

Coevolving Quidditch Players Using Genetic Programming

Student: Michael Ahern

Advisor: Sergio Alvarez

6th May 2005

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Table of Contents
Chapter 1: Introduction..1

1.1 Genetic Algorithms ...1
1.2 Genetic Programming ...3
1.3 Previous Research..4

1.3.1 RoboCup Software ..4
1.3.2 Virtual Witches and Warlocks..5

Chapter 2: The Quidditch Simulator and Quidditch Evolver ..7
2.1 The Trees and DTree Genomes..7

2.1.1 Representation ...8
2.1.2 DTree Object Types and Function Parameters..9
2.1.3 DTree Genetic Operators ..9

The Clone Operator ...9

The Crossover Operator ..10
Crossover-Point Selection Algorithm ..10

The Mutation Operator..11
2.2 DTree Functions and Rational..12

2.2.1 Input Functions..12
2.2.2 State Functions ..12
2.2.3 Action Functions ...12

Table 2: Action Function Definitions...13
2.3..13
2.4 The Quidditch Simulator...14

2.4.1 Breve ..14
2.4.2 The (Modified) Game of Quidditch ...14

The Quaffle ..14

The Keeper ...14

The Chasers..15

Game Play ..15
2.4.3 The Evaluation Function...15

Chapter 3: Run Results...17
3.1 Run Setup...17

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

3.2 Run Results.. 18

Chapter 4: Conclusions and Future Work ..23
4.1 Future Work... 24

4.1.1 Evolver Improvements ... 24
4.1.2 Simulator ... 25

Appendix A: Quidditch and the Hampshire College Simulator27
The Game of Quidditch... 27

Balls .. 27
Players .. 27
Gameplay ... 28
Changes to Quidditch in the Quidditch Simulator .. 28

The Simulator Architecture .. 32
Sensors and Actuators... 33

Appendix B: Full DTree Quidditch Function Listing..35
Logical and Integer Functions .. 35
Boolean State Functions.. 36
Vector Input Functions.. 37
Vector Action Functions... 38
Throw / P-Throw Functions.. 39

Bibliography...41

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

List of Tables
Table 1: DTree Object Types ..9

Table 2: Action Function Definitions ...13

Table 3: Run Parameter Descriptions ...17

Table 4: Common Quidditch Fouls...31

Table 5: Quidditch Game States..32

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Abstract

Ever since the invention of the computer people have been fascinated by the idea

of Artificial Intelligence (AI). Although general purpose AI remains science fiction, AI
and Machine Learning (ML) techniques have been used to develop everything from
autonomous Martian rovers to computers that drive cars. Although it is ideal to build
physical systems to test algorithms, often times cost constraints require initial
development to be done using rich game-like simulators. Building upon this line of
research, my thesis describes the automatic programming of simulated agents playing a
“Quidditch-like” game using genetic programming.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Chapter 1: Introduction
For those who have neither read the books nor seen the films, Quidditch is the

most popular sport played in J. K. Rowling’s series of Harry Potter books. The game
resembles a fusion between basketball and soccer played on flying brooms. Two teams,
consisting of seven players, as well as four balls (three of which are intelligent) play the
game. Within each team there are three players who act as chasers, who attempt to throw
the quaffle through one of the three goals, while a fourth player acts as a keeper, guarding
the team’s own goals. Next there are two beaters, whose job it is to defend the team from

the two bludgers. The bludgers, in turn, are nasty semi-intelligent balls that seek to
disrupt the players by crashing into them. Finally there is the seeker, whose job is to
catch the golden snitch, an intelligent winged golf ball, the capture of which ends the
game.

Looking at the problems being solved using game-like genetic programming
systems, Spector, Moore, and Robinson (Spector, Moore, and Robinson, 2001) proposed
Quidditch as a possible problem. Unlike previous work such as RoboCup (Luke, Hon, et
al. 1997), Quidditch presented a richly 3-D environment, with agents having three
degrees of freedom, bound only by the ground. In addition, the game is also richly
heterogeneous, as actors such as the chasers and the bludgers vary widely in terms of
their physical characteristics, intentions, and actions.

Before tackling the entire problem, the game was simplified to better understand
how to develop the full system. Using a full-featured simulator as a base (Crawford-
Marks 2004, see appendix A), the game was stripped down to just the chasers and keeper,
removing the bludgers, snitch, beaters, and seeker (see chapter 2). Although the
resulting system failed to learn how to score, the system showed steady evolutionary
progress towards “kiddie-Quidditch” (rushing for the ball, then throwing it immediately
and chasing after the ball again). Based on the results of this work, given more time it is
believed that such a system could eventually learn how to score and possibly acquire
more advanced game play strategy.

1.1 Genetic Algorithms
Genetic algorithms (GA’s) are a

machine-learning (ML) technique loosely
modeled on biological evolution. Using
this technique, primordial algorithms are

Figure 1: The evolution of Man

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

2

“evolved” (or optimized) along some evolutionary path towards an “objective”. Thinking

about this in biological terms one can think of the evolution of ape to man (fig. 1).
Although at the intermediate stages, the “ape-men” are not “men” per se, at each stage of
evolution individuals appear to be increasingly “human-like” (standing more upright,
being less hairy, having a flatter forehead, etc) than the previous stage of evolution.
Likewise, as the algorithm is “optimized”, each intermediate stage of optimization, while
not yet having reached the objective, it is somehow closer to the goal than the previous
generation of algorithms.

In contrast to neural-nets, the representation of GA’s is somewhat arbitrary.
Often genetic algorithms are represented by strings of characters, bits or integers, but
they can also be used to represent entire computer programs (Goldberg, 1989; Koza,
1992). Secondly, again in contrast to neural-nets, GA’s are a population-based approach.
This means that rather than optimizing
a single algorithm within the search
space, GA’s attempt to optimize a

group or population of algorithms
instead.

