

Boston College
Computer Science Department

Senior Thesis 2003
Evan McCarthy

A Three Dimensional Environment Suitable for Distribution over a Multicast Network
Prof. Robert Signorile

0 Abstract

The purpose of this project is to integrate a three-dimensional model of a real-world

environment into a distributed system based on multicast communication between nodes

in the system. The development of three-dimensional environments (3DEs)

revolutionized the computer graphics industry, in particular the gaming industry, by

bringing computer graphics one step closer to replicating reality. The developed

application uses a 3DE of a dormitory (specifically Ignacio Hall on the Boston College

campus) to serve as a backdrop for a distributed system in which users compete against

each other for resources and objectives (such as health powerups and to obtain a winning

score). The development of a distributed mutual exclusion algorithm operating via

multicast communication was necessary to ensure the proper performance of the

developed distributed system. The created algorithm takes advantage of the

characteristics of a multicast network and various synchronization mechanisms, such as a

timestamp and the election from the multicast group of a central arbitrator. These

synchronization safeguards not only enforce mutual exclusion, but also aid in the

enforcement of reliable communication between nodes in the distributed system. The

implementation of a dynamic rotating server selected from among the members of the

multicast group, in combination with a timestamp applied to all messages sent between

nodes in the system, forces the ordering of messages sent within the system. This adds a

level of predictability and stability to developed system and its communication

mechanism. The final implementation and integration of the 3DE, the distributed mutual

exclusion algorithm and the reliable system based on the multicast communication

 1

protocol result in a distributed, three-dimensional world, which mimics the everyday

interaction between independent people vying for shared resources.

1 Introduction

The goal of this project is to create a realistic three-dimensional gaming environment

suitable for distribution over a multicast network. The environment must resemble the

model—in this case, Ignacio Hall—and must react with the players in a realistic way.

For example, players should be able to climb stairs and open doors, but should not be

allowed to walk through walls. From a visual perspective, realism will be added through

the use of texturing and 3D design.

1.1 Game Engines

A game engine is framework that “integrates a 3D graphical gaming environment

with intelligent techniques for generating and controlling interaction in order to create

an engaging and coherent user experience.”1 The controlling interaction refers to

the heart of what a game engine does—it regulates the players in a way that produces

a desired effect. If the point of a game is to simulate the life of a city over time, then

the game engine should enforce rules that make the game realistic. Citizens should

complain about taxes and city services should demand more funding. The engine

should also enforce rules to make the game realistic—buildings should not float on

water, for example. The game engine is the integration of the visual portion of the

game with the logical portion of the game—it is the heart of the game itself.

1 Young and Riedl, “Towards an Architecture for Intelligent Control of Narrative in Interactive
Virtual Worlds“

 2

1.2 3D Graphics

In the early 1990s, id Software revolutionized the world of computer gaming with

Wolfenstein 3D. The game used real-time ray casting to produce a 3D effect. The

entities in the game were two-dimensional, but the depth was faked to give them the

appearance of being three-dimensional. A few years later, the game Quake offered

“full 3D entities that could move around in a fully polygonal 3D world with six

degrees of freedom.”2 Having six degrees of freedom means that an entity can move

in the positive x, negative x, positive y, negative y, positive z, or negative z direction.

The entity can also move in two, or even three, of these directions at one time. Thus,

computer graphics had become fully 3D. Objects could yaw, pitch, and roll yet still

look exactly as they would in the real world. The addition of a true third dimension

to gaming opened a realm of possibilities. No longer would designers be confined to

the xy-plane. Now, the z-axis was available.

1.3 OpenGL

This 3DE was created using OpenGL. OpenGL is a graphics application

programming interface introduced by Silicon Graphics in 1992. Since that time, it

has become the gaming industry’s most widely used graphics API. Many popular

computer games have been written using OpenGL, including Quake and Tribes 2.

OpenGL was chosen for this project for many reasons: its stability, reliability, good

documentation, and portability make it a very attractive API.

2 Previous Work

2 Hawkins and Astle, OpenGL Game Programming, p. 5

 3

A good deal of previous work exists on gaming engines, although a large portion of it

was developed for commercial use. After all, game engines are created to play games;

and the computer gaming industry is a multibillion-dollar business.

