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Introduction 
 
Since their advent, computers have been used to aid humans in tasks that would 

be too complex or too time consuming to do without them. However, as computers 
became more and more powerful, they also began to show potential usefulness in areas 
that before were completely beyond our ability at all.  People were finding a use for 
computers in all areas of activity, and visual art was no exception.  The idea arose that 
perhaps computers could be used to generate pictures that looked so real, a person would 
not be able to tell that they weren’t real photographs to begin with.  This concept became 
know as “photo-realism.”  Photo-realistic images are those that have been generated by a 
computer by doing mathematical and geometric calculations based on the physics of the 
real world, but are images which are indistinguishable from two-dimensional 
photographs taken of a real life three-dimensional scene.  As computers became more 
powerful, several techniques were developed in attempts to do this.  Raytracing is one of 
those techniques, and is probably one of the most popular 3d image-synthesis techniques 
in use today.  Raytracing is actually a remarkably simple process, providing one has a bit 
of background understanding first.  To understand how raytracing works, and where the 
inspiration for its development came from, one should have an understanding of how 
vision works within the human eye.  

 
1. Human Vision 
 
 Our eyes are actually nothing more than complex “light catchers.”  The internal 
surfaces on the backs of our eyeballs are vast arrays of “rods” and “cones”, organic 
devices that are sensitive to different wavelengths, or energies, of light.  As is probably 
common knowledge now, light has been shown to be a particle that travels at immense 
speeds, always in a strictly straight line, yet oscillating as it goes.  This causes a particle 
to appear to have a wave-like behavior (Fig. 1).  
 

          
 
The varying of the speed of oscillation of a particle enables light to occur in many 
different wavelengths and energies.  It is these different energies of light particles that 
actually make up the different colors that we can perceive with our eyes (Fig. 2).  Our 
eyes perceive an image by having light particles of different colors enter the eye and 
strike the rods and cones on the rear surface.  These rods and cones then send signals 
based on the energies of the particles to the brain to be interpreted as colors, and 
ultimately an image.  Without light we would not be able to see anything.  And not for 



the obvious reason of it simply being too dark to see anything, but because it is these 
particles of light which make the very image our eyes see altogether! 
 The process of image formation within the eye is very simple.  Every scene or 
environment in which we can see has light sources: things that actively emit light 
themselves, or things that “emit” light by reflecting it.  When an object emits light, such 
as a light bulb for example, it is actually emitting billions and billions of individual light 
particles in all directions. These particles of light are generally of all or at least many of 
the possible wavelengths and colors.  They bounce around a scene, such as a room for 
example, with some being absorbed by various objects, and others reflected.  Some of the 
particles manage, through their chance reflections, to have the necessary path to enter the 
eye in a straight line and strike the back (Fig. 3).  Furthermore, different materials absorb 
different wavelengths of light.  It is the wavelengths which a material or object reflect 
which give it its color.  When we see a red wall for example, it is because the materials of 
the wall are absorbing all the colors of light except red.  Because of this, red light is able 
to strike the wall, not be absorbed, and perhaps reflect off of it into our eye. 

 
 
2. The Raytracing Process 
  
 2.1 Forward Raytracing 
 
 It is this process through which the human eye perceives images that raytracing 
tries to mimic.  Based on the way light particles produce images within the human eye, 
the idea behind raytracing is very intuitive.  First, a scene and all the objects within it are 
defined to the raytracing program based on their geometry within a three-dimensional 
coordinate space.  Everything in this world can be described in geometric terms.  For 
example, a ball is really just a three-dimensional sphere, for which we know a geometric 
equation.  Now, this is of course a simplified example for the sake of this explanation.  In 
reality a ball probably isn’t a perfect sphere.  It may have deformities or irregularities in 
its surface.  However, in this way everything (practically) can be defined in terms of a 
collection of geometric primitives, such as spheres, cubes, cylinders, planes, or other 
shapes defined by higher order geometric equations.  Once these objects are defined 
geometrically, their surface or material properties are defined.  These properties would 
include things like color, how shiny they are or how well they reflect light.  Next, light 
sources are defined according to their location in three-dimensional space, along with 



their color and intensity.  Finally an “eye-point” and direction are defined.  This is the 
location from which the image will be generated.  Finally, the raytracing algorithm is 
applied to the scene.  Light rays are simulated leaving the active light sources (those 
which actively emit light), bouncing off the objects in the scene based on the surface 
normal of the objects at the points of contact, having their colors altered depending on 
what objects they come in contact with.  Determining the color of light rays that 
eventually come in contact with the eye-point forms an image (Fig. 4). 