The process of evolving a
population of individuals can best be
understood by examining figure 2.
After initialization, a fitness() function
computes the relative strength of each
individual in the population. Next, the
stopping criteria are checked to see if
some sort of objective or halting
condition has been reached. If the
conditions are not met, a selection is
made based on the fitness scores of the
population. After the selection a set of
genetic operators (clone(), cross-over(), and mutate()) are applied to the individuals,
creating the next generation (n+1). Finally, this generation is reevaluated and the
stopping criteria are rechecked, repeating the cycle again.
 To see how this would work over a population of “colors”, examine figure 3. In

this example an initial population representing “colors” is created, resulting in three red,
three blue, and two yellow “colors”. Next, each of the individuals is scored by the fitness

function, in terms of their closeness to purple. As blue and red are closer to purple than

Figure 2: GA Flowchart

Evaluation/fitness()
computation

Clone()

Crossover()

Mutation()

Stop?

(n+1)th
generation

Initialization
nth
generation

Begin

End

NO

YES

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 3

yellow they receive a higher fitness score. After selection, the clone() function
preferentially copies two red, two blue, and one yellow individual into the next
generation. Then the crossover() operator splits the red and blue objects in half, mixing
one half of each to produce two purple objects. Finally, the mutate() operator takes a
blue object and somehow alters its “genes” to produce the light blue color seen in

generation n+1.

1.2 Genetic Programming
Genetic programs (GP’s) are exactly like GA’s except in that their representation is

an actual computer program rather than a binary string or an Lab color value. Typically,
following the work of Koza (Koza, 1992), LISP-like function trees are used to represent
these programs (see figure 4). Rather than being an arbitrary program written in C, the
function set, following from the problem, is chosen by the user. The challenge then with
this model is to select a set of functions and non-terminals that will be flexible enough to
represent the problem solution, while being constrained enough to make the search
tractable. Take, for example, the simple case trying to evolve the function: “sin(x) +

6

=>fitness(generation n)

=>cross-over() Next generation (n+1)

=>mutation()

=>clone()

Figure 3: Genetic Algorithm Example

12
12

12
12

12

12
6

6

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

4

Figure 4: Genetic Programming crossover example (Mitchell, 2001)

sqrt(x^2 + y)”. Given that problem one would need a function set that included “sin”,

“sqrt”, “x”, “y”, “cos”, and so forth, in order to represent the solution. With more

complicated problems, the function set is not quite as obvious. Hence, the task of the
genetic programmer is to somehow provide a flexible solution that includes enough hints
to make the problem tractable.

1.3 Previous Research

1.3.1 RoboCup Software
The RoboCup tournament

was started in the mid-nineties with
the goal of developing a human-
competitive team of robotic soccer
players by 2050. Each year, the
Robo World Cup has been held,
pitting teams of either physical
robots or simulated soccer players
against each other.

The soccer simulator itself has two parts: the simulator, which keeps track of the
score keeping, providing player input, and refereeing, and a client, connecting to the
system over a network, which controls the players. The players themselves are two-
dimensional circles projected onto a two-dimensional soccer field. In addition, the
physics model has been greatly simplified, especially in regards to object collisions.

Genetic Programming was applied to the problem by the University of Maryland
team headed by Sean Luke (Luke, Holm, et. al. 1997) for the RoboCup97 tournament.
The group attempted two evolutionary approaches, one with a homogeneous team and
one with a semi-homogeneous team (three types of player), selecting the strongest team
(a homogeneous one) to compete in the tournament. In addition each player consisted of
two program trees – one for kicking and one for moving – one of which was executed at
each time step. The kick tree was executed whenever the ball was in “range”, first

nudging the player into a position to kick, then executing the tree to determine the kick
direction and magnitude. The move tree was executed whenever the ball was out of
range, returning a magnitude/directional vector to determine what direction to move the
player and how fast to do it. The two program trees themselves consisted of a
combination of hand-coded and evolved functions ranging from a simple action such as

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 5

“dribble” to more complex actions such as “blocking the goal”. This implementation was

fairly successful pointing towards later work in the same domain. The two-program tree
methodology presented here also served as the basis for the implementation presented in
this paper.

1.3.2 Virtual Witches and Warlocks
Addressing Spector, Moore, and Robinson’s proposal, Raphael Crawford-Marks

(Crawford-Marks, 2004) attempted to develop a Quidditch GA based on earlier work
headed by Lee Spector to develop a Quidditch simulator. The simulator developed
implemented the full game of Quidditch as described in Quiddi tch Through the Ages
(Whisp and Rowling, 2001), including possession time limits, fowls, and score tracking.
The evolver created teams using a “stack-based” language called Push. In addition to
player teams, a set of “ball” was coevolved as well. Each player team consisted of seven
players, one stack for each player on the Quidditch team. Each ball team contained three
ball stacks, one for each of the three intelligent Quidditch balls. After running the
simulator for a specified period of time or until a score limit was reached the simulator
ended the simulation and returned the fitness scores to the evolver application.

One of the interesting design choices was the use of the Push language. Push is a
language specifically designed for genetic programming. Although Push programs
resemble LISP programs syntactically, their execution is “stack-based”, more closely
matching languages such as Postscript. In detail, execution of a program P can be
described as:

Exec = on input P:
If P is a single instruction then execute it.
Else if P is a literal then push it onto the appropriate

stack.
Else (P must be a list) sequentially execute each of the

Push programs in P.

Thus even for a simple Push program such as:
(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)

The end result would be the following three stacks:
BOOLEAN STACK: (TRUE) # TRUE, FALSE, OR

FLOAT STACK: (9.3) # 4.1, 5.2, +

INTEGER STACK: (6) # 2, 3, *

(Klein, 2005). For the Crawford-Marks implementation, the system was based around a
THROW and a MOVE stack, from which functions such as “throw” and “move” found in
the code stack commanded the player to execute the pop the top throw or move vector
from their analogous stacks.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

6

While Crawford-Marks had some success with this implementation, the system
had only rudimentary game playing skills, as two players would hang back to defend the
goal, and another two would engage in “kiddie-Quidditch”, grabbing the quaffle,
throwing it, then chasing after it again.