One of the best known and perhaps most influential game engine projects is “Doom.”

Created by ID Software in the early 1990s, Doom became one of the most successful

video games in history. Its engine was one of the first 3D engines created. In fact, many

of today’s games are built on top of Doom’s open source engine.

Other game engines are also available as open source. “Unreal Tournament” is one such

engine. Young and Riedl investigated the creation of an interactive narrative on the

Unreal Tournament engine in their 2003 work entitled “Towards an Architecture for

Intelligent Control of Narrative in Interactive Virtual Worlds.” In this project, they

created a system that “creates a storyline at run time, allowing customization that takes

into account a user’s ability, interests, previous experience and other contextual factors.”3

While not all of the content is relevant to this project, the paper does include some

valuable information about what a game engine should do.

Legakis, Dorsey, and Gortler also provide interesting work with computer graphics. In

August of 2001, they published “Feature-Based Cellular Texturing for Architectural

Models,” a paper that explores using occupancy maps as a means to make textures appear

more three-dimensional. They use a pattern-generating algorithm that matches the edges

3 Young and Riedl, “Towards an Architecture for Intelligent Control of Narrative in Interactive
Virtual Worlds”

 4

of textures so they “align to achieve a particular aesthetic goal.”4 For example, bricks

near the corner of a wall appear seamless, so as to give the appearance that the bricks

actually go around the corner. Using this method when texturing supplies added realism

to a 3DE.

Many game engines are available as open source, and while building a game on a pre-

existing engine has its advantages, the flexibility needed for this project warranted the

creation of a custom game engine. Because intimate data from the players and other

objects in the 3DE need to be packaged, sent, and extracted with respect for size, it is

necessary to have a strong understanding of the underlying implementation of the gaming

engine. Also, because this project was also an exercise in modeling a real life three-

dimensional environment, it was necessary to create the engine from scratch. The main

reason for creating a unique engine, however, was the need to have graphics that easily

interface with the networking portion of the project. It is important to have ability to

change the implementation of an aspect of the game without needing to worry about the

effect it would have on the code that I did not write. Because I created the gaming

engine, I know exactly which pieces of information are needed to keep the game running

accurately and realistically on multiple machines.

Further, because this portion of the project is also an exercise in modeling, it is not

realistic to use a preexisting game engine. These engines have their limitation when it

comes to designing a 3DE; the only way to get an accurate model of the target was build

it all myself.

4 Legakis, Dorsey, and Gortler, “Feature-Based Cellular Texturing for Architectural Models”

 5

3 Implementation

3.1 Modeling the Building

As one might expect, creating a 3D model of a large building is difficult. Fortunately,

Ignacio Hall has many attributes that make it a desirable building to use as a model.

First, with the exception of the bottom and top floors, all the floors are the same. This

allowed me to create multiple models of the same floor and stack them on top of each

other to give the appearance of a multi-story building. Second, Ignacio has a great

deal of brickwork, which is an excellent pattern for texturing. Third, because the

environment is inside rather than outside, there is no concern for the difficult task of

mimicking nature. The appearance of sunlight and the horizon are much harder to

create than the appearance of florescent lights and brick walls.

After acquiring a floor plan of the building, a rough estimate of the building’s

dimensions was needed. I determined approximately how close particular objects

were to each other—space between doors, step height of staircases, etc.—and scaled

to a size that would work well in a gaming environment. The scale came out to be

around two game units per real foot. With floor plan and dimensions in hand drawing

the virtual building was possible.

OpenGL allows the programmer to create simple polygons that can be used to form

more complex object. A simple OpenGL command for drawing a square looks like

this:

 6

 glBegin(GL_QUADS);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f, 1.0f, 0.0f);
 glVertex3f(1.0f, 0.0f, 0.0f);
 glEnd();

This code will draw a unit square, with a vertex on the origin, on the x-axis.

