

Boston College
Computer Science Department

Senior Thesis 2002
Michael Tierney

Middleman - Linking Data Sources & Wireless Devices
Prof. Edward Sciore

 1

Introduction

 The combined technological developments of Java and XML have helped create

many advances in portability and customizable presentation of data. HTML, a cousin

technology to XML, played an important role in the creation of, and shortly thereafter,

the commercialization of the Internet. What HTML brought to the PC, XML will bring

to cell phones, handheld computers, and PDA's. HTML allows for the formatting and

presentation of text. XML takes an alternate approach to the handling of data. The

markup tags in XML specify the type of data and characteristics about the data aside

from presentation formatting. “HTML tells how data should look, but XML tells you

what it means.”1 The markup language says nothing about the presentation of the data;

rather, it says what type of data is presented.

Within the document are tags created by the developer and placed around the data

describing the data type. The XML document is then parsed and processed and

formatting is determined by data type. This independence from formatting is one of

XML’s major benefits. Because the documents do not specify explicitly how the data

should appear, different presentations can be used, depending upon the user manipulating

the data. For example, an animated, multicolor presentation with sound effects and voice

narration would be one way of presenting data. This type of presentation would be ideal

for a multimedia platform such as a powerful PC; however, a more limited cell phone

browser, which lacks the capabilities for animation, sound, and even multiple colors,

could not take full advantage of the data in this form. Instead, since XML supplies labels

 2

for the data, a designer could supply a schematic for the display of the data depending

upon the capabilities of the device used to view it.

 Furthermore, the document can contain a multitude of tags depending on the

context of the data being presented. This is because developers can create their own tags

based upon the needs of the application. In standard HTML, one would describe data as

being placed in a specific location, in a certain font, color, and size. In XML, data is

typed and described as FIRST NAME or STREET ADDRESS or STATE, or even

something totally unrelated such as COLOR. The only limits to the possible tag values

are the demands of the application and the imagination of the designer. This flexibility

allows XML to be a great tool for transferring commercial data from databases to end-

users. The querying system can pass both queries and results in XML format; portions of

the query, such as the selection criteria can be labeled as such with XML tags, and the

resulting data can be similarly identified, possibly with attributes such as table and field

names, as needed. XML is extensible, in that it can grow to encompass and

accommodate the data needs of the developer.

 While these two properties of XML seem to present great advantages to a

designer of a front end for database access, what is it about this markup language in

particular that shows promise in place of some proprietary language? It is simply that

XML is just that, a nonproprietary system. Multiple developers all over the world (since

XML supports Unicode) can write applications that parse, process, and understand XML

data. There is no Apple XML, no Sun XML, and (as of yet) no Microsoft version of

XML. It is all one standard, as approved by the World Wide Web Consortium. If an

enterprise uses applications from various software companies, attempting to integrate

 3

interoperable systems can become a nightmare of requisite data transformations. XML

works as a “plain vanilla” or generic type of data, whereby all systems can communicate

with each other. “A set of specifications and standards has been developed for XML

transformations. These provide an intermediary layer that can act independently of

application components to convert data from one format or style to another, leaving

application components to perform business logic,”2 explains McLaughlin in his book

Java and XML. This middle-language allows for one standard in a world of innumerable

data formats. If each format were converted to XML, and that markup document were

used to transmit the data from system to system, each application would only have to

convert to and from XML, not to and from the numerous different possible formats

present in an enterprise’s application pool.

 My research, the development of the Middleman Server System, focused on

combining the portable aspects of XML and Java with the seemingly natural pairing of

XML and database connectivity. Taking advantage of XML’s ability to function as a

middle-language, my project allows for simple cross platform access to multiple database

servers. Using a simplified SQL-like query language, Java’s specialized API’s for

wireless and similar low computation devices, J2ME, and XML processors and parsers

written in Java, the system translates a user’s query, entered on a Java-compatible cell

phone, into XML, and connects to an intermediary server, called a Middleman server.

Middleman then examines the query, processes the commands, and performs a query on

the back-end database. The Middleman server then does some preprocessing on the

result set from the database, converting the results back into an XML format, and

retransmits the resulting XML data to the user. The focus of the research was to develop

 4

the Middleman server, which accepts an XML query from an external client, transforms

the query into the proper format for the target database, queries the database, and

interprets, prunes, and personalizes the results. Also included in my research is the

development of the client program, which establishes a connection between the client cell

phone and my Middleman server and allows the user to interface with the databases

through the server. Ideally, multiple clients could be developed to function on multiple

platforms. Since the only communication between client and server is in standardized

XML formatted messages, the Middleman Server System inherently supports cross-

platform interaction. Using the known capabilities of the client device, the Middleman

server can customize the result data to specifically suit the client.

 By acting as an intermediary between the client and back-end database, my

Middleman Server System decreases wasted bandwidth, decreases database processing,

and allows for personalization and customization. It eases the processing load on both

the database server and client by assuming a preprocessing role on both query and result

transmissions.

 5

Prior Work

 There are currently many other papers and research efforts focusing on linking

databases, data transport, WML, and wireless devices; however, many of these projects

could benefit with the incorporation of XML as a data transport format and the

Middleman Server System. These systems in general do not use XML, and function

fairly well on their own without the technology; however, XML aids in the integration of

these systems with other components by providing a standardized, nonproprietary data

format.

 In their paper “Extending the Data Services of Mobile Computers by External

Data Lockers,” Villate, Pitoura, et al describe a service whereby a user stores data in an

external data store and may access the data through a mobile computer. The system

promises to “provide mechanisms that allow mobile users to use storage space external to

their mobile computers by renting disk space in the intermediary element or the GSN.”3

In effect, this system would be akin to ensuring access to data from any point via any

device. However, in order for this cross-device feature to function, the data would need

to be readable by multiple platforms.

 Were the system proposed by Villate’s group to incorporate XML and act as a

Middleman server as well as an external data locker, then a user could store data on the

server in XML format and access the data, in parts or in whole, from a myriad of devices.

Wireless phones, PDA’s, and personal computers could all access the same data stored in

the same format.