One of the interesting design choices of the system was that teams were evaluated
as a group rather than scored individually. While it is easy to make a strong case for the
chaser players, considering how heterogeneous the Quidditch environment is, this
methodology seemed prone to penalizing strong squads of like-players within the team
for the ineptitude of their other teammates. Thus it was decided that before attempting to
evolve the entire Quidditch-team, it first made sense to understand how these “squads”
could be evolved independently. The resulting work in this thesis uses the simulator
provided by Crawford-Marks’s work, simplifying the game to just the chasers and the

quaffle.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Chapter 2: The Quidditch Simulator and Quidditch Evolver
The Quidditch evolution system can be thought of as comprising of two parts: the

Quidditch Evolver and the Quidditch Simulator. In brief, the Evolver, which represents
the bulk of this thesis work, maintains the population of TreesGenomes (described later):
handling selection; applying the genetic operators; and using the Quidditch Simulator to
compute the fitness scores. The Quidditch simulator, as derived from Crawford-Marks’

work (Crawford-Marks, 2004), takes two TreesGenomes as input from the Evolver, plays
them against each other, and computes their fitness scores.

2.1 The Trees and DTree Genomes
The Trees and DTree implementation is modeled closely on the RoboCup

methodology (Luke, Hohn, et al. 1997). As with RoboCup, the players on each team are
homogeneous, possessing a “TreesGenome” composed of move and throw “DTrees". If
the player does not possess the quaffle, only the move tree is executed. Otherwise, only
the throw tree is executed. Despite the name, the throw tree can return either a throw
vector or a move vector. The move tree on the other hand, returns a vector representing
the desired location to move to. Throw vectors contain a location vector of the target, a
velocity vector of the object that the throw is directed at, as well as a flag to indicate
whether the vector is a throw or move instruction. Once the point-vectors are returned

Figure 5: System Architecture

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

8

from the top of their respective trees, action is taken. In the case of move-related vectors,
the vectors are vectorized to (targetPoint – currentPoint) and fed to the “thrust” function
of the chaser. Non-move throw vectors are then fed to the “generate-throw” behavior,
which accounts for the physics properties of
the ball and returns a directional vector to
feed to the chaser “throw” function.

2.1.1 Representation
The DTree’s themselves work like

Lisp programs, with each function specifying
a set of permissible child nodes. Individual
functions were evolved, as in the case of the
“generate-throw” behavior, or hand coded, as
in most cases. While there are a couple of
specific behavioral functions, such as
“(block-goal)”, the majority of the functions are sensory in nature ((goal), (home),
(mate), etc) or functional operators ((if-[T|I|V]), (throw), (move), etc.), so that hand
coding of these functions made sense. In terms of implementation, DTree is a C++ tree
genome derived from Mathew Wall’s GATreeGenome classes (Wall, 2004). While a

couple of functions are written in C++, the vast majority of them make calls to wrapped
Breve functions (described in the simulator section).

 Move DTree Throw DTree

Figure 6: TreesGenome - Move & DTree

Figure 7: Example Move Tree

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 9

2.1.2 DTree Object Types and Function Parameters
Looking at the example in figure 7, one can note that the definition of AND takes

two Booleans as parameters. In order to guarantee that each DTree is actually
executable, trees are type specific in terms of what sort of function nodes are required to
be child nodes of a particular function. A full listing of the DTree object types is given in
table 1.

Table 1: DTree Object Types

Type Accepted Values
Boolean { true, false }
Integer { 0, 1, 2, … 11 }
Vector { (x,y,z) | x,y,z are doubles }
Throw { (P, V, throwFlag) | P is a vector

representing the position of the target; V is
a vector representing the velocity of the
target; throwFlag is a boolean indicating
whether or not this vector is a move or
throw instruction }

2.1.3 DTree Genetic Operators
In order to reproduce, the TreesGenome employs three genetic operators: clone(),

crossover(), and mutation(). In terms of reproduction, the move and throw trees are
treated as independent populations, hence only move trees breed with move trees, and
only throw trees breed with throw trees. The various genetic operators are described
below.

The Clone Operator
The clone operator works as expected, copying the DTree as is from one

generation to the next.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

10

The Crossover Operator
DTree crossover is restrictive in the sense that it can only occur at type-same

crossover positions. What this means is that only Boolean returning sub-trees can be
switched with Boolean returning sub-trees, only integer returning sub-trees with integer
returning sub-trees, and so forth.

Crossover-Point Selection Algorithm
SelectCross = on (mom, dad | mom, dad are DTree’s)

momP = rand(1:|mom|)

while (noValidCrossPoint(mom,momP,dad)

 momP = rand(1:|mom|)

dadPoint = rand(1,|dad|)

while (notValidCrossPoint(mom,momP,dad,dadP)

 dadP = rand(1,|dad|)

return (momP,dadP)

Figure 8: Example DTree Crossover

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 11

The Mutation Operator
Mutation in DTree is constructive rather than destructive. For a given genome,

therefore, a loaded coin is tossed with a probability P (P = mutation probability) that a
mutation should occur. If the coin returns true, a completely new “mutant” tree is
randomly generated with the same return type as the original tree. The original tree and
the mutant tree then swap sub-trees, using the algorithm described in section 2.2.2. At
the end of the process, the tree containing the original tree’s top half is kept while the
other trees are discarded.

Figure 9: DTree Mutation Example

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

12

2.2 DTree Functions and Rationale
DTree contains a combination of conditional (if-V, if-T), logical (AND, OR,

NOT), state (boolean), input (vector/throw), and action (vector/throw) functions. The
rationale behind this architecture was that the combination of conditional and logical
functions would allow the DTree to evolve a set of specific behaviors depending on the
state. DTrees would have the capability of evolving behavioral “subroutines” that could
be exchanged and modified by crossovers and mutations. In addition, specific action
functions could be used to give DTree a leg up in terms of evolution.