The quadrilateral is one type of polygon that OpenGL can draw. The most often used

polygon, however, is the triangle. Even when drawing quadrilaterals, OpenGL

programs will break the quad up into two triangles instead of keeping it as a whole

shape because drawing two triangles is actually faster than drawing one quad. This is

because “most 3D accelerated hardware is highly optimized for the drawing of

triangles. In fact, you will see many 3D benchmarks measure in triangles per

second.”5 To speed up the rendering of the geometric shapes that comprise the

building, the polygons were broken down into a collection of triangles. For the

above-mentioned unit square, the triangle rendering approach would look like this:

 glBegin(GL_TRIANGLES);
 //start of first triangle
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);

glVertex3f(1.0f, 1.0f, 0.0f);

//start of second triangle

 glVertex3f(1.0f, 1.0f, 0.0f);
 glVertex3f(1.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glEnd();

5 Wright and Sweet, OpenGL Super Bible, p. 146.

 7

Counting walls, floors, ceilings, doorframes, and stairs, each floor of the building is

made up of approximately 1300 triangles. When multiple floors are stacked to create

the building, the number of triangles grows quickly. As a result, any time saved by

drawing triangles instead of quads is beneficial.

Using GL_TRIANGLES is only one method used to speed up the drawing of the

3DE. Another technique is culling. Culling is based on the principle that when you

look at a geometric shape, you can see only one side at a time. Therefore, if you can

only see the front, why bother drawing the back? In OpenGL, “both sides of a

polygon are drawn separately.”6 If only one side of the polygon is viewable, it is not

necessary to draw the other side. Culling allows the programmer to specify which

side of a polygon is drawn, while the other side is not rendered. This method is

incredibly helpful when drawing a large number of polygons that are only viewable

from one side. A good subject for culling would be a 3-D wall. The two outside

faces of the wall should be drawn, however, the user never sees the two inside faces

of the wall. Culling out these two faces reduces the number of polygons drawn by

half and results in significant improvement in speed and efficiency when a large

number of polygons are drawn. To use culling, a programmer must first enable it and

then specify in which direction he will list the vertices of his shapes. If he chooses

clockwise—as I did—he will need to list all vertices in a clockwise order. If he lists

them in a counterclockwise order, he will not see the shape unless he looks at it from

the other side.

6 Hawkins, Kevin and Dave Astle, OpenGL Game Programming, p. 106

 8

Yet another method for reducing rendering time is the use of display lists. A display

list allows you to “cache commands if you plan to redraw the same geometry multiple

times.”7 Display lists “provide a means to precompile commonly used sets of

commands, allowing them to be used at a lower cost.”8 Basically, when a display list

is used, the information pertaining to the drawing of a certain object is stored in the

list as preprocessed commands. The next time that the object needs to be drawn, the

necessary commands will be pulled out of the display list instead of being

reprocessed. This works well for objects that never change state because

reprocessing will never be necessary. Because the building is a static collection of

geometric shapes, it is a perfect candidate for a display list. Functions that are

frequently called but never change state should be placed in display lists so that

calculations only take place once, rather than every time that portion of the code

executes. “Display lists are faster than just reexecuting the same OpenGL functions

singly.”9 Also, the results of any mathematical calculations are stored and passed to

OpenGL functions as needed. A significant amount of optimization occurs by using

displaying lists; in fact, in OpenGL, a 20% increase in performance can quickly be

obtained by using display lists, especially when the number of polygons being drawn

is large, as is the case in our 3DE.

Below is the floor plan that I used to model Ignacio Hall.

7 Woo, Neider, and Davis, OpenGL Programming Guide, p.252
8 Hawkins, Kevin and Dave Astle, OpenGL Game Programming, p. 320
9Wright and Sweet, OpenGL Super Bible, p. 334

 9

Figure 0: Ignacio Hall Floor Plan
courtesy of the Boston College Office of Residential Life

I constructed the floor in three distinct sections: the left wing, the center section, and

the right wing. The left wing consists of a hallway, a staircase, and six suites. The

suites themselves are made up of ten identical rooms. The center section is made up

of the hallway, a staircase, two elevators, and two rooms. The three rooms on the left

side of the center section hallway are not accessible in the game. The left wing and

the right wing are identical in the game, except that the right wing is rotated 180° and

translated up and to the right from the left wing. Because they are the same, to create

the right wing, I simply copied the left wing and preformed the appropriate

translations.