 
This process is more accurately called forward raytracing, as it models how light 

rays actually leave their source and travel forward in their journey until they either reach 
the eye-point or it is determined they never will.  In theory this is an algorithm which 
more or less perfectly models real life, and therefore should generate a photo-realistic 
image.  However, in practice, this type of algorithm is never implemented.  Because of 
the nature of light, it would take the simulation of potentially billions of rays, each one 
involving numerous calculations to determine which objects it came in contact with or 
intersected along the way, before finding all the rays which actually enter the eye-point 
and form an image.  Using this algorithm would take huge amounts of time to actually 
generate an image, because it involves doing the extra calculations for a vast majority of 
rays that end up being useless anyway.  However, by making a slight alteration to the 
forward raytracing process, we get a much more practical and usable algorithm. 
 
 2.2 Backward Raytracing 
 
 By modifying the forward raytracing algorithm and simulating only the rays that 
we are sure will actually enter the eye-point and be relevant to the formation of an image, 
we can greatly reduce the number of unnecessary calculations.  Therefore we will have a 
much faster algorithm; one that can actually be effectively implemented.  However, to do 
this we must abandon the notion of tracing light rays from their source to their origi n, as 
we have no idea which of the infinite number of rays are actually the ones that make it to 
the eye point.  Instead we must trace light rays from the eye point into the scene, and 
determine which objects they intersect to determine what colors they will be.  This 
process is appropriately called backward raytracing, as it involves simulating rays 
backward from their final destination to their source. 
 



3. Implementation 
 
 Now that I have explained what backwards raytracing is, it is now appropriate to 
discuss my particular implementation of a backward raytracer.  This will also serve to 
better explain how the raytracing process is actually achieved.  I have chosen to 
implement my raytracer in the C++ language, as C is a very efficient procedural 
language.  Although a language such as Java would have offered a much easier means of 
opening windows and plotting pixels, as well as of doing network socket operations, the 
additional overhead that Java brings is unacceptable, considering how time consuming 
the raytracing process already is.  I chose instead to utilize the OpenGL libraries available 
to Linux for opening windows and plotting pixels, as OpenGL provides a relatively 
simple way to do this.  Furthermore, C++ has the ability to incorporate an object-oriented 
structure, which was very desirable.  Using an object-oriented approach, I was able to 
easily construct a hierarchical object structure for the objects that my raytracer is able to 
trace.  These individual classes, one for each object, contain all the specific information 
about the object, such as location, size, as well as physical properties such as color, 
transparency, etc.   These classes also include the object specific methods for determining 
the intersection between an object of its type and a line.   
 In addition, I chose to implement my raytracer on a Linux platform, because the 
network and socket programming that was necessary for the distributed aspect of my 
program is much more straightforward that on a Windows platform.  However, the 
distributed aspect of this project will be discussed further on in this paper. 
 
 3.1 Ray Construction 
  
 Because backward raytracing is essentially the process of determining the 
intersection points of light rays and objects within the scene, an appropriate 
representation of these components is needed.  For the light rays, this can be achieved by 
representing them as lines.  This way we can geometrically solve for the intersections that 
each of these lines has with the objects in the scene, which are also represented by 
geometric equations.  This will determine which objects the light ray, which this line 
represents, would have reflected off of.   

It is a well-known fact in geometry that any two points make up a line.  Therefore, 
given two correct points for each,  we can define the lines that make up the light rays we 
wish to simulate, or “trace”.  Once we have these lines we can solve for their actual 
intersections.  But again, so far this is still just a reiteration of the raytracing process in 
general.  We still need a way to determine which rays are the ones that we know are 
going to affect the image.  We can do this by observing the way an image is formed on a 
screen.  An image is actually a two-dimensional array of pixels.  A pixel is the smallest 
component of color a screen is able to display.  It is a single “dot” of color on a computer 
screen.  We know that the color of each pixel the image we want to create is going to be 
determined by the ray that must pass through both it and the eye point.  This means that 
the pixel represents a point on the actual light ray line.  Using the eye point as one, and 
the pixel point within the image as a second, we can construct all the lines that we know 
will create the image by tracing one ray per pixel (Fig. 5).   