2.2.1 Input Functions
DTree input functions are provided by the simulator. Executing in the simulator

context these functions provide positional vectors and throws for the player, the player’s

home location, the player’s teammates’ positions, the ball, and so forth. A full listing of

these functions is contained in Appendix B.

2.2.2 State Functions
Like the input functions, the simulator provides the state functions. Executing

within the simulator context these functions provide information about the game state
including the following: does the player’s team have the ball, is the ball loose, is the ball
within a certain distance from the goal, etc. A full listing of these functions is contained
in Appendix B.

2.2.3 Action Functions
Action functions were intended to give the Quidditch players a head up in

evolution. The rationale behind these functions was that certain behaviors could more
quickly be coded by hand than evolved. Given enough time, in theory these behaviors
may have come about spontaneously. However, as the evolutionary runs were
constricted by time and CPU power, a number of action functions were built into the
system. A complete listing of action functions is given in table 2.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 13

Table 2: Action Function Definitions

Function Name Function Description

(Block-Goal) Moves the player towards the nearest point on a line-segment
between the ball and the nearest defended goal to the ball.

(Steal-Ball) If an opponent possesses the ball, move to a point in an intercept
path with the opponent’s trajectory.

(Block-Opp) Move to the closes point on a line segment between the nearest
opponent and the Quaffle.

(Away-Opps) Move in a trajectory opposite the weighted sum of my opponents’

position vectors.

(Away-Mates) Move in a trajectory opposite the weighted sum of my teammates’

position vectors.

2.3

Figure 11: Block-Opp Figure 12: Steal-Ball

Figure 10: Away-Opps

Figure 9: Block-Goal

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

14

2.4 The Quidditch Simulator
The Quidditch Simulator is a Breve simulation derived from the work of Raphael

Crawford-Marks, Lee Spector and Jon Klein at Hampshire College (Crawford-Marks
2004). While the initial system implemented the entire game of Quidditch (see Appendix
A), the derived simulator omits the non-chaser player and ball elements (i.e. seekers,
bludgers, beaters, and the snitch), while retaining the physics engine and game play
dynamics of the original simulator. Although sensor and game state information
remained unchanged, significant work went into allowing this information to be accessed
by the various DTree functions.

2.4.1 Breve
Breve is an open-source software package specifically designed to ease the

creation of 3D simulations of decentralized systems and artificial life. Breve includes a
set of object primitives and derivable classes that model everything from mobile static
objects to joints. Additional methods and classes handle forces, collision detection, and
so forth. Documentation, distributions, and further information can be obtained from the
project website at <http://www.spiderland.org/brevehttp://www.spiderland.org/breve>.

2.4.2 The (Modified) Game of Quidditch

The Quaffle
Like everything in Harry Potter, the quaffle does not abide by the normal laws of

physics. According to Quiddi tch through the Ages: “The Quaffle is enchanted to fall as
though sinking through water.” In addition, rather than needing basketball-player hands
to grip, the ball is enchanted with “a “gripping charm” allowing a Chaser to hold the ball
with one hand.” (GrandPre and Rowling, 1998).

The Keeper
The Keeper is analogous to a soccer goalkeeper. The role of the Keeper is to

hang back and defend the goal from attacking chasers. Unlike soccer goalies, the keeper
does not have any distinctive rules that apply to her regarding game play, hence they are
essentially a fourth chaser except in their role specialization. Hence, for the purposes of
this simulator, the keeper is just a fourth chaser.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://www.spiderland.org/breve
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 15

The Chasers
Despite the influence of the soccer metaphor on Quidditch, the Chasers are best

thought of as a team of basketball players. Like a team of basketball players, all the
players on the team are responsible for both attacking and defending. Any one of them is
able to hold the Quaffle, pass, or attempt to make a shot at the goal.

Game Play
Upon whistle blow the ball is dropped 35 meters off the ground in the middle of

the playing field. Players then rush to the center to grab the ball or move to assisting
positions. Play continues until 70 points are scored (7 goals at 10 points a goal) or a time
limit of 15+(generation/4) simulated seconds (Note: more detailed information regarding
the simulator and its inner workings can be found in appendix A).

2.4.3 The Evaluation Function
The Quidditch player fitness function was inherited as is from the Hampshire

group. With some modification, the basic algorithm evaluates three aspects of game
play: touching the quaffle (.1 points); possession time (.01 * timeSteps of possession) of
the quaffle; throwing the quaffle (+.05 * numChasersWhoThrow); goal scoring (+10 per
goal); and defense ability (+10*(goalsScored – goalsScoredOn)). In early evolutionary
runs possession time, quaffle touching, etc. are intended to direct the algorithm in the
right direction. As the players improve, however, goal scoring was intended to replace
these aspects as a performance metric.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Chapter 3: Run Results

3.1 Run Setup
Due to time constraints and bugs, only one evolutionary run of the system was

completed. The system was tested on a Dell Inspiron 500m� laptop with a 1.3Ghz
Pentium M processor and 640 MB of system memory. With this setup, the run involved
populations of 100 individuals and took approximately 16 hours. See table 3 for a detail
of run parameters.

Table 3: Run Parameter Descriptions

Parameter Meaning Value
Ngen Number of generations to run. 100
Popsize Size of TreesGenome population 100
baseTime* Number of seconds to allow games to run for. 15.0
* Note: Due to a bug, all runs actually ran for only 10 seconds.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

18

3.2 Run Results
As would be expected, the early generations of the system produced players that

did not perform particularly well. The vast majority of generation 0 would either hover
in place or swarm about aimlessly (see figure 13). As one can see in this figure, team 1
(red), does not seem to have moved – in fact they never move from their starting
positions. Team 2 (blue), however, is swarming aimlessly about a center of mass.
Although the variations are endless, the vast majority of generation 0 players behave in
this manner.