 10

Once all the appropriate geometric shapes where assembled, I added textures to give

the 3DE a more realistic appearance. Texture mapping is “the process of applying a

texture image to a surface to produce patterned surfaces such as wood or marble.”10

Texture mapping can be a complicated process. The first step is to decide what size

you want your texture images to be. If the images are too large, the graphics will be

bogged down. If the images are too small, the textures will be of poor quality. I

chose to use 32x32 pixel texture images. These images are then read into an image

array that will be used by OpenGL to texture surfaces. Portable Pixel Maps (ppm)

files are well suited for this because of their format. PPM files are simply text files

that represent colors in RGB triplets. The RGB values are relative to the maximum

color value, which is defined near the beginning of the PPM file. I used an algorithm

from William Ames (Boston College) to transfer the data from the images to the

image array. The algorithm reads in the first triplet of RGB values then divides each

by the maximum color value. This will produce a value between zero and one, which

is how OpenGL represents color. To use the textures, the programmer must first

generate a list of textures so that OpenGL can reference them by index. Each image

array is bound to a spot in the texture list. Once this is done, the textures are ready

for use. To do so, the programmer must first call up the desired texture from the

texture list and bind it to the current drawing target. Once this is done, the

programmer must specify the s and t texture coefficients. The texture coefficients are

repetition ratios—that is, they represent the number of times to repeat a texture

horizontally and vertically over a given surface. The coefficients are represented by

arrays that specify the x, y, and z coefficients for a given direction. Now that the

10 Wright and Sweet, OpenFL Super Bible, p.700

 11

textures are bound and their coefficients are specified, all geometric shapes that are

drawn will be textured by the given image. If the programmer draws a shape on the

xy-plane and then wants to draw another in the yz-plane, he must specify the new

coefficients for the shape. This type of texture mapping is known as automatic

texture generation because the programmer only needs to specify the number of

repetitions he wants and then allows OpenGL to calculate the exact texture

coordinates for each image.

3.2 Creating the First Person Perspective

The first person perspective (FPP) simulates the feeling that the user is viewing the

3DE through his own eyes. The FPP is created using a combination of the

gluPerspective function, the gluLookAt function, and trigonometry.

The gluPerspective function takes four parameters: the field of view angle, aspect

ratio, near clipping plane, and the far clipping plane. The field of view angle is

simply the angle through which the user can see in the y-direction. It defines the

vertical vision of the user. The larger the field of view angle, the more the user can

see above him and below him.

 12

Figure 1: Example of a small field of view angle

Figure 2: Example of a large field of view angle

The aspect ratio determines the field of view in the x direction. It is the ratio of the

width to the height. As the ratio grows, the peripheral vision of the player becomes

smaller because more x values are packed into the horizontal view.

 13

Figure 3: Example of a small aspect ratio Figure 4: Example of a large aspect ratio

The near and far clipping planes specify points where shapes are not drawn. The near

clipping plane is usually specified at a point close to zero while the far clipping plane

can be specified at any point out into the scene. Any point that does not fall between

the two clipping planes is not rendered. This feature can be used to save rendering

time. Points that are far off in the distance, or points that are behind the viewer do not

need to be drawn. By cutting these points out with clipping planes, the programmer

saves processor time.

 Figure 5: The near and far clipping planes

 14

Using the gluLookAt function is a bit more complicated. The gluLookAt function

takes nine parameters; the first three specify the location of the eye; the second three

specify a reference or “look-at” point; the last three specify the “up” vector.

Determining the eye location and the up vector are easy enough. The eye location is

simply the location of the player. The up vector is (0, 1, 0) because in our 3DE

positive y is the up direction. Finding the look-at point requires some trigonometry.

Because our 3DE is truly three dimensional, players can look in look not only side to

side (yaw) but also up and down (pitch).

The yaw is dependant on the sine and cosine of the player’s horizontal angle. In our

3DE, a player with a horizontal angle of 0 is looking down the negative x-axis. To

calculate the look-at point for a player, let us look at some basic trigonometry.

Figure 6: Yaw trigonometry

 15

The hypotenuse (h) of the triangle represents how far away from the player the look-

at point is. The x-coordinate of the look-at point is equal to the adjacent side (a) of

the above triangle. The adjacent side of a triangle is equal to the cosine of the angle,

therefore, x = a = cos(T) x h. The z-coordinate is equal to the opposite side (o) of the

triangle, which is equal to the sine of the angle. Therefore, z = o = sin(T) x h. Using

these two coordinates to change to look-at point, the direction in which the player

looks at horizontally can be changed.

