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To find families for the more than 100,000 children in need of adoptive placements, most United States child

welfare agencies have employed a family-driven search approach in which prospective families respond to

announcements made by the agency. However, some agencies have switched to a caseworker-driven search

approach in which the caseworker directly contacts families recommended for a child. We introduce a novel

search-and-matching model that captures the key features of the adoption process and compare family-driven

with caseworker-driven search in a game-theoretical framework. Under either approach, the equilibria are

generated by threshold strategies and form a lattice structure. Our main theoretical finding then shows that

no family-driven equilibrium can Pareto dominate any caseworker-driven outcome, whereas it is possible

that each caseworker-driven equilibrium Pareto dominates every equilibrium attainable under family-driven

search. We also find that when families are sufficiently impatient, caseworker-driven search is better for all

children. We illustrate numerically that most agents are better off under caseworker-driven search for a wide

range of parameters. Finally, we provide empirical evidence from an agency that switched to caseworker-

driven search and achieved a three-year adoption probability that outperformed a statewide benchmark by

24%, as well as a statistically significant 27% improvement in adoption hazard rates.

Key words : child adoption, search and matching, market design, game theory

Subject classifications : Government/Services: Child-Welfare System; Government/Programs: Children,

Youth, and Families; Population/Family planning: Adoption

1. Introduction

Child welfare systems worldwide face the challenge of finding families for children in need of

adoption. For example, the United States foster care system serves over 525,000 children annually.

While the goal for most of these children is to reunite them with their parents or relatives, 77,809
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out of 343,077 children in foster care on September 30, 2023, were waiting for permanent adoptive

placements (U.S. Administration for Children and Families 2024). Finding an adoptive family for

these children has become a public policy priority due to high levels of incarceration, homelessness,

unemployment, and teen pregnancy observed in the population of children “aging out” of the child

welfare system without a permanent family relationship (Triseliotis 2002, Kushel et al. 2007, Gypen

et al. 2017). In this paper, we study the search and matching process for children waiting in the

child welfare system for adoptive placement and compare two prominent search methods that differ

in whether families or the children’s caseworkers drive the search process. We provide structural

insights by analytically and numerically analyzing a game-theoretic model, and empirically validate

our findings by examining the outcomes achieved by a Florida child welfare agency that switched

its search strategy in 2018.

The search for an adoptive placement officially begins once a judge issues a termination of

parental rights order. A caseworker represents the child’s interests throughout this process to find

an adoptive family if adoption by a relative or foster care family is not possible. Identifying a

family willing to adopt the child and capable of caring for the child can be a difficult task, and

the challenge varies greatly according to the child’s demographic characteristics and special needs.

While relatively little research has studied best practices for search operations — either through

empirical studies of how caseworkers find families or prescriptive studies for how search should

be conducted — states invest significant resources in trying to help the most vulnerable children

find permanency; for example, the Florida Department of Children and Families (2022, 2024)

reports spending over $20 million annually to promote and support searches for approximately

3,800 children with a goal of adoption at any point in time.

Different states, counties, and agencies adhere to different paradigms for the practice of search

and matching. Families first register with an adoption agency and provide a home study evaluation.

In the predominant approach, caseworkers then announce children via email to a set of registered

families, each of whom has the opportunity to express interest in a child. The caseworker receives

these inquiries and works to identify the family that best fits the child’s needs. We label this

approach family-driven search, as families direct the search process by expressing interest in avail-

able children. Hanna and McRoy (2011) demonstrates how the child welfare literature has almost

exclusively focused on what we view as family-driven search processes. One important downside of

this search process is that some children may attract hundreds of interested families, all of which

the caseworker has to consider simultaneously.

These interactions can be time-consuming and emotionally stressful for all parties involved, and

some states require agencies to engage with every family that has expressed interest. For example,

Florida Administrative Code Rule 65C-16.003 states:
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Once the potential adoptive families have been identified, the staffing team will rate each family

based on the family’s ability to meet the identified needs of the child based on information

documented in [the Florida Safe Families Network information system], the Child Study and

the adoptive parent’s home study. The documentation must include a key of the rating scale

used by the team.

