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Abstract.  An attempt to design and implement an entire AIBO to be Robocup 

ready proved a challenging, and rewarding experience.  Due to the large scale 

time requirements and time consuming technical issues that had to be dealt with, 

my experimentation was cut short.   

 Successes, however, include the creation of a vision system and of an 

omni-directional walking system that could be used to achieve the ultimate goal 

of playing soccer.  These systems are in many ways a final product in 

themselves—typically teams are separated into groups which complete each 

sub-model in the dog, giving them freedom to explore many options.  In addition, 

I had no starting point and had to learn the OPEN-R programming environment 

on my own, and thus, development required a significantly greater amount of 

time as compared to a situation where there was already a working system with 

knowledgeable people there to oversee. 

 

1 Introduction 

 

The idea of competing in a Robocup competition excited was me very much.  

However, as I began developing my own code for Sony’s AIBO ERS-220, I 

realized the great challenge that I faced as a single worker in a world where 

typical teams can have over ten members diligently working on various parts of 

the design, implementation, and verification.  Although my eyes were big, as one 

person I could not be expected to get through the technical issues surrounding a 



new programming target (i.e. Sony’s AIBOs) and develop what often ten 

graduate students would tackle together.   

 The systems implemented involve both walking, object recognition and 

localization. These designs followed those of the previous big-leaguers in the 

Robocup tournaments.  Typically my goal was to capture the ground breaking 

designs, and implement the simplest versions of those designs.   Even with big 

eyes, my goal was never to truly be competitive in the Robocup, but instead to 

learn the intricacies of autonomous agents and distributed learning.  

Unfortunately, distributed learning was never achieved due to the lack of time 

and help from additional team members. 

 

2 The Robot 

 

The ERS-220 can be seen in Figure 1.  As show in the exterior shots, the AIBO 

robot is designed with joints similar to that of actual living dogs.  Each leg 

consists of 3 joints which can be accessed via primitive commands in the code 

running by the robot.  The primitive addresses are available in the Model 

Information guide provided by Sony at their OPEN-R Website.  The robots come 

with a single in-face camera which is accessible in a similar fashion.  All details of 

other needs, such as buttons or foot sensors, are found in the Model Information 

guide and can be accessed using the same primitive commands.   

 

 



 

Figure 1 – ERS-220 Model Appearance 

 

2-1 Programming Environment 

In order to compile OPEN-R programs, a Linux based compiler must be used.  

These are available through the OPEN-R website provided by Sony.  The trick, 

however, lies in the fact that the floppy-to-memory-stick converter is Windows 

based (note that it will not work with a dual processor system!).  Therefore we 

must utilize Cygwin for general implementation situations.  There are Cygwin 

binaries available at the website.  Cygwin can be obtained at www.cygwin.org.   



 A Unix or Linux system can be used to implement the code as well, and 

instructions to do so are available on the OPEN-R Website.  In this case an FTP 

server can be utilized to transfer code over a wireless network and then the robot 

can be remotely rebooted.  This method is possible because on boot the robot 

copies the code into memory, leaving the memory stick alone.  In order to do this, 

the FTP server, which fortunately is provided by Sony, must be running at all 

times.  See appendix C for more information. 

 

2-2 Programming Model 

 

By nature of being an autonomous agent, the ERS-220 cannot rely on an 

operating system to perform the necessary tasks required to keep track of the 

state of the robot.  To accomplish this and maintain a multi-threaded approach, 

each defined object runs concurrently.  A round-robin approach is taken by the 

robot's processor, giving equal processor time to each running object.  To date 

there is no publicized way to avoid this threading protocol. 

 In order to communicate to another object or share data, inter-object 

communication must be utilized.  This is done through a subject and observer 

model, where the observer waits for information to be passed after declaring a 

ready state.  This ready state declares to the subject that the observer is ready to 

receive data.  This can be seen in Figure 2.  This information, however must be 

known at compile time as well as at runtime.  All inter-object communications 



have to be written out in the connect.cfg file located in the OPEN-R/MW/CONF/ 

directory on the memory stick.    