The player’s pitch is dependant upon the tangent of the player’s vertical angle. In our

3DE, a player with a vertical angle of 0 is looking parallel to the xz-plane. Again,

basic trigonometry can be used to determine the new look-at point.

Figure 7: Pitch trigonometry

 16

Because we already have determined the x- and z-coordinates for the look-at point,

the adjacent side of the triangle (a) is equal to sqrt(x2 + z2). The y-coordinate of the

look-at point is equal to the opposite side of the triangle (o). Because the tan(T) =

o/a, we find that y = o = tan(T) x a.

We now have our look-at point. Every time the player is drawn, the look-at point will

be offset from the player’s eye point by (x, y, z) = (cos(T) x h, tan(T) x h, sin(T) x h)

where h is some constant. As the player’s angles change, so will the look-at point

because it is dependent on these angles. This will create the effect that the user is

moving his head around and looking in different directions.

3.3 Modeling Player Movement

Modeling the movement of players involves defining the way in which the players

move through space (physical movement) as well as the way they look while doing so

(animation). The two types of movement must be tied together so that when observed

by other players in the game, each player’s motion is realistic.

The physical movement of the players allows them to navigate through the 3DE.

Each player can perform five motions: movement in the forward direction, movement

in the backward direction, strafe left, strafe right, and squatting. The first four

motions involve a change on the xz-plane while the squatting motion involves a

change in the y-direction.

 17

The forward and backward movement, much like the previously describe calculation

of the look-at point, rely heavily on trigonometry. The change in x is equal to a

constant STEP_SIZE x cos(T) where T = the player’s horizontal direction. The

change in z is equal to STEP_SIZE x sin(T). The player’s y-value is not dependent

on movement in the xz-plane and therefore stays constant here. The only time a

player’s y-value will change due to movement in the xz-plane is when the player

encounters a set of stairs. If a player crosses the face of a step, his y-value is

incremented or decremented an appropriate amount depending on whether they are

traveling up the stairs or down the stairs. Other than this case, a player’s y-value is

not changed due to movement in the xz-plane.

The strafing motion for the players extends from the forward/backwards motion. A

strafe is a sidestep motion perpendicular to the players line of sight which results in

the player maintaining a new line of sight parallel to the original line of sight.

 18

Figure 8: Strafing

Notice that the strafe steps are perpendicular to the player’s line of sight. At position

B, the player’s new line of sight is parallel to the line of sight from position A. The

player truly is “side stepping.”

Here is the algorithm used to strafe the players:

rotate player +90°;
step player forward;
rotate player –90°;

The algorithm to achieve the strafe is fairly simple considering how difficult it would

be to calculate a point STEP_SIZE units to the right or left of the player without

rotating the player at all. This would involve extending the side of the triangle by the

desired amount and recalculating the new point. The rotation method allows for reuse

 19

of code and reduces the complexity of the trigonometry, so I elected to use it to create

the strafe motion.

The squatting motion is a very basic motion that simply lowers the player’s eye level

by a predetermined constant. While squatting, the player observes the 3DE from a

slightly different y-value. The player’s y-value is reset when they come out of the

squatting position.

The animation of the player’s movements is important to make the game realistic for

other players in the game. Each animated motion is comprised of three frames: one

based on the movement of the right leg, one based on the movement of the left leg,

and one with no leg movement. When a user instructs his player to take a step, the

player is drawn using the frame for right leg motion. A flag is then set indicating that

the next time the player steps, the left leg should lead. This alternating of the legs

creates the allusion that the player is stepping forward with one leg then the other.