An adoptions manager for a multi-county agency in Florida directed us to this rule to emphasize

the imperative that the agency must respond to every family that expresses interest in a child.

Failure to respond to families can result in complaints to the governor’s office or negative comments

on social media. The manager also commented that the agency dreaded announcing the availability

of a “cute” young child, who would attract dozens or even hundreds of responses from families that

required thorough consideration and individual responses. This is especially problematic because

caseworkers often deal with twice as many cases as they should ideally handle (Yamatani et al.

2009), an issue intensifying since the COVID-19 pandemic (Lushin et al. 2023). On the other hand,

other children may attract very few interested families, and nearly 20,000 children age out of foster

care each year (Children’s Bureau 2022).

We have also heard families share their frustration with the emotional and time costs that they

incurred while participating in a family-driven search system. In a video shared on social media,

one adoptive father described his journey that began as a prospective parent engaged with an

adoption agency that announced available children and had families respond to express interest in

particular children:1

Basically, you put your life on hold, and you have your hopes set on this one particular child

that you’ve fallen in love with their profile and their picture. You dream every day and night

and go to sleep hoping that this kid is the one, and every time that happens for me, 30-45 days

later I would find out that I wasn’t chosen. So, there’s this tremendous sense of disappointment,

rejection, and “why didn’t they choose me?” I went through that process over and over and

over again for about 2+ years until I was finally connected with [a caseworker-driven search

platform]. What I loved about the concept was that I wouldn’t have to go through that process.

This time it was my profile, and I’d just have to wait for the caseworker or my forever match

to find me. I’m happy to report that a couple weeks later I did find my forever match, and I

have my son now.

In reaction to these challenges, some child welfare agencies have recently sought to improve

outcomes by switching to caseworker-driven search (Riley 2019). In this approach, caseworkers

sequentially contact specific prospective families to share details about the child. Caseworkers use

1 https://www.linkedin.com/posts/adoption-share by-inverting-the-outreach-for-adoption-matching-activity-
7131265613947138048-YCM1 (Retrieved 06/17/2025)

https://www.linkedin.com/posts/adoption-share_by-inverting-the-outreach-for-adoption-matching-activity-7131265613947138048-YCM1
https://www.linkedin.com/posts/adoption-share_by-inverting-the-outreach-for-adoption-matching-activity-7131265613947138048-YCM1
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their expertise to decide which families to contact based on the child’s and the families’ charac-

teristics. Optionally, technological tools may also aid their decisions. This approach removes the

burden of engaging a large number of families simultaneously and allows caseworkers to target

compatible families for children with very specific needs.

However, even though these are clear advantages of caseworker-driven search, it is important to

note that changing the search paradigm may change families’ incentives that influence their interest

in different types of children. For a match to occur under either approach, both the caseworker and

the prospective family need to agree. This can, for example, mean that if caseworker-driven search

leads to a reduction in search costs for families, they may stop being interested in certain children,

leaving those children unmatched. As such, it is unclear whether caseworker-driven search leads to

more desirable outcomes for the entire population of children requiring adoptive placements.

To assess how different search disciplines affect outcomes, we pursue two complementary

approaches in this paper. First, we analyze the strategic behavior of agents under both search

disciplines in a game-theoretic search-and-matching model. Second, we provide empirical evidence

for the performance of caseworker-driven search compared to classic search approaches by studying

outcomes of a real-world child welfare agency that switched its approach in 2018.

Our analytical contributions begin with the introduction of a new search-and-matching model

(Section 4), which captures critical features. First, as both approaches to adoption matching are

inherently dynamic, we assume that children and families (hereafter referred to as agents) may

enter and depart the system at any time. However, to keep the model tractable, we assume the

distribution of agent types in the system remains stable over time. Second, we allow for uncertainty

regarding whether a child-family pair is compatible. Third, our model captures the heterogeneous

preferences of agents, which is a key distinction between our paper and most earlier literature.

While we focus specifically on analyzing adoption systems, our work is also relevant to more general

search-and-matching theory.