 

 

Figure 2 – Inter-object communication visualization 

 

Also due to the autonomous nature of the robots, there must exist a Core 

Class—which inherits from the Object Class—in each object running on the 

AIBO.  There are four important routines that must be implemented by this class.  

They are Init, Start, Stop, and Destroy methods.  The doStart method which is 

called on startup by the robot, makes a call to Init and Start.  There are also 

methods used by the inter-object communication services, but those are defined 

in a stub file.  This stub file is used by a routine provided by the OPEN-R SDK 

and must be called in the Makefile.  Fortunately due to the complexity of this 

programming model, there are examples of working code available.  However, 

these examples tend to be far simpler than a realistic piece of code.  It is possible 

to follow directions provided in the programming guide available from Sony.  

Most importantly, having a sound design and image of what needs to be 



implemented and what types of inter-object communication are needed, is 

necessary in order to better maintain and configure the necessary stub.cfg and 

connect.cfg files.   

 

2-3 Makefiles and compiling 

 

The compiling of the code for the robots is somewhat detailed.  This is mostly 

because the target processor isn’t the typical one.  The compiler is located at 

/usr/loca/OPEN_R_SDK/bin/.  Also a binary maker must be run from 

/usr/local/OPEN_R_SDK/OPEN_R/bin/mkbin.  In general, these Makefiles are of 

the plug and play nature.  They can also set up a directory structure that may be 

of benefit.  Appendix A contains a very fine example that automates much of the 

work.   

 

2-4 Running Code with Wireless Network Communication 

 

OPEN-R provides many important objects that can be utilized and must be used 

when programming the AIBOs.  This also provides support for memory protection 

and wireless communication.  These files are available from the OPEN-R SDK 

and are found at /usr/local/OPEN_R_SDK/OPEN-R/MS/ in the Unix tree 

structure.  These files should be mounted onto the memory stick’s root.  In 

general the WCONSOLE with memory protection should be chosen, thus 

mounting /usr/local/OPEN-R/MS/WCONSOLE/MS/OPEN-R to the root is 



required.  Memory protection prevents objects from touching memory used by 

other objects through allocation of memory in only blocks of 4096 byte chunks.  

Although this can lead to a decrease in memory utilization, it obviously prevents 

nasty memory related bugs.   

 The wireless communication settings on the AIBO do not utilize DCHP.  

DCHP allows a host to obtain an IP address and all other needed information 

such as default gateway and default Mask, dynamically at startup.  For reasons 

that I am unaware of, the AIBOs must have a static IP address and have all other 

network configuration settings known at boot.    I was fortunate to obtain not only 

static wireless information, but also an IP address for each robot.  See Appendix 

B for details of what the wlanconf.txt file looks like.  If this is not perfect, the dogs 

will not work on the wireless network.   

 The last thing to do before running is to edit the OBJECT.CFG file located 

in /OPEN-R/MW/CONF/ directory.  This file contains all of the objects to run.  

These objects will be run regardless if they do not require inter-object 

communication.  A nice thing to do here is include an FTP server so that it can be 

utilized to run reboot commands remotely and other such things.  The objects 

must be placed into /OPEN-R/MW/OBJS/.  Further details are available in the 

Open-R SDK Programmer’s Guide provided by Sony.   

  

 

3 Previous Works 

 



Robocup was started to provide a common interest to merge what seemed to be 

a variety of drifting, inter-dependant Computer Science Topics.  These topics 

include Robotics, Distributed Computing, Artificial Intelligence, and Computer 

Vision.  Thus a common ground and common playing field, robotic soccer, was 

selected as the method to further artificial intelligence, robotics, distributed 

computing, and computer vision.  At first there was just a simulation league, 

where artificial intelligence and distributed computing was the focus.  Here 

eleven separate threads of execution, typically coming from eleven separate 

computers were connected to the ‘soccer server’ in a client server fashion.  The 

realism of this simulation league continues to grow to allow for coach interaction 

using predefined commands.  In addition there are three robot (small, medium, 

and large) leagues.  However, the nature of this league is inherently unfair in that 

robotic design is left up to the teams, resulting often in largely better teams in 

some cases.  

