be implemented when

considering optimization. Once we have found our central prime p we more

away from p sequentially, oscillating between smaller and greater primes than

p. Once we have picked up k values, including p, we have our approximate

a value. The idea is that the product of k primes approximately equal to

(
⇡

2n/M)1/k will be approximately equal to
⇡

2n/M .

Once again due to time constraint we were unable to push our implemen-

tation of the MPQS algorithm to its highest capacity. But we were able to

factor slightly larger numbers than the Quadratic Sieve in around the same

time. The largest value factored was about 43 digits taking around 6 hours to

complete. This time bound is not what we had hoped for but there is still sig-

nificant optimization that could be done on the code especially in the way of

sparse matrix optimization and sieving calculations. Often there were times

that we had to modify or completely ignored the B limit calculations and

the interval size calculations suggested in [Crandall and Pomernace 2005] as

the polynomials failed to produce B-smooth f(x) values.

The final and possibly best feature of the MPQS algorithm is that it

lends itself perfectly to distributed computing. Using a central computer to

63

generate the polynomial coe⇧cients it is extremely easy to farm out those

coe⇧cients to subordinate computers to run the Quadratic Sieve up to the

elimination step. Instead of the subordinate computers performing Gaussian

elimination on the completely factorable f(x) values that are found they

simply collect them and send back the B-smooth f(x)’s generated by each

subordinates unique polynomial. Once it sends back its information it imme-

diately receives a new set of coe⇧cients with which to generate a completely

new set of f(x)’s to sieve on. Once the central computer has been given

enough f(x) values to guarantee dependence in the Gaussian elimination

step it will perform the elimination and test the resulting gcd’s to see if we

have found a non-trivial divisor of n. If we have not then the central com-

puter continues to receive and process the incoming f(x) values from the

subordinate machines. If we have found one then it stops all of the clustered

machine processes and reports a successful factorization.

Originally our java implementation of the MPQS was going to be gen-

eralized so that it could be used as a distributed computing algorithm and

tested on large scale numbers. Due to time constraints this implementation

was never finished. However, it is in distributed computing that the MPQS

algorithm really shows what it can do. Our advantage of shorter sieving in-

tervals is multiplied by the fact that using distributed processing power we

can attempt to generate B-smooth f(x) values for many di⇥erent polynomi-

als. This fact greatly decreases the time it takes to accumulate our required

number of f(x) values that completely factor over our base and multiplies

the computing power of the algorithm past many of the fastest machines

available.

Quantum computing presents an interesting twist in large integer fac-

torization. While no polynomial-time factorization algorithm is thought to

exist for conventional computing there is already an e⇧cient factorization

algorithm posited for quantum calculations. This algorithm was introduced

by Peter Shor and is known as Shor’s algorithm. In theory, on a quantum

computer, Shor’s algorithm is thought to be able to demonstrate polynomial-

time factorization factor on an integer n. While quantum computing is still in

its infancy this algorithm challenges many of the boundaries set for conven-

tional computers. As developments continue in quantum computing Shor’s

algorithm’s potential is slowly being recognized. In 2001, IBM Scientists were

able to successfully use Shor’s algorithm, using quantum computation, to fac-

tor 15 into 3 and 5. While this number is small the result represented the

most complicated quantum calculation at that time. For more information

on Shor’s algorithm see [Shor 1994].

Primality and Factorization are invariably tied together. If a number can

be factored it is clearly not prime. If we can prove that a number is prime

64

then we clearly cannot factor it. We use the properties of primes to split large

numbers with the Quadratic and Multiple Polynomial Quadratic sieves and

often we naively use trial division and factorization to prove that a number is

prime or composite. While Primality and Factorization are mathematically

interwoven their computational complexities are extremely di⇥erent. As we

have seen the development of primality tests has progressed through the years

and in 2002 the first definitive and fully proven polynomial-time primality

test, the Agrawal-Kayal-Saxena algorithm, was discovered. While primality

testing has been proven to be in P , it is believed that there is no polynomial-

timed algorithm, probabilistic or deterministic, to factor a given composite

n. While the development of factorization algorithms has progressed signif-

icantly it still remains an extremely di⇧cult problem. For large composite

n the time to factor it is still measured in days. While there have been new

innovations in factorization like the Number Field Sieve, the Quadratic Sieve

and Multiple Polynomial Quadratic Sieves still represent some of the most

powerful approaches to large integer factorization. The challenge of fast and

e⇧cient factorization algorithm has, thus far, stood beyond the reach of Com-

puter Science and Numerical Analysis faster factorization algorithms are still

being produced but still we do not expect to find really e⇧cient methods.

References

[Agrawal et al. 2004] M. Agrawal, N. Kayal, and N. Saxena, ”PRIMES is in

P”, Annals of Mathematics, 160 (2004), pages 781-793.

[Bressoud 1989] David M. Bressoud, ”Factorization and Primality Testing”,

New York, Springer-Verlag, 1989.

[Crandall and Pomernace 2005] Richard Crandall and Carl Pomerance,

”Prime Numbers A Computational Perspective”, New York, Springer,

2005.

[Di⇧e and Hellman 1976] W. Di⇧e and M. Hellman, ”New Directions in

Cryptography”, 1976

[Kleinjung Franke Boehm and Bahr 2005] T. Kleinjung, J. Franke, F.

Boehm, and F. Bahr. ”Crypto-World” 9 May 2005, Accessed 29 April

2009, http://www.crypto-world.com/announcements/rsa200.txt.

[Koblitz 1994] Neal Koblitz, ”A Course In Number Theory and Cryp-

tographiy”, New York, Springer-Verlag, 1994.

65

[Odlyzko 1985] A. Odlyzko, ”Discrete logarithms in finite fields and their

cyptographic significance”, In Advances in Cryptology, Proceedings of
Eurocrypt 84, a Workshop on the Theory and Application of Crypto-
graphic Techniques, pages 224-314, Springer-Verlag, 1985.

[Pomerance and Smith 1992] Carl Pomerance and J. Smith, ”Reduction of

Huge, Sparse Matrices over Finite Fields Via Created Catastrophes”, In

Experimental Mathematics, 1 (1992), pages 89-94.

[Rivest Shamir and Adleman 1978] R. L. Rivest, A. Shamir, and L. Adle-

man, ”A Method for Obtaining Digital Signatures and Public-Key Cryp-

tosystems”, Communications of the ACM, 21 (1978), pages 120-126.

[Saracino 1992] Dan Saracino, ”Abstract Algebra A First Course”, New

York, Waveland Press, 1992.

[Shor 1994] Peter Shor, ”Polynomial-time Algorithms for Prime Factoriza-

tion and Discrete Logarithms on a Quantum Computer, in SIAM Jour-
nal of Computing, 26 (1997), pages 1484-1509.

[Silverman 1987] Robert D. Silverman, ”The Multiple Polynomial Quadratic

Sieve”, in Mathematics of Computation, 48 (1987), pages 329-340.

[Stinson 2006] Douglas R Stinson, ”Cryptography Theory and Practice”,

Boca Raton, Chapman & Hall/CRC, 2006.

[Teitelbaum 1998] J. Teitelbaum, ”Euclid’s Algorithm and the Lanczos

Method over Finite Fields”, In Mathematics of Computation, 67 (1998),

pages 1665-1678.

66