We perform a game-theoretic comparison of the two approaches within our model. In Section 5.2,

we establish that (pure strategy) equilibria are guaranteed to exist under both search technologies

(i.e., family-driven search and caseworker-driven search). Furthermore, we find that equilibria form

a lattice reminiscent of the structure of the set of stable matchings in standard two-sided matching

markets. We then present our main theoretical result: Family-driven search equilibrium outcomes

can never be Pareto improvements over caseworker-driven search equilibrium outcomes, but there

are instances where each caseworker-driven search equilibrium outcome is a Pareto improvement

over all family-driven search equilibrium outcomes (Section 6.1). This holds because caseworker-

driven search can reduce wasted search efforts. Thus, agents can worry less about accumulating

search costs when they express interest in a child. However, because of multiplicity of equilibria and
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the lattice structure over these equilibria, all children can be strictly better off in either system.

The same holds for families. Even when both family-driven search and caseworker-driven search

only admit a unique equilibrium each, an agent can be better off in either setting (Section 6.2).

This may be surprising, given that caseworker-driven search reduces wasteful search efforts on both

sides of the market. We therefore explore the conditions under which caseworker-driven search

usually leads to more agents being better off. In Section 7.1, we show that all children will be

better off in caseworker-driven search if families are sufficiently impatient. Furthermore, increasing

family supply in family-driven search can have a negative effect on children’s utilities, but not in

caseworker-driven search (Section 7.2). We find numerically that caseworker-driven search leads to

more desirable outcomes for a wide variety of model parameter choices (Section 8).

To supplement these analytical and numerical insights, we empirically analyze case-level data

from a technology platform that a multi-county child welfare agency in Florida has been using for

the majority of its search efforts since 2018 (Section 9). We compare the outcomes for hundreds

of children in need of adoptive placements to a benchmark from statewide case-level data that

accounts for a child’s demographic information and disabilities. To measure how child- and case-

level factors influence the timing of adoptions in Florida, we fit a Cox proportional hazards model

(Cox 1972) to statewide records from the federal Adoption and Foster Care Analysis and Reporting

System (AFCARS). We then use this model to predict the adoption outcomes of children listed on

the platform if traditional search disciplines were used instead of the agency’s caseworker-driven

search approach. This number can be compared to the actual outcome data from the platform.

We show that the probability of adoption within three years was 24% higher than the benchmark

for the agency’s children. Then, we extend our statistical analysis to directly measure the platform

effect using a time-varying Cox model in a conservatively combined dataset. We find a statistically

significant 27% improvement in adoption hazard rates under caseworker-driven search compared

to statewide case data.

2. Related Literature

Recently, market designers and operations researchers have shown increased interest in how to

best serve historically disadvantaged communities. Researchers have, for example, studied refugee

resettlement (Andersson et al. 2018, Bansak et al. 2018, Delacrétaz et al. 2020), the improvement of

teacher quality at disadvantaged schools (Combe et al. 2022, 2025), the management of volunteer

workforces for non-profit organizations (Berenguer et al. 2023), and allocation of public housing

(Arnosti and Shi 2020, Kawasaki et al. 2021, You et al. 2022).

Our paper contributes to the limited literature that studies child welfare systems from operations

or market design perspectives — a challenge first articulated by Spindler (1970) and renewed by
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Slaugh et al. (2025). Slaugh et al. (2016) investigated how the Pennsylvania Statewide Adoption

& Permanency Network could utilize a match recommendation tool to improve their process of

matching children to prospective parents. Their spreadsheet-based tool can be seen as a simplified

version of the previously mentioned data-driven software system. Robinson-Cortés (2019) worked

with a foster care data set to analyze placements of children in foster homes. His model predicts

that allowing placements across administrative regions would be beneficial for children. MacDonald

(2019) studied a dynamic matching problem where children and families can either form reversible

matches (foster placements) or irreversible matches (adoptions). In her model, children are hetero-

geneous in the sense that there are children with disabilities and children without disabilities, while

families are homogeneous. To the best of our knowledge, we are the first to formally analyze the

economic effects of search and matching in the child welfare domain, while taking into account the

full heterogeneity of preferences. Baccara et al. (2014) estimated families’ preferences over children

available for adoption from a data set documenting the operations of adoption agencies.