 Like the simulation league in many ways, there is one other league that 

keeps the playing field perfectly equal in regards to hardware and that is the 4-

legged league.  The hardware used here is provided by Sony in their AIBO 

robotic dogs and this is clearly where my area of interest lies. Also, this 

illuminates the need for the design and creation of a new set of robots.  Although 

costly, the AIBOs provide a nice structure to work with, providing many important 

and helpful features that aid in robotic soccer. 

 The leader of the pack in the 4-legged Robocup league belongs to 

Carnegie Mellon University (CMU) and Manuela Veloso, the clear visionary of the 



entire league.  Since 1998 and the release of OPEN-R by Sony, he has had 

groups of students doing brilliant work and improving elements of the team each 

year.  It is their Vision System’s design (from 2002) that I attempted to 

implement.  There are many features of their design which make later, higher 

level work much easier.  More or less, the bulk of the work takes place at a lower 

level, which feeds the decision processes with nice structures that make decision 

making faster, and more precise.   

 Although CMU is always a front-runner in Robocup competition, University 

of New South Wales of Sydney Australia has been a force in the development of 

faster walking mechanism for the dogs—they are inherently slow, easily to push 

over, and generally difficult to program.  Their improvements and design for the 

2000 Robocup are my basis for implementation of walking code.  Their use of 

omni directional methods provides a remote like interface for the artificial 

intelligence portion of the system and tries to minimize its own effect on the 

vision system, which is attached to an often bobbing head.   

 Typically teams implement a variety of kicking methods including a header 

and side kicks.  However, the most effective kicking motion seems to be by using 

the wedge located on the chest of the AIBOs.  By falling on the ball, there is a 

large mass behind its acceleration, sending it much faster than otherwise able.  

The legs, in this case, are used as guides. 

 Other ideas, such as placing the goalie dog inside the goal when the ball 

is in the corner, allow the dog to maintain a few of the ball, thus giving it the best 

chance of preventing a goal.   



 As Robocup has grown, the 4-legged league has placed humans at the 

controls of one team of AIBOs, to determine just how far the artificial intelligence 

teams were coming.  Inter-squad competition seemed to indicate an 

improvement in play, but to use humans gives a somewhat consistent point of 

comparison.  In 2001 the humans were defeated for the first time by the artificial 

intelligence provided by the winning team.   

 The goal of Robocup is to not only push new research and extend the field 

of Computer Science through competition, but its ultimate goal is to compete with 

actual humans in a real game of soccer with large humanoid robots.  Although 

the field of robotics is the lagging section of the many fielded research of 

Robocup, it is hoped that these ventures in artificial intelligence, distributed 

decision making, and vision, will lead to faster understanding of what is needed 

from the robots in order to be successful and also to determine how to teach 

robots to work as in groups, that do not have a ‘master’ dog dictating what needs 

to be next.  These ideas create human like abilities in each robot, and keep 

dependencies as low as possible.  These abilities can then be used in other 

areas, as needed, to aid in better lifestyles for all. 

 

 

 

4 My implementation and experiences 

 



Following is the general principles behind these systems, as well as my 

experiences during their creation.   

 

4-1 Omni-Directional, remote-like, locomotion 

 

A fast, reliable, and remote-like implementation of a Motion system was the 

reason University of New South Wales was able to win all competitions in 2000 

at the 4-legged championships.   The great improvement in speed comes from 

looking at the AIBO’s legs as a circular motion, creating a rectangular locus that 

can be modeled using a few formulas.  With such a design it is possible to 

maintain steady, fast speeds simply by maintaining the size of the locus, and 

traversing at the same steady state.  Furthermore, this design gives the ability to 

raise the legs off of the ground as little as possible leading to a minimized 

amount of up and down motion which can affect the vision systems. 

 Omni-directional control is obtained by changing the inclination in the 

plane we created for forward motion.  Thus if the locus plane is parallel to the 

robot you achieve forward and backwards motion (likewise for sideways motion 

when the locus is perpendicular to the robot).  To turn however, the circular 

motion is the best way to understand the method used.  Each leg's motion is 

similar to a wheel, as the limbs rotate in circular pattern.  Thus, by moving some 

of the legs farther, and therefore faster than the others, a turn is achieved. The 

ability to control each leg’s speed is therefore necessary, and the speed of a leg 

is determined by the width of the locus and the speed at which it is traversed.  