 
 

 
Any point within a three-dimensional coordinate system can be described by three 
components: the ‘x’, ‘y’, and ‘z’ components of its location.  If a user were to sit in front 
of the screen, the x and y components would represent the horizontal and vertical 
component of a point, respectively, while the z component measures how far “in” or 
“out” of the screen the point is.  The screen represents a ‘z’ of zero, with negative values 
increasing “into” the screen.  By placing the eye point essentially “outside” of the screen, 
we are able to use it as one point to define each ray.  I created a data structure comprised 
of three floats, called a “point3d”, to represent a point in the coordinate system.  A “ray” 
is another data structure made up of two point3d variables.     
 

3.2 Object Construction 
 
 Information about objects within the scene is stored within C++ classes for these 
objects.  Characteristics such as location, orientation, and surface properties are stored in 
variables within the object itself.  This way the object “knows” all it needs to know about 
itself within the 3d world.  Also present within the object are all the methods necessary to 
compute intersections.  The main raytracing engine can therefore pass to the object the 
two points that make up a ray, and the object determines whether or not the ray intersects 
it.  This was a design decision I made because solving for the intersection between a ray 
and different types of objects is different for each object. This way the raytracing engine 
needs only to iterate through rays, polling the objects in the scene for intersections, and 
needs to know nothing of how to solve for intersections with different objects.  The 
objects handle that work themselves. 
   

3.3 Finding the Intersection (and The Depth Problem) 
  
 The problem with simply polling the objects for their intersections is that a ray 
may intersect multiple objects.  For example, if there is one object positioned behind 
another, it is possible that a ray fired at the first object will intersect the second as well.  
Because we are just doing geometric calculations, there is no mechanism for “stopping” a 
ray once it has its primary intersection with an object.  Therefore, every time more that 



one intersection is calculated for a ray, it would need to be determined which intersection 
is “first” or closer to the eye.  The algorithm would need to do this to ensure that the 
proper object’s surface information is used to color a pixel, and not the surface 
information of the object that should actually be covered or obscured by another. 

We can solve this problem using parametric equations.  Given some ray 
comprised of two points, p0 and p1, each having an x, y, and z component, we can 
generate any point further along the ray by using the following equations: 

 
Xi = Xp0 + t(Xp1 – Xp0) 
Yi = Yp0 + t(Yp1 – Yp0) 
Zi = Zp0 + t(Zp1 – Zp0) 

 
In other words, there is some coefficient t, such that when inserted into each of these 
equations, generates the three components of intersection point on the surface of the 
object.  For example, take the equation of a sphere:  

 
(X-a)2 + (Y-b)2 + (Z-c)2 = r2 

 
This equation defines all the points on the surface of a sphere centered at (a, b, c) with a 
radius of r.  If we simply assume that there is an intersection between a ray and this 
object, we can solve for “when” (or for what t) this intersection occurs along the ray line.  
By simply plugging the equations for Xi, Yi, and Zi in for the X, Y, and Z, of the sphere 
equation, we can solve for t.  If we therefore do this for all the objects in the scene using 
the same ray, and have the objects return their t values instead of their actual intersection 
point (which means nothing to the raytracing engine anyway), we can simultaneously 
calculate what objects intersect the ray, as well as which object does it first.  The object 
that returns the smallest positive t clearly has an intersection with the ray earlier along its 
path from the eye, and is therefore the intersecting object that is most “in front.”   This 
object can then be polled for its color at that point on its surface, and the pixel can be 
colored. 
 

3.4 The Algorithm 
 
 My raytracing engine goes through the following simple algorithm to generate an 
image.  This assumes the scene has already been constructed and passed to the raytracing 
engine through the appropriate methods.  This process of actually constructing the scene 
will be covered later in this paper.  The algorithm follows: 

  Fir st  point  of  all r ays is always t he eye point  
   - For each y pixel value in the image 
        - For each x pixel value in the image 
         - Set the second point of ray to (x, y, 0) 
         - Fire ray at scene by passing ray to each object 
         - Collect t values from all objects 
         - Compare which object returned the smallest positive t 
         - Poll this object for its color at the intersection point 



         - Set that pixel to the returned color 
 
All complex calculations are performed within the objects themselves.  The main 
raytracing loop needs only to poll all the objects for their t values, and then request the 
intersection point color from the appropriate object.  Objects with no valid intersection 
with the ray simply return a negative one for t.  In the process of solving for t, each object 
can also determine the actual point of intersection on its surface.  Once it has solved for t, 
an object can immediately solve for the intersection by putting the ray points and t into 
the original parametric equations for Xi, Yi, and Zi.  This intersection can then be stored 
in the object itself in case the object is later polled for its color at this point. 
 