Within the child welfare literature, relatively little research has investigated the effectiveness of

search disciplines for children in need of adoptive placements. Some research has reported positive

impacts from intensive multi-faceted search efforts by caseworkers: Vandivere et al. (2015) show

that children served by skilled recruiters from the Wendy’s Wonderful Kids organization were 1.7

times as likely to have an adoptive placement than a control group in an experiment with over

1,000 children. In a similar context focusing on hard-to-place youth in New York, Feldman et al.

(2016) show that a program of enhanced casework improved outcomes for children. The program

utilized a variety of channels to promote 88 children and conduct searches. The search methods

in both experiments require extensive work from skilled caseworkers funded by grants, while the

platform we study provides an example of technology assisting caseworkers. Avery et al. (2009)

study national photolisting service AdoptUSKids and use a hazards model to show better out-

comes for children based on activity on AdoptUsKids. However, photolistings have drawn increased

scrutiny since the early 2000s; Roby and White (2010) describe risks for exploitation and bullying

for children publicly listed online.

Even though child adoption matching markets bear similarities to other two-sided matching

markets such as centralized labor markets (Roth 1984, 1991) or ride-sharing platforms (Ma et al.

2020), there are important differences that necessitate new models and analyses. Adoption matching

is inherently dynamic, and there is no centralized clearinghouse that determines final matches.

Matches are only ever proposed, and both sides of the market have to invest search efforts to

identify a match candidate.

One matching market similar to adoption from foster care is online dating (Hitsch et al. 2010a,b,

Lee and Niederle 2015, Halaburda et al. 2018, Kanoria and Saban 2021). However, most online
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dating markets are completely decentralized despite their dynamic and recommendation-based fea-

tures. Individuals in search of a romantic partner can, at any time, decide to browse a dating

platform and reach out to other individuals who appeal to them. In contrast, the approaches we

analyze in this paper follow a centralized protocol despite the dynamic decentralized search com-

ponent: Caseworkers perform repeat searches for a family on behalf of children, and they do so in

approximately regular time intervals. Caseworkers, therefore, play an essential role throughout the

process since they act as an intermediary to protect vulnerable children. Crucially, this introduces

an asymmetry, both in the number of agents simultaneously active and the market power of agents

on the two sides, that we have not observed in any other previously studied matching market. As

a consequence, we develop a new model that allows us to capture the features of the two different

search technologies in one model.

Purely random decentralized matching models have been widely studied under search frictions

and homogeneous preferences, with transferable utility (Shimer and Smith 2000, 2001, Atakan

2006), and more relevant to our paper, with non-transferable utility (Eeckhout 1999, Chade 2001,

Smith 2006). In all of these studies, unlike in our paper, preferences are aligned on each side of

the market following a strict order of quality common for each individual on the same side. More

recent studies have combined directional search rather than random search as an important feature

(Lauermann et al. 2020, Cheremukhin et al. 2020).

Besides the directed versus random search distinction, simultaneous (Stigler 1961) versus sequen-

tial (Weitzman 1979) search have also been studied by classic search theory, with Chade and

Smith (2006) bridging the gap by characterizing optimal hybrid strategies. Other work extends this

analysis to competitive environments, such as labor markets. Albrecht et al. (2006) and Kircher

(2009) study workers applying to multiple firms, yielding approximately efficient outcomes through

endogenous wage dispersion that coordinates search. More recent work on online platforms also

focuses on the trade-off between the two approaches. Honka and Chintagunta (2017) documents

that simultaneous consumer search intensifies price competition on insurance aggregators, while

Auster et al. (2025) cautions that frictionless simultaneous contacting can exacerbate adverse selec-

tion. Chade et al. (2017) and Wright et al. (2021) provide comprehensive surveys of various search

models.

The closest to our model are the search theory papers by Adachi (2003) and Lauermann and

Nöldeke (2014) on marriage markets, which consider non-symmetric preferences on both sides of

the market. However, they only consider a single randomly chosen potential match in each period,

while our problem requires that multiple matches with uncertain suitability may be investigated

using either caseworker-driven or family-driven search in each period. Similarly, while Immorlica

et al. (2023) considers the problem of a centralized platform guiding search through a sequence of
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match proposals to agents in a two-sided market, they also only consider a single potential match

per period. Additionally, they assume that the value for a match is symmetric between both sides.