Originally, I had hoped to have several frames of animation for each step (that is

having frames that rendered the intermediate phases of taking a step), however, while

testing this implementation, I found that the players would finish their actual

movement (that is movement from point a to point b) before the animation was

complete. The reason for this is because a player’s current animation frame is

incremented to the next frame when the player’s draw function is called, which is

called by the display method. However, a change in a player’s location forces display

to be recalled so that the graphics stay in sync with the game state. Therefore, a

 20

player will request a move, recall display and be redrawn in the new spot. The

animation, however, will have just begun and will not be complete until n calls of

display (where n is the number of frames in the animation). This means that the

movement will be done on the first display call, but the animation will continue for

another n-1 calls of the display function. This causes the players’ legs to continue to

move after the body has come to a stop. To obtain synchronization between the

players’ positional movement and the animation of the legs, the intermediate frames

were scrapped in favor of the single-frame, alternating foot implementation. Below is

a frame-by-frame view of the animation for a forward step.

Figure 9: Forward step animation

 21

While the addition of intermediate frames would have made the animation smoother,

the chances of the animation looking choppy once the game engine is distributed is

greater. Because the current frame number of each player must be passed to all the

other players, drawing intermediate frames could be a problem if packets are lost or if

there is a bottleneck in the transfer. Lost packets would result in the intermediate

frames being skipped, which would make the animation choppy. Packet backlog

would result in slow animation during the backup and fast animation once all the

packets were received. Therefore, for simplicity’s sake, the intermediate frames were

cut from the animation.

3.4 Creating Game State

We have an arena in which to play, we have players who can move, but one important

element of any game has yet to be addressed: What is the objective? This game

engine is built to model a laser tag game, so obviously the objective is to navigate the

3DE and score points by “tagging” other players with your laser gun. Clearly, there

must be some kind of game state that keeps track of health, hits, and score.

Each player is given an amount of health when created. As they encounter other

players, they can either shoot those players or be shot by those players. If a player

takes a hit, his health is decremented an appropriate amount. A user can keep track of

his health by looking at the health bar in the upper left hand corner of his screen.

Players can recharge their health by picking up health packs that are distributed

throughout the level. If a player’s health reaches zero, that player is “dead” and

cannot continue playing until he respawns in his team’s base.

 22

The game engine regulates when a laser hits a player. When a player shoots a laser,

the laser travels in a straight path. If at anytime that laser comes within the defined

boundaries of player p, then p has been hit. P’s health will be decremented. In an

effort to minimize network traffic, reduce game screen clutter, and more closely

mimic an actual laser tag game, each player can only fire one laser beam at a time.

While a laser has been fired, a flag is set in the player that indicates that the player

cannot fire again until the recharge time has passed. The recharge time is a counter

that is incremented every time the player’s draw function is called. As a consequence

of this, users with faster machines have an advantage because their counters will

expire more quickly than those using slower machines. This advantage is somewhat

unfair, but is not uncommon in the gaming industry. Those using sub par machines

have to accept the fact that their machines cannot keep up with the higher-powered

computers.

3.5 Edge Detection

In order for the walls in the 3DE to have meaning, they have to impede player

movement. To this end, edge detection must occur. Objects should not be allowed to

base through walls, floors, and ceilings. When a player runs into a wall, the game

engine tries to adjust the player’s trajectory so that the player slides along the wall

rather than getting stuck on it. The adjustment is made by checking where the player

would go if his angle was slightly changed. If that point is inbounds, the player

moves there. If it is not, the engine changes the angle again. If no satisfactory point

 23

is found within three iterations of the algorithm, then the player is not allowed to

move at all. The basic algorithm for edge detection in our 3DE looks like this:

checkpoint(point p){
counter = 0;
if nextPoint is inbounds and

nextPoint does not hit wall and
nextPoint does not hit another player{

allow movement;
return;

}
else{

while counter < 3{
adjust angle;
recalculate nextPoint;
if nextPoint is inbounds and

nextPoint does not hit wall and
nextPoint does not hit another player{

allow movement;
return;

}
else{

increment counter;
}

}
}

disallow movement;
return;

}

There are two types of edge detection that take place in our 3DE. The first, which I

shall call line edge detection, detects movement across a particular line. The second,

which I shall call block edge detection, detects movement into a predefined area of

space.