 3.5 Determining Color Values 
 

To determine the color of an object at a certain point, my raytracer implements a 
simple Lambertian Shading model.  Within the Lambertian model, as with most shading 
models, the point of an object that is going to be most brightly lit is the point on the 
surface of the object where the perpendicular surface normal of the object at that point 
happens to be aimed directly at the light source illuminating the object.  Colors get 
proportionally dimmer as the distance from this point.  An example of this is the bright 
highlight on a balloon that is held next to a light.  The bright spot always occurs on the 
balloon in the spot where, if we were able to draw a line perpendicular to the surface of 
the balloon, the line would point directly to the light bulb.  Points on the surface of an 
object are lit at an intensity which is inversely related to the magnitude of the angle 
between a vector pointing at the light, and the surface normal vector of the object at that 
point (Fig. 6).  As this angle increases, the object has a lesser degree of illumination by 
the light source.   

 
 
 
The intensity of a pixel’s color using this shading model can be defined as: 
 

I = Cp * cos θ 
 
Where Cp is the red, green, or blue component of the original object color (perhaps 
specified by a texture map), and θ is the angle between the vector pointing towards the 
light, and the surface normal.  Therefore, to calculate the color of an object at an 



intersection point, all that is needed is the surface normal at that point, a vector pointing 
to the light source from that point, and the object’s original color.  Cos θ can be easily 
computed by taking the dot product of the two vectors after normalization.   An example 
of this calculation is below: 
 
 Normalize both vectors:  VL = sqrt(LVx

2 + LVy
2 + LVz

2 ) 
      LVnorm = (LVx/|VL|, LVy/|VL|, LVz/|VL|,) 
 

VSN = sqrt(SNx
2 + SNy

2 + SNz
2 ) 

      SNnorm = (SNx/|VL|, SNy/|VL|, SNz/|VL|,) 
 
 Compute the Dot Product:   (LVx*SNx) + (LVy*SNy) + (LVz*SNz) 
       (VL*VSN)       (VL*VSN)       (VL*VSN) 
      = Cos θ 
 
 Apply to original color:  CR = CR * Cos θ 
      CG = CG * Cos θ 
      CB = CB * Cos θ 
  
This method accurately shades an object based on its location relative to a light source.  
And example image of Lambertian shading is included in Appendix B of this paper. 
 
 3.6 Reflectivity 
 
 Lambertian shading is only an effective coloring method providing an object has 
nothing more than a simple color.  However, what if an object is to be slightly mirrored?  
In other words, what if it reflects the light around it?   This scenario is also handled 
accurately through a few more simple calculations.  If a ray intersects a mirrored object, 
the color of that point on the object must be determined by calculating what that ray 
would intersect with after it “bounces off” that first object into a second. 
 When an object is polled for its color and it is mirrored, instead of simply 
returning its own color, it assembles a new ray along the properly reflected vector of the 
original ray, and fires this new ray at the scene to see what it hits.  This new color is then 
factored in to the original object’s color proportionally to the amount of mirroring.  This 
new modified color is then returned as the pixel color (Fig. 7). 
  

 



 
 
The computation for a reflected vector, much like that of Lambertian shading, is 
dependant only on the incoming ray (vector), and the surface normal vector of the object 
at the intersection point.  The angle of the incoming vector relative to the surface normal 
of the object at that point is the same as that angle that the reflected vector will make with 
the surface normal at the same point (Fig. 8).  

 
  
A reflected vector can be computed using the formula: 
  

VREF = 2 * (VINC • VSN) * VSN – VINC 
 
The operation within the parenthesis is the dot product operation, just like in the 
computation for Lambertian Illumination.  I will not go through an example of this 
computation within this paper, as it is a bit time consuming.  It is sufficient to know 
however, that this calculation generates a reflected vector that can be used to generate the 
reflected ray of a mirrored object. 
 