 6

In “SQL Server for Windows CE – A Database Engine for Mobile and Embedded

Platforms,” the authors, two Microsoft employees, describe a separate version of SQL

tailored specifically for the capabilities of mobile devices. This version of SQL is

designed to deal with the storage, battery, and bandwidth restrictions imposed by wireless

technology. I see no reason that multiple platforms would require multiple versions of

SQL Server.

If the base framework for SQL requests and responses were XML

correspondences, then a Middleman server could be used to sit between the client

initiating the query and the SQL database. The server could take the incoming XML

request, transform the query into proper SQL, and then process the results returned from

the database system.

The database administrator institutes filters to ensure that a client receives the

correct content, but does not specify the media used to convey that content. By allowing

the database to ignore the issue of media type and passing that task off to the Middleman

server, both the database and the client device can enforce “the abstractions of data

access that application developers are familiar with.”4 Back-end developers need not

worry about the presentation of their data, and client-side programmers can rely on data

being transmitted in a consistent format. Depending on what platform the client used to

initiate the query, the Middleman server would tailor the response from the SQL database

to match the capabilities of the client device. If a cell phone were used, the Middleman

server would prune out graphical responses and pass on only textual interpretations of the

data, while, if the device were a PC, graphics, audio, text, and animation would all be

returned in the response from the Middleman database.

 7

The client device, no matter what platform is in use, need only be able to send and

receive XML documents – no explicit version of SQL is needed at the client side. The

Middleman server must convert the XML from the client into a proper SQL query that

the database system can process, and then interpret the database’s response. SSCE, the

ActiveX Control specified by Seshandri, “Can be performed over a wide variety of

transports including wired and wireless LANs, wired and wireless modems, serial links,

and infrared ports.”5 The transport ensures independence and the ability to connect to the

database from many different platforms. What SSCE does for the physical layer of

connection, XML does for the data being transferred. With Middleman, XML, and

SSCE, both physical and logical independence are possible. Using XML and the

Middleman server in this way could help eliminate the need for separate versions of SQL

created to fit the needs of multiple platforms.

XML and Middleman could also extend the capabilities of the system described in

Seydim, Dunham, and Kumar’s paper, “Location Dependent Query Processing.” In this

system, the premise is that users would be able to access data relevant to their current

locations using public terminals and wireless devices. The system uses a network of

local servers that handle the information requests.

Because the user in this system is often in motion, the data returned by the query

can be of various types. “MOD (Moving Object Database) queries have been classified

as instantaneous, continuous and persistent query types.”6 That is, depending on the

motion of the user and the item his or her query references, as well as the nature of the

query, the database could return either one simple reply, a continuous stream for an

unknown duration, or a persistent stream for a measured period of time. The Middleman

 8

server is ideally suited to the first type of query response, and can help ensure platform

independence by converting the response of the server into an XML document. The two

remaining query types provide an obstacle to the Middleman system, and the server must

compensate for the continuous streams by dealing with discrete portions of the data,

separating the stream into blocks of data, and converting the data pieces independently.

 While this final condition limits the applicability of the Middleman system in a

real-time continuous environment by forcing a discretization, the Middleman overall

contributes interoperability to the system proposed by Kumar’s group. It adds an

additional layer to the scheme, and thus slows the process to a degree, but it also

simplifies the tasks of both the client and the database. If the client device is a mobile

system, such simplification can improve performance in terms of speed, memory usage,

and battery power, thus making the Middleman server a valuable technology in this

scheme.

Furthermore, Middleman can prune extraneous data and unusable formats, apply

the correct DTD to the returned data, and, given a reference point, the system can query

the correct local server. This last feature alleviates stress on the client device as well as

on the local servers. The client need only pass its current location to the Middleman

server, and the Middleman takes on the task of finding the nearest server offering the

services the client demands. Middleman bears the brunt of the processing in this system

and simplifies the tasks of the remaining components.

Another useful task suited to XML and Middleman is personalizing data for

individual users. Subscribers to a given system could provide information requests

asking for updates and furnish DTD's used in formatting the results according to the

 9

client’s personal tastes. Data could be sent to a user’s system either on demand or based

upon a schedule of updates. “Integrated personalization and filtering are performed at

each terminal,”7 in the paper “Dynamic Personalization and Information Integration in

Multi-Channel Data Dissemination Environments,” by Goto and Kambayashi. In their

paper they stipulate that, “Each passenger has a mobile terminal. There is a software

agent having abilities to integrate and personalize information for the passenger in it.”8

The reasoning behind the author’s decision to handle personalization on the client side is

mainly in an effort to alleviate strain on the servers during high use periods.

The Middleman server system can help to alleviate server strain, simplify the task

of the client device, and personalize data as well. If the reasoning behind the author’s

choice to force the client device to perform the personalization is sound, then the case

where processing time becomes important is during high use periods. However, wireless

bandwidth, which is often a major constraint, would also be taxed during these high

usage periods. Therefore, forcing the client to filter and personalize requires that

extraneous and often simply unusable data be transmitted and then immediately discarded

by the client. This superfluous data transmission would entail very high bandwidth costs

in an environment already depleted of available signals. The Middleman system provides

a compromise that allows the constraint placed upon server processing time, as well as

lessens the bandwidth costs of the system proposed in Goto and Kambayashi’s paper.

First, the central and local servers would not have to waste processing time on

filtering and customizing the information. They can simply pass the raw data and some

basic information about the client device on to a network of Middleman servers. These

servers can then apply the correct filtering depending on the client device. An additional

 10

possibility would be the storage of personalized DTD or Schema documentation on the

Middleman server network that would allow for personalization of the data. After the

data has been filtered and personalized, it can be forwarded on to the client device, thus

reducing the amount of wireless bandwidth used. The mobile device need only append

information regarding its capabilities to the original request, which is forwarded on to the

Middleman system. While the adding of this supplementary information would slightly

increase the bandwidth used in placing the information request, the benefits of

prefiltering response data outweigh the costs imposed. The bandwidth used in sending a

small text document is negligible when compared to that used when sending a color

picture that the client device could not use.