 24

The line edge detection is used when it is necessary to known which direction the

object is traveling. This is exemplified on the staircases. If there exists a staircase S

such that the edge of a stair s1 is at x = 30 and the edge of another stair s2 is at x = 31,

then it is necessary to adjust the player’s y value as he crosses the line x = 30. But in

which direction should it be adjusted? If the player is coming down from s2 onto s1

then the y-value should be lowered. If the player is moving from s1 to s2 then the y-

value should be increased. The best way to determine which direction the player is

traveling is to compare the player’s current point to the player’s next point. In the

case of S, if the player’s current x-value is less than the player’s next x-value, then the

player is moving up the stairs. The y-value should be increased. If the opposite is

true—that is, the player’s current x-value is greater than the next x-value—then the

player is going down the stairs and the y-value should be decreased. Clearly, in this

case, it is important to know what the player’s direction is.

If the player’s direction is not important then block edge direction is the right course

of action. Block edge detection does not take the player’s direction into account;

rather it concerns itself only with the player’s position. This type of edge detection

should be used on objects such as walls and other players. With block edge detection,

the programmer “blocks” out areas into which players cannot travel. For example, if

a wall occupies the space enclosed by the lines x = 0, x = 10, z = 0, and z = 10, then if

a player ever requests to move into that space, the game engine will not allow it. Line

edge detection can also be used here, but with at least twice the cost. If it were used,

 25

the engine would have to check both sides of the wall instead of just the area inside of

the wall. Clearly, block edge detection is the right course of action when dealing with

walls and objects.

3.6 Making It Distributed

As stated earlier, the goal of this project is to create a realistic three-dimensional

gaming environment suitable for distribution over a multicast network. In a multicast

network, users are not concerned with whom they are communicating; rather they

simply send and receive information to a group. To this end, the player objects must

contain information that is easily packaged and easily extracted from a packet. Other

objects in the game must send information to other users as well. The visibility and

availability of health packs must be relayed to other users; and elevator doors must be

made to open and close in a distributed fashion so everyone in the game can see when

a player interacts with a door.

The distribution of the information itself is beyond the scope of my portion of the

project. Please see work by Frank Mazzacano and Jonathan Pearlin for more

information on the distribution of data. However, my responsibilities did include

creating the objects in an easily distributable way.

Every user has a global PlayerList object that contains pointers to every player in the

game. When the player updates his states (let update in state mean moving, shooting,

etc.) he sends his new information to the multicast group. When a player receives

 26

new information about another player from the group, he updates the Player object in

his PlayerList accordingly. Each client machine is responsible for drawing their own

version of the players in the game; the trick is to make all the versions match each

other.

Likewise, each player has a list of ElevatorDoors and a list of HealthPacks that must

be updated to match the current state of the game. If a player picks up a health pack

or opens a door, he sends the appropriate information to the group. Other members of

the group will then extract this new state information and update their representation

of the world appropriately.

As stated earlier, every client in the multicast group is responsible for interpreting and

drawing the information they have about the state of the game as a whole. If clients

have different state information, they will not display the same game state—for

example, a player may appear at point a on one client machine, but at point b on

another. While the synchronization of distribution is not dealt with in this portion of

the project, it is important to be aware of it. Again, see work by Frank Mazzacano

and Jonathan Pearlin for more information of the distribution of game state

information.

4 Conclusion

On a whole, I would rate this project as a success. Personally, I achieved my goal of

creating a distributable and realistic three-dimensional gaming environment. While our

 27

game is a far cry from the latest state-of-the-art video games, it certainly is a step in the

right direction. In fact, I would say that it is comparable to Goldeneye, release for the

Nintendo 64 gaming system in 1998. That game took several years and hundreds of

programmers to develop; we created ours in under a year.

I consider many parts of my portion of the project to be successful. In particular, I am

rather proud of how well the model of Ignacio Hall turned out. With the exception of a

few small details, the model is an exact replica of the actual building. I credit this to the

realization that indoor scenes are much easier to model than outdoor scenes. After

spending a good deal of time working to create an outdoor city scene for the game

engine, I realized that the switch to an indoor scene would be wise. A city scene poses

too many problems, including modeling sunlight and the horizon. Another advantage of

choosing a building like Ignacio is the amount of repetition found. All the floors are the

same, so once you have created one, you have created an infinite number of them. This

experience has truly shown me the value of reusing code and planning so that code can be

reusing.