The speed at which the locus is traversed is dependant on its size (moving the 

legs higher off of the ground takes more time) and the rate of the gears.   

 The method of locomotion is described by the notion of gaits.  A gait is the 

protocol or policy that is followed when a four legged animal or robot moves.  

There are three widely accepted gaits: crawl, trot, and pace.  The crawl has all 

four legs moving at different times, where the trot has opposite legs working in 

tandem, and the pace has legs on the same side of the body working in tandem.  

All of these were implemented by University of New South Wales team.  I 

borrowed some of their parameters and rates in my own implementation.  I found 

similar results that indicated the trot gait was the best choice for fast, steady 

motion. 

 The design allows for the manipulation of a variety of parameters including 

gait, distance to move legs (negative distance taking the dog backwards), 

distance left each step should take, turn in angle, starting position of legs, and 

heights to raise front and rear legs to.  This implementation allows for 

optimization of these settings.  Fortunately University of New South Wales did 

this optimization, and only a small amount of tweaking was required for our 

carpets at Boston College.   

 The walking mechanisms were tested at a slower than could be used gear 

speed.  I did this because of the risk of damage when causing the dogs to move 

at such high speeds.  Regardless, the dogs will be highly effective in receiving 

commands. I implemented a joystick like interaction with this code which means 

that when I indicate a walk command such as (walk 85 0 0) the dog will move 



forward at eighty five millimeters per step, with zero motion to the left, and zero 

motion in a circular fashion (i.e. the rotation of the entire robot). 

 In order to verify that these parameters and system worked, I had to 

create a way to access the module in the robot, and thus created an extension to 

the telnet server that was written by Sony and freely distributed.  I could then 

simply play and verify all of the things that University of new South Wales 

claimed were true about this design.  The difference in walking speed is 

considerable, as I raced the Sony walking code with that of this team at the same 

gear speeds, and found it to be nearly twice as fast.  

 

4-2 Vision and World Model 

 

As previously mentioned, I used the method described in CMU’s team paper 

from 2002.  Vision is a multiple step process that inherently requires much of the 

robot’s processing time.  It is this time that I was worried about utilizing too much 

of.   

 As inputs we get eighteen frames per second from the robot.  The first 

step in the vision process is segmentation.  On each pass of a color, the highest 

level bits are used to look up a related color in a lookup table that allows for 

variance in color and in particular for lighting differences.  The lookup table is 65 

kilobytes big, maps each color to a more generic one and was directly borrowed 

from CMU’s work.  The resulting image is stored for possible later use.  As 

lookups are done, tracks of runs of similar colors are kept track of and recorded 



into an array with an x and y, and an ending x.  The objects also contain a parent 

node. This makes for easier and faster connection of components.  Starting with 

a disjoint forest of nodes (these are the individual runs previously calculated) with 

the parent of each node being itself, adjacent rows are joined.  The actual 

parents must be determined if there is a case where a row is connected from 

multiple locations.  Figure 3 shows this in better detail.  The parent nodes are 

then sorted based on size and color for later use.  In addition, once this is 

performed, the regions that weren’t of exact matches needs to be merged, in the 

interest of perhaps locating an actual object like the ball, goal, or landmark.  I 

merged on the assumption that the resulting object had a density of .89.   

 

Figure 3 – Visualization of Region Creation 

 Using these regions we can then begin to locate objects and calculate 

their distances.  The ball is detected by scanning through the pink (The ball in 

actual Robocup play is yellow). regions and determining which ones have the 

greatest chance of being the ball.  First and foremost the ball must be on the 



ground and no more than five degrees above the robot’s head.  It also must be 

surrounded by the field.  Anything that is not sufficiently wide, tall, or large 

enough is disgarded.  With these elements in mind the best option in the region 

structure can be chosen.  The known size of the ball can then be used to 

calculate how far from it the robot is.  The kinematics of the robot can also be 

used to decide what angle from the robot the ball is.  To test up to this point I 

created a ball tracking piece of code that allows the head to look around for the 

ball until it is found and then maintains focus on the ball, assuming it continues to 

match the criteria.  Once again the gears were turned down in this testing stage 

to maintain the robot’s condition.  The robots were able to identify the ball versus 

a post-it note of similar color.  If the colors are too close in nature, then the robots 

begin to accept, but then start to look away.  In the Robocup setting this 

recognition would suffice as there as there would be no one flashing a post-it 

note in front of the robots during the matches! 