Still, even in generation 0, a couple of individuals would actually demonstrate
game-playing behavior. Examining figure 15 one finds a team that has been initialized to
go straight for the ball. However, once they have the ball they are unsure of what to do
with it, throwing it immediately, rather than carrying it to the goal. In another case
(figure 14), one individual was even lucky enough to have the ball land on him. In this
case, the individual carried it off into the distance before the simulation ended.

Figure 13: Generation 0 – Random Movement

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 19

Figure 14: Generation 0 – Carry Behavior

Figure 15: Generation 0 – Go to Ball Behavior

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

20

By the intermediate generations (15-20), all the players learned to go for the ball.
At this stage, players generally threw the ball immediately at nothing in particular (figure
16). Here both teams of players swarmed the ball, shoving, grabbing, and throwing – just
how one might imagine little kids learning how to play soccer.

Figure 16: Gen 20 – Swarm Ball Behavior

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 21

Gradually, between generation 20 and 100, players learned to hold the ball longer

before throwing it (figure 17). Occasional spikes resulted when the player was even
fortunate enough to score, which happened rarely, due to a bug in the generate-throw
method. In addition, game time remained short (limited to 10 seconds) throughout the
evolutionary run. Thus, although by generation 100 all the players had learned to hold
the ball as well as throw it, with some of the strongest members of the population even
making shots on the goal (figure 18), scoring remained elusive.

Further improvements due to holding the ball longer

Players all throwing

Base score for all players moving

Figure 17: Graph of Run Results

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

22

Figure 18: Generation 100 – Shooting on Goal

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Chapter 4: Conclusions and Future Work
Even though the system never progressed beyond a version of “kiddie-Quidditch”

(charging the ball, dashing for the goal, and throwing), the results were encouraging.
Primordial players moved from random behavior uncoordinated activities to a more
advanced game strategy. In the initial runs, certain players demonstrated elements of
more advanced game strategy, but these elements were never combined or coordinated.
During the intermediate stages of evolution, these elements of game play strategy
diffused throughout the population, with players learning to go after the ball. Finally, as
the system evolved, the later stages of evolution were marked by an increasingly
coherent, albeit simple, strategy of game play (“kiddie-Quidditch”).

In terms of representation, DTree emerge as the proper representation until well
into the research. Later, by the time DTree was mature enough to tackle the modified
game of Quidditch, a C++ Quidditch simulator had been under development until the late
discovery of Breve, followed soon after by the Hampshire College Quidditch Simulator.
Due to these time constraints, a couple of bugs that were discovered during development
were not properly addressed. For instance, although game length was supposed to
gradually increase in later evolutionary runs, a bug in the system limited game length to
10 simulated seconds. Without longer matches, the most effective means of receiving a
high fitness score was simply to maximize the chances of grabbing the ball and throwing
it at the goal. Thus, it seems probable that rather than devise some sort of defensive
strategykiddie-Quidditch created a local maximum in the score space.

Despite these shortcomings, the evolutionary programming demonstrated itself as
a promising machine learning method for addressing the problem of playing virtual
Quidditch. Even given the immaturity of the DTree system and the integration
complications posed by Breve, the system still successfully evolved a simple strategy for
game play. Given further time and improvements, the system promises to advance
beyond the limits of kiddie-Quidditch.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

24

4.1 Future Work
Future work can be roughly divided into two categories, either involving the

simulator or involving the Evolver. Simulator improvements center around increasing
realism while evolver improvements concern bug fixes and AI performance (Crawford-
Marks, 2004).

4.1.1 Evolver Improvements
As mentioned in the beginning of this chapter, the most pressing issue to be

addressed by future work is the timing bug. Beyond that, a number of the behavioral
functions, most notably the generate-throw function seems to perform less than
optimally. Although there was little discussion of these functions, in terms of game
states, there is a class of probabilistic game-state functions, such as “throw-near-goal-if”,
that were based on (C * (1 / dist)) approximations of throw accuracy. In addition to
improving the throw function, more careful analysis of these probabilities should be
carried out.

Beyond these bugs, the distinction between the Throw and Move trees is
somewhat questionable. Rather than using the throw tree to determine movements, it
may make more sense to execute the move tree at each time step and use the throw tree
just to determine where and whether to throw the ball.

Next, in terms of implementation language, the choice of C++ was less than
optimal. Although DTree proved fairly robust, simulating the LISP stack required a large
coding overhead. Looking at Push, which integrates seamlessly with Breve, and Java for
which there are a number of GA packages, the implementation language of DTree should
be reconsidered.

Finally, at some point more heterogeneity should be added to the system. Rather
than just having one Chaser brain, experiments should be conducted coevolving a team
with multiple chaser brains. Gradually, after this system could be made to work (or
proven inferior), further work should be done to implement a full seven-player Quidditch
team and answer the full challenge proposed by Spector’s paper.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 25

4.1.2 Simulator

Architecture – As it stands now, the simulator does not control the player input as tightly
as could be desired. In order to increase the control of the input, the simulator should
probably be moved to a client/server model. Although there is a bit of network overhead
in this model, by having an always-running simulator, approximately 1.5 seconds out of a
4.5 second simulation run is spent on system initialization, this delay could be removed.
Thus, given that messages would likely be short, moving to such an architecture could
actually result in significantly faster simulation runs.

Vision-Like Sensors - In terms of realism, sensor functions should be made more
“vision-like” in the sense that players should have a limited field of vision. Although
there is a drop-off in the accuracy of player vision due to distance, vision is currently
omni-directional.

Communication – Currently there is no way for players to communicate their intentions
with one another. Implementing say and hear methods on the server would add another
level of realism to the simulation.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Appendix A: Quidditch and the Hampshire College Simulator

NOTE: The following section is from Raphael Crawford-Marks’ division III thesis, pp.

14-24. The text was modified slightly due to table numbering changes, but is essentially
as is for the purposes of reference.

The Game of Quidditch

Balls
The Quaffle is a round, inflated leather ball, painted red. In the early 18th century, witch
Daisy Pennifold enchanted the Quaffle to fall as though sinking through water. The
“Pennifold Quaffle” is still used today. In 1875, another enchantment was added to the

Quaffle;; a “gripping charm” allowing Chaser to easily keep hold of the Quaffle with one

hand.