Ozen’s paper “Highly Personalized Information Delivery to Mobile Clients,”

deals with the customization of data on mobile devices. “The degree of personalization,”

he states, “becomes a key issue in such information services due to limited computation

power of mobile devices and overwhelming number of potential of users with unrelated

data.”9 The solution presented by Ozen and his colleagues is to create a system of

profiles defined in XML-QL; each user would create a profile that listed all information

services requested by the user and DTD’s to apply to each service. Thus each user

receives only the information requested in the profile, and that information is

personalized and customized for the client.

The limitation placed upon this system is that the profile processor, which applies

the profiles to incoming information streams, is based solely upon XML-QL, a query

language that processes only XML documents. Ozen defends this limitation, stating that,

 11

“Since the queries will be executed on the documents fetched over the Internet, it is

natural to expect the documents to be in XML, XML being the emerging standard for

data exchange over the Internet.”10 However, with the addition of a Middleman server,

the capabilities of Ozen’s system can be expanded to deal with many more formats.

Middleman processes data in the natural language of the data source, be it HTML, XML,

or any of a variety of database response formats, and then converts that language into

XML for transmission to the client. Middleman could improve the personalization

system of Ozen’s paper by sitting between the XML Repository and the data sources, or

even by replacing the XML Repository and the Profile Processor altogether.

Middleman sits between the Repository and the data, intercepting data requests and

responses and formatting the communications correctly. (See figure 0) Instead of

requiring that all incoming data be in XML formatting, the Middleman server can handle

multiple formats, yet still provide personalized data in a consistent format to the client

device. Since the response to the client is sent in XML and applies a specified DTD, the

client will receive a result containing only the information requested, in useable formats

and media types.

 The smartcard program proposed in “Toward Ubiquitous Database in Mobile

Commerce” could also benefit from the application of XML technology and the

Middleman server system. Again, by reducing the amount of information sent to the

client device through filtering, personalization, and preprocessing, the computational and

Intranet

Databases

Etc.

Middleman
Server

Multiple
Formats Client

Device

Figure 0 XML Query Set + DTD

XML Response

 12

power demands on the smartcard can be greatly reduced. The goal behind Kuramitsu’s

system is to, “Place computers everywhere in the real world environment, providing ways

for them to interconnect, talk, and work together.”11 Kuramitsu proposes a complex

system of queries and objects that is finely tailored to work with the smartcard and

greatly reduces the time needed to transmit the data. However, while this object/query

system is fitted to the smartcard components, it fails to generalize well to other

technologies. Other devices with greater computational power could deal with the

additional overhead of a more universal format, such as XML. If the data is preprocessed

and pruned by the Middleman servers, then the small overhead involved in the XML

format is greatly reduced. While the tradeoff of interoperability versus speed does not

favor XML and Middleman in this limited smartcard system, in more general cases the

use of XML would be more favorable.

 Another system that would benefit from the Middleman technology is described

in the paper “Publish/Subscribe in a Mobile Environment” by Huang and Garcia-Molina.

This article delves into the intricacies of a mobile subscription-based broadcast network

consisting of three major components. “It consists of one or more Event Sources (ES), an

Event Brokering System(EBS), and one or more Event Displayers(ED).”12 The focus of

the paper details the subscription management necessary for multiple mobile EBS servers

to reduce network traffic and ensure delivery of the correct data to the correct customers.

However, the basic system described in the paper could benefit from Middleman and

XML. The EBS server(s) needs to broadcast a given piece of data to multiple

heterogeneous users. These platforms used by these clients could vary from PC to PDA,

and as such, a standardized data format that can be processed by any of a variety of

 13

systems, such as XML, would be ideal. Furthermore, since the data is routed to multiple

platforms, preprocessing and prefiltering, done by the Middleman server system, greatly

reduces wasted bandwidth and allows for further personalization of the data.

 By placing the Middleman between the EBS and the ED, or even by integrating

Middleman function into the EBS network, the Middleman can intercept signals bound

for the ED and reformat the data. By applying either generic platform based or more

specific user based transformations and conversions, the EBS/Middleman combination

can deliver subscribed content to users in a consistent, well formatted, and useful manner.

The EBS by itself forwards the data to the client device in the exact format sent out by

the ES, but since the data is published by various sources, the formats can vary and may

contain a variety of media. Middleman adds to EBS by standardizing the data format and

customizing the media contained in the broadcasts.

 Middleman, in combination with XML, has a great deal to offer the systems

described in these papers. The major advantages my system provides is customization,

standardization, and optimization. Customization allows the client to receive exactly the

data requested and filters out unwanted data. Standardization reduces the programming

and computation needs of the client devices. The only demand placed upon the device is

the ability to process XML. Optimization functions by reducing the wasted bandwidth

consumed by removing and filtering media types that client devices cannot interpret or

display.

 14

System Design

 The basic premise of my system is to use a preprocessing server to intercept

requests from a user device destined for a database and to perform intermediary

processing tasks on both the request and the reply. This is done by first accepting a query

request formatted as an XML document. The request is structured in a specialized

Middleman query. The server then parses the request document to obtain key

information, such as client identification, the requested database file, the operations to be

performed upon that database, and the desired result format. The Middleman server then

matches the client device type, established by examining the identification against a local

XML file containing a device registry. Client capabilities, such as multimedia abilities,

are listed in this registry and associated with the identification tag in the XML query.

This last ingredient helps provide the major benefit of this system; by obtaining specific

attributes pertaining to the computing device, be it a web-enabled cell phone, an internet-

ready PDA, a desktop computer, or a BlackBerry RIM email device, the Middleman

server can prune down the results and tailor the information returned to the device to best

match its abilities.

 15

The above diagram (figure 1) shows the lifespan of a query, generated at the client

device, processed by the Middleman server, and passed on to the database. The result of

the query is passed back through the Middleman, additional processing is done, and the

adapted result is then passed back to the client.

 The Middleman server sits as a layer between the client and the database system.