 The remaining part of the localization and object identification remain 

untested.  This is due to the difficulty in the actual construction of a field.  I am 

currently working towards putting together a field.  The verification of goal 

recognition seems to be the most reasonable to verify (as it is straight forward) 

and, due to the goal’s large and non-moving nature, seems to be an easy target.  

In addition, the land marks which would be needed to construct the world model 

of the field are also easy to detect, as they are the only objects of particular 

colors on the field.  Thus finding them in an image and calculating their distance 



is not challenging, given that I have the formulas that have been defined in a 

paper by CMU. 

 The position of the ball relative to the robot is calculated by taking the 

current position of the dog’s joints, the position of its head, the ball’s size in 

height (i.e. pixels) and the ball’s actual height. Geometry is then used to calculate 

the position of the ball.  This method, however, may be subject to some 

inaccuracy when the ball is not fully visible, resulting in the difficulty in detecting 

the height the ball, and thus preventing an accurate reading of the location.   

 The markers on the field are found by considering the pairs of colors that 

are associated with them—pink combined with yellow, green, or blue regions).  

Each marker has a unique sequence of 2 colors on it.   This way it is reasonable 

to attain where on the field a robot is located.  The largest ten regions of these 

colors from our object structure are analyzed to determine if they are vertically 

adjacent. If any two of them are, they are considered to possibly be landmarks.  If 

the size of both regions are the same, the regions represent a landmark. Once 

the location of the marker and its size, etc. are found, the position of the robot on 

the field can then be triangulated.  Because we know that the landmarks are ten 

centimeters tall, and information about the robot’s camera height is known, the 

distance to the landmark, and therefore the position of the landmark relative to 

the robot, can be calculated.  See Figure 4. 



 

Figure 4 – Calculation of positions relative to landmarks 

 Although finding the large yellow area on the field (i.e the goal) is relatively 

simple, goal detection is a highly challenging aspect to robotic soccer because 

particular locations need to be aimed at on the goal to maximize the chance of a 

goal.  The method used by CMU uses the finding of the corners of the goal to 

use as targets.  For simpler calculations other than those for shooting, I simply 

looked at the location of the back wall of the goal.  By locating the goal, a better 

plan of attack can be calculated and it is then possible to determine a rough field 

position.  To find the goal, as stated earlier, simply search through the list of 

objects that has the largest yellow region.  If one of these regions is of a 

reasonable size, has white walls next to it and has green beneath it, the yellow 

region is in fact the goal.  The white area is the white walls of the field, the green 

being the actual rug color (which is dependant on location of the field). 

  Robot detection in Robocup utilizes uniforms that more or less cover a 

large portion of the dog.  These uniforms are pieces of blue or red cloth, 

depending on the team’s color.  Because we attempt to merge large regions with 

a particular density level, hopefully even larger regions that correspond to other 

robots can be generated.  In this process we need to look only at regions of red 



and blue nature.  We want to look at each line of the video and correlate all 

similar red or blue regions.  Although we want to be insensitive to some noise, 

thin lines of green must be noticed and marked, because this would imply more 

than one robot.  At this point we can look to determine the size of the proposed 

robot and determine if it is too large to be just one robot.  If it is, then we throw 

out the region. 

 A visual sonar system was not implemented by me, but CMU does do this.  

This system would greatly aid in the decision making processes. This system can 

be implemented by determining which objects exist at five degree intervals.  

Routes and paths for robots, passes and shots can then easily be chosen from 

the outputs of this type of system.  