The Bludgers started out as enchanted rocks, sometimes carved into the shape of a ball.
Modern Bludgers are heavy iron balls, 10 inches in diameter.
Bludgers are bewitched to chase the player closest to them. Therefore Beaters must try to
knock Bludgers as far away from their teammates as possible.

The Golden Snitch is a walnut-sized golden ball with thin, translucent wings. It is fast,
highly maneuverable and semi-intelligent, employing all its abilities to avoid being
caught by either Seeker.

Players
The Keepers are like soccer goalies. They hover near their own goals to fend off shots
from opposing Chasers. Keepers have all the same abilities as Chasers, so they do not
exist as a distinct player class in the Quidditch Simulator. Rather, if Keeper-like behavior
turns out to be adaptive, then one or more Chasers can evolve to act as a Keeper.

The Chasers are somewhat analogous to soccer forwards. They can hold on to the
Quaffle, pass it back and forth, and throw it at the opposing team’s goal hoops. Normally
there are only three Chasers per team, but in the Quidditch Simulator there are four
because there is no Keeper.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

28

The Beaters defend their teammates from the Bludgers. They are equipped with wooden
bats to knock Bludgers away from their teammates.

The Seeker is tasked with capturing the Golden Snitch. They are usually the fastest and
most agile player on the team. When the Golden Snitch is caught, the capturing team is
awarded one-hundred and fifty points, and the game ends.

Gameplay
Quidditch is played over an oval-shaped field five hundred feet long and one

hundred and eighty feed wide. This is called the Pitch. At each end of the pitch are three
goal hoops. Quiddi tch through the Ages does not specify the height of the goal hoops. In
the Quidditch Simulator, they are 15 meters high.

At the start of the game, all players are grounded on their team’s half of the pitch.

The referee whistles, and the balls are released at midfield. The Quaffle is thrown into the
air by the referee. At this point the Quidditch match has begun, and does not end until the
Snitch is caught or both team captains consent to end the game.

As soon as the referee whistles the start of the game, the Keepers rush to their
respective scoring areas to defend the goals (there are no Keepers in the Quidditch
Simulator, if this behavior is adaptive then hopefully it will be adopted by one of the four
Chasers). The Chasers lift off and scramble after the Quaffle. The Beaters track the
Bludgers and assume strategic positions to defend their teammates. The Seekers will
often climb high into the air to get a 16 good view of the whole pitch. They circle around
the pitch until spotting the Snitch, at which point they go into high-speed pursuit. See
Table 3.2 for a list of Quidditch Rules. There are a number of fouls in Quidditch, some of
which are described in Quiddi tch through the Ages. Figure 3.3 lists the fouls described in
Quiddi tch through the Ages.

Changes to Quidditch in the Quidditch Simulator
A number of small changes have been made to the setup of the Quidditch field

and the rules of Quidditch. These changes were made for a variety of reasons: to promote
more balanced game play, to facilitate evolution, and to reduce simulator complexity.

1. Though there is no limit imposed on the height to which a player may rise during the
game, he or she must not stray over the boundary lines of the pitch. Should a player fly
over the boundary, his or her team must surrender the Quaffle to the opposing team.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 29

2. The captain of a team may call for “time out” by signaling to the referee;; this is the
only time players’ feet are allowed to touch the ground during a match. Time out may be

extended to a two-hour period of a game has lasted more than twelve hours. Failure to
return to the pitch after two hours leads to the team’s disqualification.
3. The referee may award penalties against a team. The Chaser taking the penalty will fly
from the central circle towards the scoring area. All players other than the opposing
Keeper must keep well back while the penalty is taken.
4. The Quaffle may be taken from another player’s grasp but under no circumstances

must one player seize hold of any part of another player’s anatomy.
5. In the case of injury, no substitution of players will take place. The team will play on
without the injured player.
6. Wands may be taken on to the pitch but must under no circumstances whatsoever be
used against opposing team members, any opposing team member’s broom, the referee,

any of the balls, or any member of the crowd.
7. A game of Quidditch ends only when the Golden Snitch has been caught, or by mutual
consent of the two team Captains.

Quidditch Rules 1

Starting Positions - Balls and players do not start on the ground. This was done
primarily because it was sometimes difficult for the Snitch to escape the Seekers if it
started from ground level. See Figure 3.1 for screenshots of the starting positions of the
players and balls. The Snitch does not have a set starting position, but is instead placed
randomly on the field, at least 10 meters from the nearest Seeker.

Pitch Size and Shape - The pitch is circular instead of ovular, with a radius of 85 meters.
The circular shape was chosen simply because the Breve Shape class can be initialized as
a circular disk. Creating an oval would have required a bit of extra programming and
didn’t seem to benefit the game dynamics. Any mobile object moving farther than 85

meters from the center of the pitch (including the vertical Y axis) is gently “bounced”
back towards midfield. It was necessary to create this boundary to prevent players or
balls from climbing infinitely high (the Snitch was particularly fond of this strategy).

Goal Shapes and Scoring - Goals are solid disks instead of hoops. Goals are scored
when the Quaffle collides with the Goal disk. In Breve it is not possible to create concave

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

30

shapes. Collision detection is elegantly handled by Breve, whereas detection of the
Quaffle passing through a hoop would have been much more difficult to program.

Each team has one extra Chaser. This is because Keepers (as described in
Quiddi tch through the Ages) are simply Chasers that elect to defend instead of attack.
This being the case, there was no reason to create a separate Keeper class. If it is adaptive
to have a Keeper then hopefully one or more Chasers will evolve defensive behaviors.
Indeed, some very simple defensive behavior was observed during each of the three large
evolutionary runs in which one of the four Chasers would fall back to the center goal and
orbit it, occasionally intercepting shots from the opposing team.