It waits for an incoming connection until the client sends a connection request. Upon

connection, the client sends a short XML document containing a customized, simplified

version of a SQL query (see figure 2) and additional information. This query is then

processed, and the middleman server generates a new query, based on the language

required by the target database server.

Middleman
Server

Database
Server

Client
Device

XML
Request

Database specific
query language

Database
specific result
language

XML
document

Figure 1

 16

An XML based query, while quite verbose, is unambiguous and very simple to parse.

The middleman server can quickly determine which database system should be queried

and what the structure of the query would be. For example, if the addressbook table

referred to in the above figure resides on a database system which processes SQL queries,

the middleman would convert the query into “SELECT LastName, FirstName,

PhoneNumber FROM addressbook WHERE LastName LIKE = ‘H%’ and transmit that

query on to the database.

 Shortly thereafter the middleman server receives a reply from the database

including the results of the query. This result document then undergoes a transformation

into XML format, and the middleman then takes into account the capabilities of the client

device. If the result set includes media beyond the capabilities of the device, such as

frames, flash animation, graphics, or video, the middleman server attempts to present the

Figure 2 – sample query (XML format)

<QUERY>
<ClientID> Cell1</ClientID>
<TARGETDB> addressbook </TARGETDB>
<FieldList>
 <NumberFields> 3 </NumberFields>
 <Field1> LastName </Field1>
 <Field2> FirstName </Field2>
 <Field3> PhoneNumber </Field3>
</FieldList>
 <SelectConditions>
 <NumberConditions> 1 </NumberConditions>
 <Condition1>

<Condition1Field> LastName </Condition1Suffix>
 <Condition1Equality> StartsWith </Condition1Equality>
 <Condition1Value> “H” </Condition1Value>
 </Condition1>
</SelectConditions>
.
.

</QUERY>

 17

content in an alternate format. To do this, the result set from the backend database must

include multiple formats in the transmission to the Middleman server. From this large set

of results, the Middleman Server System creates a subset that meets the capabilities of the

requesting client. Pictures become words, charts and graphs become lists and statistics,

etc. Personal computers could support such graphical media, and thus if a PC instituted

the query the result would include multimedia content. Other devices, however, cannot.

Finally, once the middleman server has determined that the result set from the original

query contains only media displayable by the client device, the results are converted into

an XML document, and that document is passed back to the client originating the query,

along with any external files, such as sound files, images, or other file types.

 The multitude of platforms this system attempts to accommodate requires many

versions of the client program. A PC client would be quite different from a basic PDA

client, but all the programs serve similar purposes and share key components. The user

input must be collected together into an XML document, and a connection to the

middleman server must be established. Then the device must transmit the query

document, receive the results, and display the result of the query in the appropriate

manner. Since the client is written in Java, the core classes can be reused in various

client versions. The few classes that deal specifically with the device itself can be

altered, but the essential code remains the same.

Database Result
Set

Conflict
Detected

Use
alternate
content
provided
by
database Figure 3

 18

 The following are two sample use cases for the Middleman Server System,

detailing the tasks of the client device, the server, and the backend database.

Use Case I – Initial connection & configuration of back-end database/Middleman

communication.

1) Using a web interface to the Middleman system, a user elects to add a database to

the subscribed database listing.

2) Middleman responds by displaying a data entry screen, prompting the user for the

database name, the field titles, and the address of the database, as well as any

security restrictions necessary.

3) Middleman sends a test query to the database to ensure that all fields entered by

the user exist in the database, and that the database as a whole exists in the

location specified. If this test succeeds, Middleman appends the database on the

local listing of subscribed databases. Middleman does not, at the present time,

make any assumptions as to the data types returned in the various fields from the

database. Middleman knows only the number and names of the fields in the

database and the permissions required for access.

Use Case II – Initial connection & configuration of client/Middleman communication.

1) Client performs an initial connection to the server system, broadcasting a request

for membership with the system. This request includes the type of device (PC,

PDA, Cell Phone, etc) the client is using to connect.

 19

2) Middleman server system receives the request from the client, adds the device to a

listing of subscribed clients, and assigns the client a unique identification code.

This code serves to allow the Middleman Server System a simple method of

identifying the initiator of any queries. Using the identification code the system

can access the database of clients and determine the device type used in initiating

the query, and thus tailor the response to suit the capabilities of the client. The

system responds to the initial request with an XML document containing the

assigned client identification. Using the “CurrentCount” field of the registry, as

shown in figure 4, the server would assign a designation of “JavaCell4” to the

client, and update the registry file accordingly.

3) If the client provided a device identification code not recognized by the system,

the Middleman Server System uses a default category containing a limited ability

list.

<Registry>
<Java_Cell_Phones>
 <CurrentCount>4</CurrentCount>
 <Subscribers>
 <Client>JavaCell1</Client1>
 <Client2>JavaCell2</Client2>
 <Client3>JavaCell3</Client3>
 </Subscribers>
 <AbilityList>
 <MIDISound>True</<MIDISound>
 <WAVSound>False</WAVSound>
 <PNGraphics>True</PNGraphics>
 <BMPGraphics>False</BMPGraphics>
 <AdvancedGraphics>False</AdvancedGraphics>
 …
 </AbilityList>
 …
</Registry>

Figure 4

 20

4) The client device receives the identification code from the Middleman system and

saves the code in a local configuration file. This code will be used in all future

correspondences between the client device and the Middleman.

Use Case III – The client, having already initialized the device with the system, performs

a query on a database through the Middleman Server System.

1) The client then attempts to initiate a query on the database system. A

transmission is sent to the Middleman system, requesting a listing of available

databases and their fields. This is done automatically when the client begins the

query process.

2) The Middleman system receives the request from the client and responds with an

XML document containing the most recent listing of subscribed databases and the

fields of each database.

3) Upon receipt of the database listing from the server, the client parses the XML

document and extracts a listing of the databases. The client program displays a

menu of the available databases.

4) The user selects the target database from the listing provided by the client

program. The client then extracts a listing of the fields belonging to the database

from the XML document provided by the Middleman server. From this list the

user selects fields which the Middleman server will use as a projection to query

the database.