  For localization, I implemented CM-Pack’s Probabilistic Constraint Based 

Landmark Localization (PCBL).  The process is fairly simple.  I implemented a 

somewhat watered down version for speed of calculation and speed of 

programming. I initialized the location of an individual robot to be the center of 

the field (all dimensions are in centimeters—see field dimensions for Robocup 

league).  On sight of a landmark, the location of the landmark is returned by the 

vision.  Its size can then be used to triangulate the distance to the marker, and 

because we have enough information to calculate the distance to the object, we 

can associate a relative distance to that landmark.  As soon as a separate 

landmark becomes visible as the dog’s head looks around, the distance from that 

object is calculated and the resulting new position can be found.  Although not 

implemented, the robots could easily announce to one another their current 



position, and then with that information, could add each other to the world model.  

However, opponents must be located purely through a robot’s own vision. Should 

a robot lose track of the ball for more than 5 seconds it can request the ball’s 

location from the other robots.  From them the average of the other’s vision can 

be assumed, until the ball is located yet again.   Each time an opponent is 

viewed; its position is translated into the world model and updated.  There is no 

attempt at guessing the next position. 

 Higher level decision making has not been implemented at the current 

time, as this world model system has not been tested to date.  However, 

motivation can easily be placed on the robot to see the ball and kick it into the 

goal.  This is the target work to be accomplished before presentation time. 

 

5 Future Work 

  

There is obviously much work left to do to actually have a Robocup ready team.  

My vision includes addressing many of the soccer issues. It would also rely 

merely on a shared vision of the world.  With the wireless capabilities of the 

robots, their own view of the world can be shared and therefore an agreed upon 

world can be obtained.  The dogs could then easily make their own decisions, 

assuming they all follow the same protocol for decision making.   

 In particular I intended to utilize my soccer knowledge and the notion of 

creating triangles on the field as passing options.  Thus I intended to have the 

roles of each player dynamic as is true in human soccer, minus the role of the 



goalie.  This way you can never be sure where the attack will come from and 

‘guarding’ one dog or path will not suffice to prevent scoring opportunities.   

 Soccer, fortunately, is a simple game.   Should I have had time to 

implement this area, I feel that I would have had tremendous success as my 

understanding of the fundamentals of soccer is high.  Perhaps if I were working 

with more people implementing these robots, a higher level of excitement may 

have occurred.  

 On the topic of the world model, it is possible to guess at the future 

locations of opposing robots.  This could be guessed at by looking at the robot’s 

current position and velocity.  What remains to be seen is if there is a reliable 

way of calculating those parameters from an already moving robot’s camera.  

This could aid in the decision making process.  In addition, before making an 

action, the dogs could verify the location of an opposing dog, and have a back-up 

plan be ready if the first one does not look like a good option.  However, the 

amount of time required to propagate the necessary information may be too great 

to accomplish.  As processors continue to speed up, perhaps last second 

decisions can be made, like those of an actual human soccer player. 

 One of the largest slow-downs occurred as a result of not having 

debugging tools that many of the other teams utilize.  University of New South 

Wales has a beautiful Java graphical user interface (GUI) that shows the state of 

the robot, what it is seeing, what its model of the world looks like, what it is trying 

to do with the ball next, and even more.  Of course I would have loved to have 

been able to use this GUI, but clearly this would have forced me to use their 



exact system of representation.  This limitation would have put more work on me 

than I already had, so instead I chose an original route.  For future work, I think a 

large debugging tool, preferable written in Java (to allow for cross platform use) 

would be highly useful.  This also means standardizing many of the models and 

outputs for each internal module of the robots. 

A simple telnet approach where various pieces of information can be printed 

would have been another useful debugging tool.  This is clearly a much simpler 

approach than the GUI approach.  It could only show string representations, but 

from a realistic point of view for a single worker, this may be a more realistic.  

 

6 Problems and Technical Issues 

 

The fact is that without years of development not only with the robots and their 

code, but also of tools, I was at a large disadvantage from the beginning.  I faced 

a new programming environment that is unknown by everyone at Boston 

College.  My voyage was therefore somewhat lonely, but when technical issues 

came up, it became difficult to remain focused on implementation of other things, 

when nothing seemed to work correctly.  Issues faced ranged from IP issues, 

DCHP issues, wireless issues, compiler corruption issues, and general issues 

with Cygwin (Linux embedded into Windows).   