I am also impressed with the speed of the graphics. Although I have no numbers on the

actual frame rate of the graphics, the movement seems to be fairly smooth to the human

eye. Somewhat surprising to me is that the graphics are slower when stand-alone than

they are when distributed; although I suspect this is because the program is getting caught

up looking for the networking portion and thus ends up running slower. This, of course,

is not devastating to the cause; after all, the game engine is supposed to be distributed.

 28

The animation of the players turned out better than I thought it would. As shown in

Section 3.3, the players are animated whenever they take a step forward, backward, or to

the side. During the implementation process, I was afraid that cutting out intermediate

frames would result in sub par animation. As it turns out, the opposite was true. The

animation looks much better without the intermediate frames that it did with them. The

removal of these frames also simplified the code and the game state distribution process.

This has instilled in me two thoughts. The first: less truly is more. The second:

animation, especially video game animation, is all smoke and mirrors. My

implementation of the animation does not come anywhere close to showing all the “key”

positions of a leg in motion. It does, however, create the illusion of fluid motion.

Illusion, often times, is just as good—if not better—than reality.

Two aspects of the game engine did not turn out as well as I planned. The

representations of the players are not spectacular and the implementation of the lasers

needs more work.

The players are not works of art. It would have been nice if I could have created players

with realistic faces and features. To do this, I could have had to use some type of mesh

mapping. A mesh is simply a “collection of polygons, along with a normal vector

associated with each vertex of each polygon.”11 Meshes can be used to model complex

surfaces. If the polygons in the mesh are small and the transitions between neighboring

polygons is subtle, the mesh will appear to be quite smooth. A mesh such as this would

11 Hill, F.S., Computer Graphics Using OpenGL, p.290

 29

require a large number of very small polygons. Unfortunately, calculating the vertices

for hundreds of polygons did not fit into our timetable. Given two more months on this

project and I am confident I could have created some great looking players. I have a new

found appreciation for those who model the human body. It truly is the most complicated

structure out there. Anyone who can model it well deserves a lot of credit.

Another aspect of the game engine that fell short of my expectations is the

implementation of the lasers. I tried to add crosshairs to the game engine so that users

can see exactly where they are shooting, however, it proved to be difficult because of the

way the lasers work. Because the lasers are shot from a point that is slightly lower and to

the right of the players eye, it is impossible for the player to actually observe exactly

where the laser is going. The problem is parallax. If the player is close to an object, the

laser will hit lower and right of were the user thinks it should. If the player is far from an

object, the laser may travel over the top of the target. Crosshairs could be added if the

player performed some form of depth testing—that is determined the closest object that

fell within the crosshairs—and then targeted his laser beam at that point. This way, the

laser would always travel exactly where the player wanted it to go. This

reimplementation of the laser beams would require quite a bit of time; again, with a few

more months, I’m sure I could create something more satisfactory.

Again, I believe the project as a whole to be a success. The three dimensional

environment is distributed and players can interact with each other. Although the

 30

appearance of the players themselves is not entirely realistic, their movements look good,

as does the world surrounding them.

I would like to thank Frank Mazzacano and Jonathan Pearlin for their work on this

project. The 3DE would never have become distributed were it not for their networking

knowledge. I would also like to thank all those who helped to test our game. Their time

and input expedited the debugging process. William Ames also must be recognized for

helping me become more familiar with OpenGL, both in and out of class. Finally, I

would like to thank Robert Signorile for his work as our thesis advisor. He gave us the

flexibility to explore but at the same time kept us on schedule. Thank you.

 31

Sources Cited

Hawkins, Kevin, and Dave Astle, OpenGL Game Programming, Prima Publishing, 2001.

Hill, F.S., Computer Graphics Using OpenGL, Prentice Hall, 2001.

Legakis, Justin, Julie Dorsey, and Steven Gortler, “Feature-Based Cellular Texturing for
Architectural Models,” August 2001.

Woo, Mason, Jackie Neider, and Tom Davis, OpenGL Programming Guide, Addison-

Wesley Developers Press, 1997.

Wright, Richard, and Michael Sweet, OpenGL Super Bible, Waite Press Group,1996.

Young, Richard, and Mark Riedl, “Towards an Architecture for Intelligent Control of

Narrativein Interactive Virtual Worlds,” Liquid Narrative Group, North Carolina
State University, January 2003.

 32

	Senior Thesis 2003
	Introduction