5) After prompting the user for the projection list, the client program displays a

screen whereby the user can add selection conditions to the query. The user can

 21

enter the conditions by selecting fields. The client then prompts the user for the

type of equality (starts with, equals, less than, greater than, etc) and the value.

6) After obtaining the projection and selection conditions, the client program

assembles an XML query, including the conditions, the target database, and the

client identification (obtained in the previous use case) and transmits the query to

the Middleman system.

7) The Middleman server then parses the XML request from the client and extracts

the necessary information. First it identifies the target database from within the

query. Then the system matches the target against a local document which acts as

a mapping from database names to the fields as well as the query language of the

database.

8) Middleman then begins to construct a native language query depending on the

result of the comparison in step 7. It transforms the remainder of the original

XML request into a SQL, XML-QL, or other language type query. It also

validates the fields specified in the query with the local file enumerating the fields

of each database.

9) After constructing the query, the Middleman server transmits the request to the

appropriate backend database and waits for a response.

10) Upon receiving a response from the database, the Middleman server matches the

response to the original query. It then compares the identification field in the

original query to a registry of devices and determines the device type originating

the query.

 22

11) According to the device type specified in the registry, the Middleman server then

prunes the response received from the backend database server. For example, if a

Java cell phone originated the request, the identification specified in the original

query would map to a cell phone in the registry. The Middleman server has a

listing of the capabilities of each type of device, and a default low-capability

setting for devices not matching any entry in the registry. Using the listing for a

cell phone, the Middleman server would know to remove any non-png (Portable

Network Graphic) files, any audio files, and any video files.

12) In the case that a conflict is found between the content presented by the database

and the capabilities of the client device, Middleman elects to either remove the

content, of if possible, present the information in an alternate format. Thus, it is

the responsibility of the backend database to provide a low-tech representation of

high-level data when possible. In this example, it would be the responsibility of

the database to provide images in png format in addition to any more complex

formats used, thus allowing Middleman to select from a variety of data types.

13) Middleman does not have any a priori knowledge of the data types of the database

fields, thus maximizing the plug-and-play ability of the interface. The back-end

database could change completely, and the only update needed on the Middleman

side is a new listing of field names. Middleman must analyze the results as they

are returned and discover the data type itself. By pushing the responsibility for

determining the data type of the result set onto the Middleman server

compatibility issues are reduced and the bulk of the processing load remains

Middleman’s responsibility.

 23

14) The Middleman system then converts the pruned down result set into an XML

document and passes it on to the originating client. Included in the XML

document is a listing of the fields requested and the data type of the returned

fields.

15) The client receives the XML document and parses it, extracting the results and the

data types. Using a DTD, which is provided as a default in the client, but can also

be updated either directly by the user or indirectly through an update from the

Middleman system, the client displays the results for the user. The user can then

elect to either clear the result and initiate a new query or save the results locally.

These use cases represent typical scenarios faced by the Middleman Server System.

The system entails a large number of connections between the client and Middleman

servers, but attempts to minimize the bandwidth used in each transmission. While

this design does force the backend database to transmit more data in a standard reply

in order to meet the demands of the client device, it also allows the database to focus

on data retrieval tasks, and assumes all filtering and post processing tasks. Thus,

despite the additional bandwidth used between the Middleman system and the

backend databases as well as the need for additional connections, my system reduces

the wireless bandwidth used between the Middleman Server System and the client

device and also simplifies the IO tasks of the databases.

 24

Conclusion

 The Middleman server system acts as an interpreting and filtering system

providing customization, standardization, and optimization to a variety of client devices.

The purpose of the system is to allow a multitude of platforms to access data sources

without concern for formatting and media type. The Middleman can also act in concert

with other systems specialized for use with mobile devices. The Middleman system

provides a bridge between these specialized services and the clients. It generalizes the

data and allows XML to truly be the standard in data communication.

 As shown in the table in figure 5 below, the Middleman system effectively

reduces the bandwidth used in response to user queries. Using a series of queries on the

addressbook database requesting fields containing large data types, such as images, I

established a baseline average bandwidth usage over the series. Similarly, by running

fifteen queries through the Middleman Server System and allowing the server to prune

the results, I established a basis for comparison between the original system and

Middleman. By eliminating useless media and extraneous overhead, the Middleman

system cuts down on wasted power, time, and processing. In the example used, the direct

connection had no a priori knowledge of what types of data would be useable by the

client device. Therefore, when the client requested a projection on the photo field, the

database returned all the formats in that field. However, only the png format was useable

by the client device. The bitmap and jpg files sent by the database were discarded as

incompatible. While Middleman entailed more connections and additional overhead, the

actual bandwidth used was greatly reduced, mainly because the server was able to strip

 25

the response of the bmp and jpg files that it knew the client could not use. While the

Middleman system requires a greater number of connections, due to the need to pass

additional database information, the bandwidth saved in the average case was

significantly lower, and contained a great deal less unusable information than direct

database access.

By converting various data types into XML format, filtering the data, and

eliminating extraneous media, the Middleman server links data sources and wireless

devices in a seamless manner. The use of XML as opposed to a proprietary alternative

assures that the data will be accessible by all, easily processed, logically arranged, and

free of irrelevant formatting data. By describing the data by type information instead of

formatting, XML presents a document that is easy to process, convert, and manipulate.

XML and Middleman function to make data of many types and from many sources easily

accessible to users at home, at work, and on the road.

 Number of Connections Bandwidth Used
Direct Connection 2 420,467
Using Middleman 5 89,116

Figure 5

If the standard database connection provided adequate content to meet
all demands of the multiple client types supported by Middleman, the
bandwidth usage greatly increases.

 26

Future Work

At the present time, the majority of Middleman configuration and updating is

done through directly manipulating configuration files on the only implemented server.

Thus, in order to add service, databases, or any other components, direct editing of the

XML configuration files must be performed. Also, the current server is the only machine

in the system, and thus does not provide adequate coverage for a multitude of clients in

numerous locations. Future efforts can expand the system and also simplify and

automate the configuration process.