This is unrealistic for an adoption setting, where families’ and children’s desires can be at odds

with each other. Consequently, we allow for non-symmetric values.

Our work is also related to the literature on dynamic matching regarding the effects of congestion

(Arnosti et al. 2021, Leshno 2022) and different practical policies (Ünver 2010, Akbarpour et al.

2020b, Sönmez et al. 2020, Akbarpour et al. 2020a, Kerimov et al. 2023) in various market-design

environments, including settings intended to help vulnerable populations (Baccara et al. 2020, Kasy

and Teytelboym 2020). Different studies investigate how matching platforms should be designed so

that desirable outcomes can be achieved (see, e.g., Lee and Niederle 2015, Fradkin 2017, Akbarpour

et al. 2020a, Altinok and MacDonald 2023, Dierks et al. 2024). The research in this area most

closely related to our work is Shi (2023), in which the author explores which side of the market

should drive the search process depending on which side’s preferences can easily be expressed or

satisfied. The setting, however, is quite different from our work since we allow agents on both sides

of the market to arrive over time and let them face an optimal stopping problem as they can decide

to remain unmatched until better future match opportunities arise.

3. Descriptions of Approaches to Adoption Matching

Based on conversations with caseworkers and managers of a Florida agency that transitioned from

a family-driven search to a caseworker-driven search approach, we provide a more detailed intro-

duction to how both approaches function in practice. Although very little has been published about

search approaches and their prevalence, subject-matter experts indicate that similar approaches

are commonly used nationally, with some variation among states and agencies. In any system, a

prospective adoptive family first undergoes an extensive vetting and training process, which usually

entails a written home study. Through this report, a caseworker evaluates the family on various

dimensions, gathering information from home visits, interviews with family members, third-party

sources, and the caseworker’s own judgment. State regulations determine minimum requirements

for home studies to assess the suitability of the intended adoptive parents for different types of chil-

dren. Typically, home studies also include additional information about the family’s environment

and preferences. More details on home studies can be found in online Appendix A.

Regardless of the search approach, agencies may then employ scoring rules to assess family

suitability for individual children, sometimes generating and using these scores as part of a rec-

ommender system (Slaugh et al. 2016). These tools and others, such as those described by Hanna

and McRoy (2011), provide suggestions but are not determinative; all investigation and matching

decisions are in the purview of a committee comprising the caseworker, supervisors, and other

agency staff.
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Once a family has gone through this process, they can apply for adoptive placements for any

child for whom the parental rights of the birth family have been terminated. If an interested family

is denied a requested placement for non-formal reasons — including the intent to place the child

with a different family — Florida Administrative Code 65C-16.005(9) requires that the case be

additionally reviewed by a five-person Adoption Applicant Review Committee to ensure a fair

evaluation.

The core challenge is making the most suitable families aware of children who need adoptive

placements. This is where the agency’s search discipline becomes relevant: identifying and informing

suitable families. It should be noted that although there is typically a single agency responsible for

finding placements for a child, their search is non-exclusive: any qualified prospective family can,

in theory, apply for an adoptive placement and be considered by the agency in the same way as

families identified through the agency’s own search. Consequently, a small percentage of children

get adopted through other channels, e.g., by friends of their foster (or birth) family.

3.1. Family-driven Search

Traditionally, most agency lies with the families. In a typical family-driven search protocol, the

agency emails all approved families when a child becomes eligible for adoption after a judge’s termi-

nation of parental rights (TPR) order. The email provides brief details about the child and invites

families to express interest. After families have a chance to respond, the caseworker responsible for

the child compiles a list of interested families. In most jurisdictions, caseworkers must give seri-

ous consideration to every responding family. The caseworker then begins reviewing those families

to determine which family is the best suitable match. Obvious mismatches (e.g., a wheelchair-

dependent child and a family living in a house not designed to accommodate wheelchairs) can

be quickly identified and screened out, but most candidates require a careful review of the home

study and follow-up interviews. This process is time-consuming and emotionally taxing for families.