4. Additional Implementation Information 
 
 4.1 Matrix Transformations 
 
 One of the problems that I encountered when initially designing my 
implementation was the deriving of the equations that actually solve for the intersection 
between the objects and a line.  This was often a very tedious and difficult task.  For 
example, deriving the equation to solve for the parametric coefficient “t”, in an 
intersection between a line and a sphere is relatively simple, albeit a little long.  This is 
because the equation for a sphere already has built into it the ability to easily define an 
arbitrary sphere (one centered at an arbitrary location), and not just one centered at the 
origin of the coordinate system, or a unit sphere.  The problem is that for other objects, in 
particular infinite objects, such as planes, the equations define a set of points in such a 
manner that deriving the intersection equation for an arbitrarily oriented plane was 
extremely complex.  To do this for even more complex objects, such as a torus (a donut 
shape), while incorporating to ability to have arbitrary definitions was next to impossible, 



even with the help of software such as Mathematica.  Of course these derivations are not 
literally impossible, but they were beyond my means.  
 Once I became aware of this problem, I decided to make a design decision that 
would handle all of these problems.  I decided to implement all transformations of objects 
such as location, rotation, and scale (size), by way of matrices.  By doing so, I would only 
need to derive the intersection equations for unit objects, or those centered at the origin, 
having no arbitrary rotation or scaling.  The process is quite simple.  By putting any point 
in a 4x1 matrix, and multiplying it with certain matrices for each of the transformation 
operations, you get the corresponding point with all the proper transformations applied.  
For example, if I have the point (0,1,0), and want to know what point results if I rotate it 
around the x-axis 90 degrees, I can simply multiply this point by the matrix for x-axis 
rotation, and get the resulting point (0,0,1) (Fig. 9).  
 

 
There are corresponding matrices for each of the possible transformations (which I have 
listed in an appendix at the end of this paper): Rotation, translation or relocation, and 
scaling, all three of which can be applied to each of the three axes independently.  
Furthermore, by multiplying all the desired transformation matrices together in the 
reverse order from which you would like them applied, the resulting matrix is a 
Composite Matrix with which all the transformations can be applied to a point at once.  
Even further, an Inverse Composite Matrix can be computed which exactly reverses the 
transformation s of the Composite Matrix.  With these two matrices, all the problems of 
deriving complex equations to be used for finding intersections are no longer relevant.   
 When a user defines an arbitrary object, they now only need to describe the object 
in terms of the transformations they wish to have applied to it.  A sphere of radius of 5, 
located at (10,20,30) is the same thing as a unit sphere of radius 1 centered at the origin 
with the correct scale and translation then applied to it.  With this tool, I no longer needed 
to do complex derivations of equations.   

Now, before raytracing beings, the Composite and Inverse Composite Matrices 
need to be computed for each object in the scene.  The raytracing algorithm then changes 
in the following way: 
 
 - When an object is polled for its intersection, it applies its Inverse Composite 

    Matrix to the incoming ray, in order to make it relative to a non-transformed, 
    more simple, unit-version of the object.  Because the Inverse Composite Matrix  
    applies the exact opposite of the transformations that the user wanted applied to  
    the object, this is the same as firing the original ray at transformed object. 

 -  Then it solves for the intersection of this transformed ray with a unit version of  
                 an object of its type (these equations are much simpler). 
 -  The resulting intersection point is the transformed back to its actual location  



                 using the Composite Matrix of the object. 
 
This process produces the same resulting intersections as would be computed using the 
original ray and the much more complicated equations derived for arbitrary versions of 
every object.  By using this process of matrix transformations, I eliminated the need for 
doing these derivations.  Matrices also allow for an easy means to stretch, rotate, and 
move objects in creative ways. 
 