 Ideally, the Middleman Server I have implemented would be one of many in a

network of servers. These servers would periodically update each other with information

on subscribed client devices, identification codes, and member databases. Therefore,

multiple clients could connect to the servers from many locations, access the servers, and

query databases. By adding servers, and placing them close in terms of network topology

to the backend databases, the system can minimize the amount of high bandwidth usage

in communication between the databases and the Middleman servers.

 Additionally, client programs for other devices need to be implemented, as do

interfaces with more database types. The Middleman server itself needs a web-based

interface for manually adding database server information, new DTD’s, and new

additions to the device capability records. Each user should be able to create a user

profile on the server system, associate all his or her client identifications with that profile,

and create custom DTD’s and standard queries. Then, when connecting using new

devices, these DTD’s can be uploaded to the device. Also, a user’s frequently used

 27

queries can be saved in the profile on the Middleman server, and then quickly accessed

via a separate menu. This listing of queries would improve the speed and simplicity of

usage of the client program and would also reduce the amount of information that would

have to be transferred from the client to the Middleman server to initiate the query.

Instead of a verbose XML query document, the client would only have to pass a reference

to the index number of the stored query, and the Middleman could rapidly implement the

query. Instead of converting an XML query into the native language query of the

appropriate database server, the Middleman server would already have the converted

query stored locally, and would use that cached query on the backend database.

 With the extension of the Middleman Server System in these ways, the system

would be a viable product in the ever-growing attempt to deliver user based

personalization of content, balanced by the need to minimize bandwidth use. Middleman

presents an effective tool for corporations as well as individual users, allowing employees

to access essential data simply and quickly.

 28

Appendix – Limited Source Code Listing

import java.util.Vector;

public interface GenericDatabase
{
 public Res getNextResult();

 private void makeQuery(String targetdb, Vector projects, Vector whereconds)

}

import javax.microedition.lcdui.*;

public interface Controller
{
 public ExternalDB getExternalDB();
 public Displayable currentScreen();
 public void nextScreen(Displayable display);
 public void lastScreen();
}

import java.util.*;

// the immediate results of the query are stored here

public class Datum

{
 private Stack current_ns = null;
 private Vector fieldnames = null;
 private Vector rawinput = null;
 private Vector adjustedinput = null;
 private int number_fields = 0;

 public Datum()
 {
 fieldnames = new Vector(5,5);
 adjustedinput = new Vector(5,5);
 rawinput = new Vector(5,5);
 number_fields = 0;
 }

 public void setNumberFields(int n) {
 number_fields = n;
 }

 public int getNumberFields(int n) {
 return (number_fields);
 }

 public void processData(){

 29

 // this method takes the data stored in the rawinput vector and splits it up into fully defined field
names
 // and "adjusted input" which is a vector of the actual data corresponding by index to the field
names

 boolean go = true;
 Stack hold = new Stack();
 int count = 0;
 current = 0;
 while(go)
 {
 String temp = rawinput.get(count);
 if((temp[0] == '<') && (temp[1] == '/'))
 {
 if(current_ns.empty())
 system.out.println("Stack error! Malformed XML or improper
stack usage resulted in poping an empty stack");
 else
 {
 current_ns.pop();
 current--;
 }
 }
 else if((temp[0] == '<') && (temp[1] != '/'))
 {
 current_ns.push((Object) (temp));
 current++;
 }
 else {
 String builder = new String();
 for(int i = 0; i < current; i++)
 hold.push(current_ns.pop());
 for(int i = 0; i < current; i++)
 {
 String t = ((String)(hold.pop());
 builder.concat(t); // builder now holds the
'namespace' of the value that we have reached
 current_ns.push((Object)(t));
 }
 fieldnames.setElementAt(((Object)(t)), count);
 // now that we have captured the label for the value, we'll grab
the value and put it in the adjustedinput
 adjustedinput.setElementAt(((Object)(temp)), count);
 count++; // onward!
 if(count > rawinput.size())
 go = false;
 }
 if(!current_ns.empty())
 system.out.println("Stack error! Malformed XML or improper stack usage
resulted in a nonempty stack at conclusion.");

 }

 public void addInput(String s){
 // this method takes a string of raw xml input and stores it in the rawinput vector, to be later
processed by the

 30

 // processData method

 rawinput.add((Object) (s));

 }

 public String getField (int n) {
 // this method returns the fully defined name of the indexed field (ie
"<phone_number><home_phone><area_code>"
 String s = new String((String)(fieldnames.get(n)));
 return(s);
 }

 public String getResultVal (int n) {
 String s = new String((String)(adjustedinput.get(n)));
 return(s);
 // this method returns the value of the indexed field (ie "617")
 }

}

import java.util.*;
import java.io.*;
import org.kxml.*;
import org.kxml.kdom.*;
import org.kxml.io.*;
import org.kxml.parser.*;

public class dbInfoLoader{

public dbInfoLoader(){
 currentIndex = 0;
 databaseNames = new Vector(5, 1);
 numberOfDatabases = 0;
 databaseFields = new Vector(5, 1);
 numberOfFields = 0;

}

public dbInfoLoader(String newPath){
 currentIndex = 0;
 databaseNames = new Vector(5, 1);
 numberOfDatabases = 0;
 databaseFields = new Vector(5, 1);
 numberOfFields = 0;
 fileName = newPath;

}

public int getNumberOfDatabases(){

 return numberOfDatabases;
}

 31

public int loadDatabaseList() throws IOException{

 /* xml format
 <dblist>
 <NumberDB>1</NumberDB>
 <DB0Name>AddressBook</DB0Name>
 <numberFields>10</numberFields>
 <fields>
 <field0>FirstName</field0>
 <field1>MiddleInitial</field1>
 <field2>LastName</field2>
 <field3>HomePhone</field3>
 <field4>HomeStreet</field4>
 <field5>HomeCity</field5>
 <field6>HomeState</field6>
 <field7>HomeZip</field7>
 <field8>MobilePhone</field8>
 <field9>Photo</field9>
 </fields>
 </AddressBook>
 </dblist>
 */

 try{
 InputStream is = Connector.openInputStream(fileName);
 InputStreamReader isr= new InputStreamReader(is);