The value of catching the Snitch has also been modified. Instead of being worth
one-hundred and fifty points, capturing the Snitch is worth 10+(2*score) (up to 150)
points for the capturing team. This change was made because teams were evolving to
only chase the Snitch, completely ignoring the Quaffle.

Name Applies to Description
Blagging All Players Seizing the opponent’s

broom tail to slow or
hinder

Blatching All players Flying with intent to
collide

Blurting All players Locking broom handles
with a view to steering
opponent off course

Bumphing Beaters only Hitting Bludger towards
the crowd, necessitating a
halt of the game as
officials rush to protect
bystanders. Sometimes
used by unscrupulous
players to prevent an
opposing Chaser scoring

Cobbing All players Excessive use of elbows
towards opponents

Flacking Keeper only Sticking any portion of
anatomy through goal

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 31

hoop to punch Quaffle out.
The Keeper is supposed to
block the goal hoop from
the front rather than the
rear.

Haverstacking Chasers only Hand still on Quaffle as it
goes through goal hoop
(Quaffle must be thrown)

Quaffle-packing Chasers only Tampering with Quaffle,
e.g., puncturing it so that it
falls more quickly or
zigzags

Snitchnip All players but seeker Any player other than
Seeker touching or
catching the Golden Snitch

Stooging Chasers only More than one Chaser in
the scoring area

Table 4: Common Quidditch Fouls

Ending the Game - As imagined, Quidditch games do not end until the Snitch is caught
or by mutual agreement of both team captains. This is unworkable for artificial evolution.
Even with the significant speedup over real-time provided by the Breve engine, games
that last twelve simulated hours or longer would slow evolutionary runs to a crawl. Also,
it is often easy to judge which is the better team very quickly, especially at the beginning
of a run when many teams don’t even move.

There are three conditions which will end a game in the Quidditch Simulator.
First is the Snitch being caught. Second, there is a score limit of 200. Third, there is a
variable time limit. The value of the limit is specified by a command-line parameter. This
allows the Quidditch Evolver to specify a time limit proportional to the generation of the
run when calling the Quidditch Simulator. At the beginning of runs, games are limited to
10 simulated seconds (2 or 3 real seconds). As runs progress, the time limit is set to
10+(generation/4) seconds.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

32

The Simulator Architecture
The Quidditch Simulator makes heavy use of inheritance to implement the

various actors in the simulation. All mobile objects in the simulation are subclasses of the
QMobile class, which in turn is a subclass of the Breve’s built-in Mobile class. A detailed
documentation of Breve’s class hierarchy can be found at

http://www.spiderland.org/breve/docs/. The immediate subclasses of QMobile are QBall http://www.spiderland.org/breve/docs/. The immediate subclasses of QMobile are QBall
and QPlayer which implement properties specific to balls and players, respectively. Each
ball type is a subclass of QBall: Quaffle, Bludger and Snitch. Each player type is a
subclass of QPlayer: Chaser, Beater and Seeker.

According to Quiddi tch through the Ages, Keepers have all the same permissions
and abilities as Chaser, but simply defend the goal instead of attacking. Thus, Keepers
are not implemented as a separate subclass of QPlayer in the simulator.

Table 5: Quidditch Game States

Game State Meaning
STATE INGAME POSSESSION TEAM1 Team One has possession of the

Quaffle
STATE INGAME POSSESSION TEAM2 Team Two has possession of the

Quaffle
STATE INGAME LOOSE BALL Quaffle is loose
STATE INGAME BALL THROWN Quaffle has been thrown
STATE INGAME GOAL SCORED Goal was just scored
STATE PREGAME Game has not yet started
STATE GAMEOVER Game is over

Player objects are instantiated by a QuidditchTeam object, balls by a

QuidditchBalls object. The QuidditchTeam/Balls classes are subclasses of the Breve
Abstract class. The QuidditchTeam/Balls classes handle things like initializing the
players or balls, placing them at the correct starting locations, returning information about
them when queried, propagating events, and reading and loading Push programs from the
filesystem.

Other important simulation objects are Goals, the ScoreTracker, and the
generically-named Field object, which acts as the simulation controller. The Goal class is
a subclass of the Breve Stationary class. Each Goal object (three for each team - six total)
is initialized by an instance of class Goals, a subclass of Abstract that does for goals what

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://www.spiderland.org/breve/docs/.
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 33

QuidditchTeam does for players. The ScoreTracker class is also a subclass of Abstract.
The ScoreTracker performs many of the same functions that a scoreboard would at a
basketball or football game. It keeps track of the score, which team has possession, the
state of the game (The list of game states can be seen in Table 3.4), and how much time is
left. ScoreTracker also writes the fitness score of each team to a file after the game is
over.

Field is a subclass of Breve’s PhysicalControl class. Upon initialization, Field

creates two instances of the QuidditchTeam class, one instance of QuidditchBalls, one of
Goals, and one of ScoreTracker. It also creates the Pitch (the Quidditch Playing field) and
sets a number of camera and graphics parameters.

Communication of game data between objects is facilitated by the simulation
controller through use of Event objects. Whenever something occurs on the field, such as
a player catching the Quaffle, or a goal being scored, the object involved with the even
initializes a specific subclass of Event and passes it to the controller to be broadcast to all
objects in the simulation. Every class in the simulation has a handle method which is
called whenever an event is broadcast.

The handle method checks the event type to see if the event is relevant, and if so
executes some code in response to the information contained within the event. For
example, if a Goal object detects a collision with a Quaffle, it generates a GoalScored
event, and stores its ID in the GoalScored event. In the Score-Tracker’s handle method, if
the event object is of type GoalScored, then the scoretracker gets the ID of the goal that
generated the event, finds out to which team it belonged, and then credits 10 points to the
opposing team.

Sensors and Actuators
Agents interact with the Quidditch world through sensors and actuators. Actuators

give agents the ability to act within the world. All agents (players and balls except the
Quaffle) are equipped with the same simple actuator. They have an invisible thruster
which can be instantaneously pointed in any direction to propel the agent. The force
exerted by the thruster is variable up to a set maximum. Agent speeds are also limited to
about 50 kilometers per hour in order to keep collision calculations reasonable.