 4.2 Anti-Aliasing 
 
 One of the problems with raytracing is the fact that the pixels of a computer are a 
finite size, and can only be set to one color.  Because pixels are the smallest unit of color 
on a screen, it is impossible to set one half of a pixel to one color, and the second half to 
another.  This causes problems because situations can arise (and usually do), in which if 
we could “zoom in” on a scene, we would notice places in the image where the edge of 
an object really only should cover part of a pixel.  This usually occurs because pixels are 
often represented as a square.  Therefore, trying to represent curved edges in particular 
usually results in an edge that looks “jagged.”  In Figures 10 and 11, we see how trying to 
represent a true circle with square pixels is impossible.  Figure 10 represents the circle we 
would like to draw on the screen, but Figure 11 shows the “circle”  we have to settle with 
due to the nature of pixels:   
   

          
 

In this case it would be ideal to be able to color only part of certain pixels black, and the 
rest white.  This negative side affect of the shape of pixels is called aliasing. 
 There are techniques to correct this problem, however.  These techniques are 
appropriately called anti-aliasing techniques.  My program implements a simple form of 
anti-aliasing, which can be turned on or off.  When anti-aliasing is enable, the raytracer 
fires not just one ray per pixel, but several (Fig. 12).  Each ray is offset slightly to various 
locations all within in the same pixel.  This way, if a pixel should ideally be partially 
colored by more than one color, some of these rays are going to return these different 
colors.  The pixel is then actually set to a color that is an average of all the colors that are 
returned by the anti-aliasing rays (Fig. 13).  This sometimes produces a blurring affect 
along the edges of objects, but works very well to eliminate “the jaggies.” 



 

 

 
 

When viewing this circle at its normal size, and not enlarged to the pixel level as it is 
above for the sake of explanation, it would appear as a much more accurate circle.  It 
should also be noted that while anti-aliasing makes an image look more realistic and 
servers to smooth edges, it obviously takes much longer.  In the case of my 
implementation, there are five times as many rays fired, and so five times the number of 
calculations to perform per pixel.  I have included other examples of anti-aliasing that has 
been applied to actual images generated by my raytracer in Appendix B of this paper. 
 
 4.3 Shadows 
  
 Another, very simple to implement component of raytracing is shadowing.  To 
make an image more realistic, objects that are between a light source and other objects 
should cast shadows on objects behind it.  This can be implemented very easily by using 
“shadow rays.”   When an object is found to intersect a ray fired from the camera, and to 
be the object that is most “in front” and so is polled for its color information, it computes 
its own color at that point, then fires a shadow ray.  A shadow ray is simply a ray shot 
from an intersection point on an object, directly at the light source.  If any valid 
intersections are detect which are not “beyond” the light source, then there is clearly a 
second object between the light source and the first object.  The original object then 
darkens its color by a preset amount to signify being in shadow, before returning this 
color to the raytracer.  Shadowing is one of the easiest features of raytracing to 
implement. 
 
 4.4 Texture Mapping 



 The vast majority of objects in this world are not made up of just a single color.  
Most are comprised of multiple colors or hues.  Because of this, it would be nice if there 
were a practical way applying or “painting” a custom face or “skin” onto an object.  Well 
in fact, this is a very simple thing to do in raytracing.  The process through which this is 
done is called texture-mapping.  When defining an object within a scene file, the 
“texture” attribute can be included, along with the name of a supported image file.  Upon 
parsing of the input file and the creation of the scene within the raytracer, this picture file 
can be opened and read into a buffer within the object class.  Additionally, the object 
classes need to be modified to include methods that determine an appropriate “longitude” 
and “latitude” of an intersection point on the object, relative to the entire object.  This 
way, when a ray intersects an object and that object is polled for its color, instead of just 
returning a simple color, the object first determines the longitude and latitude of the 
intersection point, and maps this to a location in the texture image.  The color of the pixel 
in the texture image at the mapped location is the color that is returned by the object.  
This process serves to “wrap”  the image around the object, much like the peel of an 
orange.   
 My initial raytracing program supported texture mapping using image files of the 
PPM format, a simple bitmap format.  The current implementation of my distributed 
raytracer, however, does not support texture mapping.  This is because the client would 
need to send to a server not just the source file, but also any files that were needed as 
textures.  This way a server would have these needed files when they parsed and built a 
scene for themselves.  Currently, I have not implemented a mechanism within the client 
to parse a source file prior to sending it, in order to determine additional files that would 
be needed and to send them as well. 
 