 }
 catch(Exception e){
 return -1;
 }
 XmlParser xp = new XmlParser(isr);
 Document doc = new Document();
 doc.parse(xp);
 Element dbElement = document.getElement("dblist");
 String numDBs = getTextFromElement(dbElement, "NumberDB");
 numberOfDatabases = Integer.parseInt(numDBs);
 for(int i = 0; i < numberOfDatabases; i++)
 {
 String c = new String("DB");
 c = c.concat(temp.toString());
 c = c.concat("Name");
 String temp = getTextFromElement(dbElement, c);
 databaseNames.add((Object)temp);
 }
}

public int getCurrentDatabaseIndex(){

 return currentIndex;
}

public void useDatabase(int index){
 currentIndex = index;
}

 32

public Vector getDatabaseNames(){
 return databaseNames;
}

public Vector getFieldNames(){
 /* xml format
 <dblist>
 <NumberDB>1</NumberDB>
 <DB0Name>AddressBook</DB0Name>
 <numberFields>10</numberFields>
 <fields0>
 <field0>FirstName</field0>
 <field1>MiddleInitial</field1>
 <field2>LastName</field2>
 <field3>HomePhone</field3>
 <field4>HomeStreet</field4>
 <field5>HomeCity</field5>
 <field6>HomeState</field6>
 <field7>HomeZip</field7>
 <field8>MobilePhone</field8>
 <field9>Photo</field9>
 </fields>
 </AddressBook>
 </dblist>
 */
 try{
 InputStream is = Connector.openInputStream(fileName);
 InputStreamReader isr= new InputStreamReader(is);

 }
 catch(Exception e){
 return null;
 }
 XmlParser xp = new XmlParser(isr);
 Document doc = new Document();
 doc.parse(xp);

 String dbIndex = "DB";
 dbIndex.concat(currentIndex.toString());
 dbIndex.concat("Name");
 Element dbElement = doc.getElement(dbIndex);
 /*Element correctDb = dbElement.getElement(dbIndex);
 String numDBs = getTextFromElement(dbElement, "NumberDB");*/
 String numFields = getTextFromElement(dbIndex, "numberFields");
 numberOfFields = Integer.parseInt(numFields);
 Element el = doc.getElement("field"+currentIndex);
 for(int count = 0; count < numberOfFields; count++)
 {
 String fieldN = getTextFromElement(el, "field"+count);
 databaseFields.add((Object)fieldN);
 }
 return(databaseFields);
}

public Vector getFieldNames(int d){

 33

 this.loadDatabase(d);
 return(this.getFieldNames);
}

public int getNumberOfFields(){

 return numberOfFields;
}

protected String fileName = "/midp/thesis/dbinfo.xml";
protected int currentIndex;
protected Vector databaseNames;
protected int numberOfDatabases = 0;
protected Vector databaseFields;
protected int numberOfFields = 0;
}

import javax.microedition.rms.*;
import java.io.DataOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.EOFException;
import java.util.*;

 public class ExternalDB implements RecordFilter, GenericDatabase {

 private RecordStore recordStore = null;
 public static String symbolFilter = null;

 public ExternalDB()
 { // this is only if the database response is cached, which I don't cover
 // so this constructor shouldn't do much of anything
 Res compile = null;
 }

 public Res getNextResult() {

 ByteArrayInputStream bais = new ByteArrayInputStream(candidate);
 DataInputStream inputStream = new DataInputStream(bais);
 String name[MAXFIELDS] = null;
 compile = new Res();

 try {

 Datum dpiece = DataStore.readDatum(inputStream);
 int numfields = dpiece.getNumberFields();
 compile.setNumF(numfields);
 while (int n = 0; n < compile.getNumF(); n++)
 {
 compile.addField(n, dpiece.getField(n));

 34

 compile.addValue(n, dpiece.getResultVal(n));
 }
 }
 catch (EOFException eofe) {
 System.out.println(eofe);
 eofe.printStackTrace();
 }
 catch (IOException eofe) {
 System.out.println(eofe);
 eofe.printStackTrace();
 }
 return (compile);
 }

 private void makeQuery(String targetdb, Vector projects, Vector whereconds)
 {
 // whereconds is a vector that holds an alternating series of matching (field, value) strings
 Querytype q = new Querytype;
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream outputStream = new DataOutputStream(baos);
 String temp1, temp2;
 try {
 q.setTarget(targetdb);
 q.setNumFields(projects.size());
 for(int n = 0; n < projects.size(); n++)
 q.addProjList(String)(projects.elementAt(n));
 q.setNumConditions((whereconds.size() / 2));
 for(int n = 0l n < whereconds.size(); n+=2)
 {
 temp1 = (String)whereconds.elementAt(n);
 temp2 = (String)whereconds.elementAt(n+1);
 q.addCondition(temp1, temp2);
 }
 DataStrore.writeQuery(q-, outputStream);

 }
 catch (IOException ioe) {
 System.out.println(ioe);
 ioe.printStackTrace();
 }

 }

}
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.IOException;
import java.util.*;

public class mm_control extends MIDlet implements Controller
{
 private ExternalDB exdb = null;
 private Display disp = null;

 35

 private Stack screens = null;

 public mm_control()
 {

 screens = new Stack();

 nextScreen(new Introscreen((Controller) this));
 }

 public void startApp()
 {
 }

 public void pauseApp() {}

 public void destroyApp(boolean unconditional) {}

 private Display getDisplay()
 {
 if (disp == null)
 {
 disp = Display.getDisplay(this);
 }

 return disp;
 }

 public ExternalDB getExternalDB()
 {
 return (ExternalDB) exdb;
 }

 public Displayable currentScreen()
 {
 return getDisplay().getCurrent();
 }

 public void nextScreen(Displayable display)
 {
 Displayable cs = getDisplay().getCurrent();

 if (cs != null)
 {
 screens.push(cs);
 }

 getDisplay().setCurrent(display);
 }

 public void lastScreen()
 {
 Displayable display = null;

 if (screens.empty())