Sensors provide information about the state of the world. Players are equipped
with noisy omnidirectional radar. They can sense anything in the game world, but the
accuracy of the information they get from their sensor falls in proportion to their distance
from the object being sensed. Within 25 meters, no noise is added to the sensors. Over 25

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

34

meters, mean 0, standard deviation (distance/5) gaussian noise is added to each
component of the sensed vector location.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Appendix B: Full DTree Quidditch Function Listing

Logical and Integer Functions
Key: t – throw, i – integer, b – boolean, v – vector. Max is the maximum throwing
distance.
(if-t b t1 t2) T If b is true return t1, else return t2.

(if-v b v1 v2) V If b is true return v1, else return v2.

(if-i b i1 i2) I If b is true return i1, else return i2.

(and b1 b2) B If b1 & b2 return true, else return false.

(or b1 b2) B If b1 || b2 return true, else return false.

(not b) B If b return false, else return true.

(0,1,2,3,4,5,6,7,8,9,10,11) I Constant integer values.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

36

Boolean State Functions

(opp-closer) B True if opponent closer to the ball, else true.

(mate-closer) B True if a teammate is closer to the ball, else false.

(opp-near-score i) B True if opponent has the ball within i/10 units of the goal

I defend.

(team-near-score i) B True if a player on my team has the ball within i/10 units

of the goal I am seeking to score on.

(team-has-ball) B True if players team has the ball, otherwise false.

(opp-team-has-ball) B True if opposing team has the ball; otherwise false.

(mate-has-ball i) B True if teammate THIRD(i) has the ball; otherwise false.

(opp-has-ball i) B True if opposing team has the ball; otherwise false.

(ball-loose) B True if no team possesses the.

(of-me i) B Return true if ball is within i units of me, else false.

(of-home i) B Return true if ball is within i units of my home, else

false.

(of-goal i) B Return true if ball is within i units of the target goal, else

false.

(opp-close i) B Return true if an opponent is within i units of me.

(mate-close I) B Return true if a mate is within i units of me.

(team-has-ball) B Return true if one of my teammates has the ball.

Otherwise return false.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 37

Vector Input Functions

Function Syntax Returns Description

(home) V A vector to my home.

(home-mate i) V A vector to the home of teammate THIRD(i)

(ball) V A vector to the ball.

(goal i) V A vector/throw to the goal THIRD(i).

(closest-goal) V A vector/throw to the goal.

(mate I v) V A vector to teammate THIRD(i).

(move t) V Convert a throw vector to a move vector.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

38

Vector Action Functions
Function Syntax Returns Description

(block-goal) V A vector to the closest point on the line segment

between the ball and the goal I defend.

(away-mates) V A vector away from known teammates, computed as the

inverse of Sigma{m{vect teammates} frac{max - || m

||}{||m||} * m }

(away-opps) V A vector away from known opponents, computed as the

inverse of Sigma{m{vect teammates} frac{max - || m

||}{||m||} * m }

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 39

Throw / P-Throw Functions
Function Syntax Returns Description

(far-mate i t) T A throw vector to the most offensive-positioned

teammate who can receive the ball with at least a frac{i
+ 1}{12} probability. Otherwise return t.

(near-mate i t) T A throw vector to the most offensive-positioned

teammate who can receive the ball with at least a frac{i

+ 1}{12} probability

(mate-m i1 i2 t) T A throw vector to teammate mate(i1)if her position is

known and she can receive the ball with at least a frac{i2
+ 1}{12} probability. If not, return t.

(throw-goal-if i1 i2 t) T A throw vector to the goal {THIRD(I)} if throw will be

successful within frac{i+1}{12} probability, otherwise

return t.

(throw-near-goal-if i) T A throw vector to the nearest goal if throw will be

successful within frac{i+1}{12} probability, otherwise

return t.

(carry v) T Converts a vector to a move throw.

(carryT t) T Turn a throw vector into a carry vector.

(throw v) T Returns a throw vector towards the vector v.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Bibliography

Crawford-Marks, R. Virtual Witches and Warlocks. Thesis. Hampshire College, 2004. 10
Apr. 2005 <http://alum.hampshire.edu/~rpc01/div3.pdfhttp://alum.hampshire.edu/~rpc01/div3.pdf>.

Goldberg, D. Genetic Algori thms in Search, Optimization, and Machine Learning
(1989). Addison-Wesley Professional: New York, NY.

Klein, J. (2005). Breve Documentation. Retrieved 4 Apr. 2005 from the Breve web site:
http://www.spiderland.org/breve/breve_docs/http://www.spiderland.org/breve/breve_docs/.

Koza, J. R., Genetic Programming. Cambridge, MA: MIT Press, 1992.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J., “Co-evolving softbot team
coordination with genetic programming,” in Proceedings of the First International
Workshop on RoboCup, at the International Conference on Arti ficial Intelligence,
(Nagoya, Japan), 1997.

Mitchell, T., Machine Learning. Boston, MA: McGraw-Hill, 1997.

Rowling, J. and Grandpre, M., Harry Potter and the Sorcerer’s Stone. Scholastic, Inc.,
1998.

Spector, L., Moore, R., and Robinson, A., “Virtual Quidditch: A challenge problem for

automatically programmed software agents,” Hampshire College 2001. 2 Apr. 2005

<http://hampshire.edu/lspectohttp://hampshire.edu/lspector/pubs/quidditch-cite.pdf>.

Wall, M (2004). GALib Documentation. Retrieved Sept. 10, 2004, from the GALib web
site: http://lancet.mit.edu/galibhttp://lancet.mit.edu/galib-2.4/.

Whisp, K. and Rowling, J., Quiddi tch through the Ages. New York, NY: Scholastic
Press, 2001.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://alum.hampshire.edu/
http://www.spiderland.org/breve/breve_docs/
http://hampshire.edu/lspecto
http://lancet.mit.edu/galib
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