4.5 Scene Construction and File Format: The Parser 
 
 One topic that I have not yet discussed is that of how a scene is actually inputted 
or defined to the raytracer.  For this task I had to develop a parsing module for the 
raytracer, as well as a file format in which a user could describe a scene properly and give 
it to the raytracer.   
 The “.ray” format that I decided upon is a very simple text markup language 
consisting of “tags”  which are flags to the parser, such as [OBJECT] and [GLOBAL], 
and a series of keywords used to set attributes of an object to a particular value.  For 
example, to create a red sphere centered at (10, -10, 10), with a radius of 5.25, the user 
would put in their source file the following lines of text: 
 

[OBJECT] 
type=sphere 

     radius=5.25 
     color1=<1.0, 0, 1.0> 
     translate=<10, -10, 10> 
     [/OBJECT] 
 
Colors are specified by a 3-tuple of their red, green, and blue components.  Attributes 
other than the ones seen above are available, such as “mirror”, “reflection”, and “color2”, 



which causes an interesting checkerboard affect on the object.  Objects can be scaled, 
rotated, and moved through the use of the “scale”, “rotate”, and “transl ate” keywords.  
These keywords essentially tell the parser to set the object’s transformation matrices to 
the desired value.  A user also has the ability to set certain global scene parameters, such 
as the ambient lighting value of the scene, the shadowing factor, or to enable or disable 
anti-aliasing.  These attributes must be defined between the [GLOBALS] and 
[/GLOBALS] tags at the beginning of the file. 
 A scene file is passed to the raytracer as a command-line argument.  The parsing 
module then parses the file line by line.  Object classes are instantiated, and have their 
attributes set as they are encountered within the file.  They are organized within the 
raytracer as a linked list, which allows an easy, efficient way to query all objects within 
the scene, as well as allowing for the number of objects within a scene to be dynamic.  
Resources need not be pre-allocated to accept a certain maximum number of objects, a 
number that might not be reached with every scene. 
 An example of an entire scene file is included in Appendix A of this paper.  
  
 
5. Distributed Raytracing 
 

It is finally appropriate to discuss the second portion of this project.  The idea of 
distributed raytracing is not a complicated one, and so very little time is actually needed 
to explain it.  However, it is extremely effective in increasing the performance of the 
raytracing algorithm, and so is an important adaptation to standard raytracing.   

Although the calculations done to determine the color of each pixel are the same 
(of the same form of course, variables do differ), they are all completely independent of 
each other.  Because of the nature of the raytracing processes, a ray shot through a pixel 
into a scene never has any influence on other rays shot through other pixels, nor is it 
dependant on others.  Therefore, determining the color of one pixel is totally unrelated to 
determining the color of another. This means that a raytracer could begin doing the 
calculations for a second pixel, before it is even done with a first.  This fact allows the 
raytracing algorithm to lend itself extremely well to being distributed over multiple 
computers, all doing the calculations for different portions of the same image.   

 
5.1 Implementation 
 
In order to incorporate distributed processing into my raytracer, the structure of 

the program had to change.  My raytracer in actuality had to become two separate 
programs.  What was at first a stand-alone raytracing application became a collection of a 
main client program, responsible for breaking up the work and distributing it, and one or 
more “number-crunching” servers.  It is the server components that actually implement 
the raytracing algorithm.  The client component simply distributes the work of one image 
evenly throughout available servers, and displays the resulting image generated by the 
servers.  The process works as follows: 

 



1) The client program is started with command line arguments of the scene file 
that is to be traced, as well as an arbitrary number of servers to distribute the 
work among. 

2) The server addresses are checked to make sure they are valid. 
3) For each server, a portion of the client program is threaded off for each server 

to handle communication between it and the server. 
4) Each thread then connects to a server, and once a valid connection is made to 

the waiting server, the scene file and a range of pixels to trace is sent. 
5) The server then parses the file and builds its own copy of the scene.  It then 

raytraces the range of pixels that was allocated to it, storing the resulting pixel 
locations and color values in a buffer. 

6) Once a server has finished all its calculations, it sends the contents of its 
buffer back to the waiting client thread. 

7) Upon receiving pixel information from the server, the client thread transfers 
this information into a global image buffer, and terminates. 

8) Once all threads have completed their communication with their respective 
servers, and all pixel data has been received, the main client thread opens a 
window and displays the completed image. 

 
The main client program basically becomes one that only has the capabilities of network 
communication and the ability to open a window and plot pixels via OpenGL.  Likewise, 
the server programs have all the necessary capabilities to raytrace a scene, but no ability 
to display it, as this would not be necessary. 
 Distributed raytracing is obviously very effective because it significantly reduces 
the amount of time it takes to render a single image.  This is because the work for an 
image is not being done by a single computer, but is broken up among many computers 
all doing work concurrently.  It is a very simply process, but one that is very effective. 
 