 The hardest part was getting use to and using the inter-object 

communication model used in the robots.  Without an operating system, the 

robots were designed on a threaded model.   The major drawback is that each 



object is only capable of communicating with other objects through shared 

memory and a system of event driven activities.  Without good documentation on 

this (it was not available until December), trying to do multiple objects was 

impossible. 

 Some of the technical issues that had to be addressed involved the 

transfer of code to the robot itself.  The time consuming fifteen minute process of 

compiling and transferring the code was very lengthy.  In the end I was able to 

use an FTP script that sent all needed files over the wireless LAN and then 

rebooted the robot.  This proved tricky, as it is necessary to remember to include 

so many things to ensure successful reboot.   

 When one builds an object, there is still a remaining step required to allow 

the code to run on the dogs.  This is the compression of the *.bin files and the 

movement of them into the proper directory with the proper configuration files.  

Typically, however, the FTP server is not in this group of files.  Therefore I 

compiled and did all necessary steps on the FTP server binaries, and then 

included a copy in the Makefile that simply moves the file into the new location 

for use.  I also played with the idea of editing the configuration files, but once 

those are set once, they do not need to be set again, as they are manually 

created.  Thus there would be little reason to edit a config file via a script, such 

as OBJECT.CFG, when it only needs to be edited once. 

 The time lost due to not having the right examples and direction may have 

been enough to complete more of what I had wished to.  However it is clear that 

someone had to do this work in order for further development on these dogs at 



Boston College.  The issues addressed through this journey are documented and 

available so that others may enjoy the fruits of my labors through a challenging 

and sometimes depressing journey. 

 

7 Conclusions 

 

I feel that my work, given the stresses I faced, were remarkable.   All completed 

modules show signs of proper implementation, and thus I feel that with sufficient 

time I could have developed a system that would have been respected and could 

have been entered into the Robocup competition.  Furthermore, my 

understanding of a wide range of robotic and real time issues has grown, and I 

too as a person have grown through facing what often seems as an impossible 

mission. 
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Appendix A – Example Makefile with highly automated process 

# 
# Copyright 2002 Sony Corporation  
# 
# Permission to use, copy, modify, and redistribute this software for 
# non-commercial use is hereby granted. 
# 
# This software is provided "as is" without warranty of any kind, 
# either expressed or implied, including but not limited to the 
# implied warranties of fitness for a particular purpose. 
# 
 
PREFIX=/usr/local/OPEN_R_SDK 
INSTALLDIR=../MS 
CXX=$(PREFIX)/bin/mipsel-linux-g++ 
STRIP=$(PREFIX)/bin/mipsel-linux-strip 
MKBIN=$(PREFIX)/OPEN_R/bin/mkbin 
STUBGEN=$(PREFIX)/OPEN_R/bin/stubgen2 
MKBINFLAGS=-p $(PREFIX) 
LIBS=-lObjectComm -lOPENR 
CXXFLAGS= \ 
 -pipe \ 
 -O2 \ 
 -I. \ 
 -I$(PREFIX)/OPEN_R/include/R4000 \ 
 -I$(PREFIX)/OPEN_R/include 
TARGET=robot.bin 
MSDIR=/flash 
INSTALLOBJS=$(TARGET) \ 
 ../actuators/actuator.bin \ 
 ../sensors/sensor.bin \ 
 ../SoundPlay/SoundPlay/sndplay.bin \ 
 # ../ImageViewer/JPEGEncoder/jpegen.bin 
INSTALLMYCFS=../conf/camera.cf \ 
 ../conf/mycolor.cf \ 
 ../conf/*.cdt  
INSTALLCFGS=connect.cfg object.cfg designdb.cfg 
 