 36

 {
 display = (Displayable) screens.pop();
 }
 else
 {
 display = new Introscreen((Controller) this);
 }

 getDisplay().setCurrent(display);
 }

}

import java.util.*;

// this is pretty much a data holding object
// it takes the resulting Datum piece from the query and stores it here so it can be displayed on screen

public class Res

{
 private Vector flds = null;
 private Vector reslts = null;
 private int number_fields = 0;

 public Res()
 {
 flds = new Vector(5,5);
 reslts = new Vector(5,5);
 number_fields = 0;
 }

 public void setNumF(int n) {
 number_fields = n;
 }

 public int getNumF(int n) {
 return (number_fields);
 }

 void addField(int n, String s){
 if(n > number_fields)
 {
 // since this is the loop control, this should NEVER happen, and if it does,
something really
 // strange is going on!
 system.out.println("Woah! somehow the number of the field being set is > total
of fields! see class RES");
 }
 else
 flds.add((Object)(s));
 }

 void setField(int n, String s) {
 if(n < number_fields)
 flds.setElementAt(((String) (s)), n);

 37

 }

 void addValue(int n, String s) {
 if(n > number_fields)
 {
 // since this is the loop control, this should NEVER happen, and if it does,
something really
 // strange is going on!
 system.out.println("Woah! somehow the number of the result being set is > total
of fields! see class RES");
 }
 else
 reslts.add((Object)(s));
 }

 void setValue(int n, String s) {
 if(n < number_fields)
 reslts.setElementAt(((String) (s)), n);
 }

}
public class Resolver

{
 private Vector _dBaseListing = null;
 private Vector _dBaseType = null;
 private int _number_bases = 0;

 public Resolver()
 {
 _dBaseListing = new Vector(5,5);
 _dBaseType = new Vector(5,5);
 _number_bases = 0;
 }

public void setResolverDBs(Vector v1, Vector v2){
 _dBaseListing = v1;
 _dBaseType = v2;
 _number_bases = v2.size();
}

public int getType(String Dname){
 for(int count = 0; count < _number_bases; count++)
 if((String)(v1.get(count)).equals(Dname))
 return v2.get(count);
 return –1;
} // returns the language of the database indicated

 38

Works Cited
1. Goldfarb & Prescod, The XML Handbook Third Edition. Prentice Hall PTR, New

Jersey; 2001. Xlix.
2. McLaughlin, Brett, Java and XML. O’Reilly & Associates, California; 2000. 194.
3. Villate, Pitoura, et al, “Extending the Data Services of Mobile Computers by External

Data Lockers.” Proceedings of the 11th International Workshop on Database and
Expert System Applications. IEEE, 2000.

4. Seshadri and Garret, “SQLServer for Windows CE – A Database Engine for Mobile
and Embedded Platforms.” Proceedings of the 16th International Conference on
Data Engineering. IEEE, 2000

5. Ibid.
6. Seydim, Dunham, and Kumar, “Location Dependent Query Processing.” Proceedings

of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY: 2001

7. Goto and Kambayashi, “Dynamic Personalization and Information Integration in
Multi-Channel Data Dissemination Environments.” Proceedings
of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY: 2001

8. Ibid.
9. Ozen, Kilic, Altinel, and Dogac, “Highly Personalized Information Delivery to

Mobile Clients.” Proceedings of the Second ACM International Workshop on
Data Engineering fore Wireless and Mobile Access. ACM Press, NY: 2001

10. Ibid.
11. Kuramitsu and Sakamura, “Towards Ubiquitous Database in Mobile

Commerce.” Proceedings of the Second ACM International Workshop on Data
Engineering fore Wireless and Mobile Access. ACM Press, NY: 2001

12. Huang and Garcia-Molina, “Publish/Subscribe in a Mobile Environment.”
Proceedings of the Second ACM International Workshop on Data Engineering
fore Wireless and Mobile Access. ACM Press, NY: 2001

 39

Bibliography

Chase, Nicholas, XML and Java from Scratch. Que Publishing, Indianapolis,

Indiana; 2001.

Goldfarb & Prescod, The XML Handbook Third Edition. Prentice Hall PTR, New

Jersey; 2001.

Goto and Kambayashi, “Dynamic Personalization and Information Integration in

Multi-Channel Data Dissemination Environments.” Proceedings
of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY; 2001

Huang and Garcia-Molina, “Publish/Subscribe in a Mobile Environment.”

Proceedings of the Second ACM International Workshop on Data Engineering
fore Wireless and Mobile Access. ACM Press, NY; 2001

Kuramitsu and Sakamura, “Towards Ubiquitous Database in Mobile

Commerce.” Proceedings of the Second ACM International Workshop on Data
Engineering fore Wireless and Mobile Access. ACM Press, NY; 2001

McLaughlin, Brett, Java and XML. O’Reilly & Associates, California; 2000.

Ozen, Kilic, Altinel, and Dogac, “Highly Personalized Information Delivery to

Mobile Clients.” Proceedings of the Second ACM International Workshop on
Data Engineering fore Wireless and Mobile Access. ACM Press, NY; 2001

Quin, Liam, Open Source XML Database Toolkit: Resources and Techniques for

Improved Development. Wiley Computer Publishing, New York; 2000.

St. Laurent and Cerami, Building XML Applications. McGraw-Hill, NY, NY; 1999.

Seshadri and Garret, “SQLServer for Windows CE – A Database Engine for Mobile

and Embedded Platforms.” Proceedings of the 16th International Conference on
Data Engineering. IEEE; 2000

Seydim, Dunham, and Kumar, “Location Dependent Query Processing.” Proceedings

of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY; 2001

Villate, Pitoura, et al, “Extending the Data Services of Mobile Computers by External

Data Lockers.” Proceedings of the 11th International Workshop on Database and
Expert System Applications. IEEE; 2000.