6. Improvements 
 
 It is of course appropriate for me to mention a few aspects of this project that I 
wish I had been able to do differently, or to do at all.  As it stands, my program only 
supports the raytracing of spheres and planes.  If there had been more time available, I 
would have liked to incorporate more objects, such as the torus, cylinder, cone and cube, 
to at least support all the geometric primitives.  The derivations of intersection equations 
for these objects even in their unit forms, were things I did not have time to do.  
 I also would have liked to implement the idea of allowing an arbitrary camera 
point into the program.  As the program stands now, the eye point is fixed and cannot be 
moved or specified.  Because of this a scene must be defined within view or there is 
really no point to the raytracing.  I believe this process would not have involved much 
more that a series of matrix transformations on the camera, but was one that I could not 
spend time on developing. 
 Finally, I would have liked to be able to incorporate the use of multiple light 
sources.  It is very rare that a scene looks good while using a single point light source, 
and so I would have liked to have been able to support more.  This too would not have 
been too difficult if I have thought of it earlier on in the design process.  When it finally 



occurred to me, too much of my application was already coded hard fast to the idea of a 
single light source. 
 
 These are the three primary improvements that I wish I could have made to my 
program.  Obviously there are countless other features that I would have like to 
incorporate as well, such as the ability to create more complex objects through the use of 
the boolean operations (union, intersection, subtraction) of simple objects.  But this type 
of feature, as well as most others, would probably require a major change in the design of 
my program in order to be supported.  With this said, I am extremely satisfied with the 
way my project came out. 
 
 
Conclusion 
 
 Raytracing is not without its faults.  The raytracing algorithm is incredibly time 
consuming as it usually involves the solving of very complex geometric formulas, and 
doing this thousands, if not millions of times in order to create a single image.  Yet 
because of the nature of the raytracing algorithm, it is also one that is a great candidate 
for distributed computing.  By designing a raytracing application so that it utilizes 
multiple computers to complete the work that would have otherwise been done by just 
one, we can drastically reduce the time cost of rendering. 
 With this said, raytracing is a very intuitive way of creating photo-realistic images 
on a computer.  By simulating the way light behaves in the real world, and how the 
behavior works to “create images”  within our own eyes, we are able to create incredibly 
realistic pictures of objects or scenes based purely on geometry and math. It is also 
relatively simple to effectively implement a basic raytracing application, as I think I have 
shown through my project and paper.  Because of this, raytracing has become one of the 
most popular and widely used techniques for creating stunning visual images.  
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Appendix A – Scene File Format 
 
 Below is the format for a scene file: 
 
[rayfile] 
 
[GLOBALS] 
attribute1 = value1 
attribute2 = value2 
… 
attributen = valuen 
[/GLOBALS] 
 
[OBJECT] 
type = value 
attribute1 = value1 
attribute2 = value2 
… 
attributen = valuen  
[/OBJECT] 
 
… 
 
more object definitions 
 
… 
 
[/rayfile]



Appendix B – Samples Images 
 
Below is an example image of the Lambertian shading model used on an illuminated 
sphere: 
 
 
 

 
 



(App. B Con’t) 
Below are two sample images illustrating anti-aliasing.  The same segment has been 
enlarged in both images.  However, in the first image, the enlarged segment of the image 
shows jagged edges in the plane, and the edges of the sphere and shadow.  The second 
image has anti-aliasing applied, and it shows how the edges are now softer, and looked 
more realistic when not “zoomed in” to the pixel level. 
 

 
 

 



Appendix C – Transformation Matrices 
 
Below are the matrices through which the various transformations can be applied to a 
point:  Translation, Scaling, and Rotation in each of the three axes. 
 
 
 

 
 
 
 
 

 

 



Appendix D – Source Code 
 
Below is the listing of all source code: 
 
Client: 
Main.cpp 
Main.h 
 
Server: 
Server.cpp 
Server.h 
Tracer.cpp 
Tracer.h 
Sphere.cpp 
Sphere.h 
Plane.cpp 
Plane.h 
Parser.cpp 
Parser.h 
Error.cpp 
Error.h 
 
A printout of these source code files follow this page. 
 