# 
# When OPENR_DEBUG is defined, OSYSDEBUG() is available. 
# 
#CXXFLAGS+= -DOPENR_DEBUG 
 
.PHONY: all install clean 
 



all: robot.bin 
 
installms: all 
 (cd ../actuators; ${MAKE}) 
 (cd ../sensors;  ${MAKE}) 
 (cd ../PowerMonitor/PowerMonitor; ${MAKE}) 
 # (cd ../ImageViewer/JPEGEncoder;  ${MAKE}) 
 cp -r $(PREFIX)/OPEN_R/MS/WCONSOLE/nomemprot/OPEN-R 
$(MSDIR) 
 cp $(INSTALLOBJS) $(MSDIR)/OPEN-R/MW/OBJS/ 
 cp ../PowerMonitor/PowerMonitor/powerMonitor.bin $(MSDIR)/OPEN-
R/MW/OBJS/POWERMON.BIN 
 cp $(INSTALLCFGS) $(MSDIR)/OPEN-R/MW/CONF/ 
 cp wlanconf.txt $(MSDIR)/OPEN-R/SYSTEM/CONF/ 
 mkdir -p $(MSDIR)/OPEN-R/APP/CONF/ 
 cp -r ../SoundPlay/SoundPlay/wav $(MSDIR)/ 
 cp $(INSTALLMYCFS) $(MSDIR)/ 
 
%.o: %.cc 
 $(CXX) $(CXXFLAGS) -o $@ -c $^ 
 
robot.bin: ShooterStub.o Shooter.o blob.o LoadTbl.o LoadCDT.o 
CameraParam.o  Robot.o robot.ocf 
 $(MKBIN) $(MKBINFLAGS) -o $@ $^ $(LIBS) 
 $(STRIP) $@ 
 gzip $@ && mv $@.gz $@ 
 
install: robot.bin 
 cp robot.bin $(INSTALLDIR)/OPEN-R/MW/OBJS/CAMERA.BIN 
 
clean: 
 rm -f *.o *.bin *.elf *.snap.cc 
 rm -f ShooterStub.cc ShooterStub.h def.h entry.h 
 rm -f $(INSTALLDIR)/OPEN-R/MW/OBJS/CAMERA.BIN 
 
ShooterStub.cc: stub.cfg 
 $(STUBGEN) stub.cfg 
 
Shooter.o: Shooter.cc Shooter.h ../lib/Robot.h 
 $(CXX) $(CXXFLAGS) -c Shooter.cc 
 
Robot.o: ../lib/Robot.cc ../lib/Robot.h ../include/DRX900.h ../include/myfatfs.h 
../lib/LoadTbl.h ../lib/LoadCDT.h 
 $(CXX) $(CXXFLAGS) -c ../lib/Robot.cc 
 
LoadTbl.o: ../lib/LoadTbl.cc ../lib/LoadTbl.h 



 $(CXX) $(CXXFLAGS) -c ../lib/LoadTbl.cc 
 
LoadCDT.o: ../lib/LoadCDT.cc ../lib/LoadCDT.h 
 $(CXX) $(CXXFLAGS) -c ../lib/LoadCDT.cc 
 
CameraParam.o: ../lib/CameraParam.cc ../lib/CameraParam.h 
 $(CXX) $(CXXFLAGS) -c ../lib/CameraParam.cc 
 
blob.o: ../lib/blob.cc ../lib/blob.h 
 $(CXX) $(CXXFLAGS) -c ../lib/blob.cc 



Appendix B – WLAN configuration on AIBO at BC (Fulton Hall) 
 
HOSTNAME=AIBO1 
ETHER_IP=136.167.127.252 
ETHER_NETMASK=255.255.254.0 
IP_GATEWAY=136.167.126.1 
ESSID=RoamAbout Default Network Name 
WEPENABLE=0 
APMODE=1 
CHANNEL=6 
 
HOSTNAME=AIBO2 
ETHER_IP=136.167.127.251 
ETHER_NETMASK=255.255.254.0 
IP_GATEWAY=136.167.126.1 
ESSID=RoamAbout Default Network Name 
WEPENABLE=0 
APMODE=1 
CHANNEL=6 
 
HOSTNAME=AIBO3 
ETHER_IP=136.167.127.250 
ETHER_NETMASK=255.255.254.0 
IP_GATEWAY=136.167.126.1 
ESSID=RoamAbout Default Network Name 
WEPENABLE=0 
APMODE=1 
CHANNEL=6 
 
HOSTNAME=AIBO4 
ETHER_IP=136.167.127.249 
ETHER_NETMASK=255.255.254.0 
IP_GATEWAY=136.167.126.1 
ESSID=RoamAbout Default Network Name 
WEPENABLE=0 
APMODE=1 
CHANNEL=6 
 

 