If multiple families are suitable, or the decision is complex, the case is referred to a committee,

such as the Adoption Applicant Review Committee in Florida, for a final determination. When no

family is deemed an adequate fit, the child remains in foster care, and the child’s availability is

re-advertised after some time.

3.2. Caseworker-driven Search

In caseworker-driven search, agencies do not issue broad announcements. Instead, once a given child

becomes eligible, the child’s caseworker sequentially informs specific families from the approved pool

and invites them to apply to adopt the child. Family selection strategies vary across caseworkers.

Some rely more on scoring rules and recommender systems, while others may rely on informal

networks to prioritize families they know or apply their own heuristics to identify families to
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consider. If an invited family expresses interest, the investigation mirrors the family-driven search

process, including potential committee review. If the caseworker (or the review committee) feels

that a family is reasonable but not ideal, they may also invite additional families to apply before

coming to a final decision. If the caseworker — who might be managing dozens of cases at different

stages of the child welfare system — has exhausted the pool of eligible families without a suitable

match emerging, the search is suspended until the family pool has sufficiently refreshed. This means

that the child remains in foster care until the search is restarted after some time.

4. Preliminaries

In this section, we develop an analytical model to contrast the two search disciplines and derive

characterizations of agents’ utilities.

4.1. Model

In our model, agents (children and families) have observable characteristics. Agents with the same

characteristics are said to be of the same type. We treat sibling sets of children who should be

placed together as a single child. Furthermore, we view the caseworker as a direct representative of

the child; thus, we consider a child-caseworker pair as a single child agent. We let C = {c1, . . . , cn}

and F = {f1, . . . , fm} denote the set of all n child types and the set of all m family types, respec-

tively. Individual agents are indifferent between agents of the same type, i.e., their preferences

are over agent types: A child of type c has a value vc(f) ∈ R for family type f , and a family of

type f has a value vf (c) ∈ R for child type c. Preferences are assumed to be strict, i.e., vc(f) ̸=

vc(f
′) if f ̸= f ′ and vf (c) ̸= vf (c

′) if c ̸= c′. Agents’ valuations are summarized by a list of vectors

v = (vc1 , . . . , vcn , vf1 , . . . , vfm), and each agent has a value of 0 for remaining unmatched. Given

valuations v, we let v̄ denote the maximum value of all vc(f) and vf (c).

There are infinitely many discrete time steps. At any time step, there is at most one agent of

each type present in the system. Thus, we can use c ∈ C and f ∈ F to refer to either individual

agents and agent types without ambiguity. We refer to an agent (or agent type) from either set as

i ∈A := C ∪F . From now on, we will simply say that agent i ∈A is active if they are present at

the current time step. To account for multiple agents from the same type being present, we can

introduce multiple agent types that are arbitrarily close in value, effectively creating a tie-breaker

between agents of “almost” the same type.

At the beginning of each time step, all active agents are determined as follows: For each family

type, one family of that type is active with probability λ∈ (0,1]. This is determined independently

for each family type. We call parameter λ the market thickness indicator, as it determines the

expected number of active families at each time step: For small values of λ, there will be few active

families in expectation. For large values of λ, it is quite likely that a family of each type will be
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active. Further, exactly one child (type) is selected uniformly at random to be active. This feature

is motivated by search processes used by adoption agencies: A caseworker works on the case of one

child at a time, which we assume she selects randomly.2

There is uncertainty regarding whether a specific child c and a specific family f are compatible:

With probability p ∈ (0,1), f is a suitable match for c and unsuitable with probability 1 − p.

Whether a match is suitable or not is determined independently at random for child-family pairs.

We refer to p as thematch success probability. Parameter p captures the following aspect of adoption

markets: When a family shows interest in a child, the family’s decision is based on limited reported

information, such as the sex, ethnicity, age of the child, and known disabilities. However, there

are many other important characteristics of a child that determine whether the child is actually

a good match for the family and whether there is mutual attraction. The same holds for a child

(or his caseworker) showing interest in a family. Only if a family f is a suitable match for child

c can a match between c and f be formed. If c and f form a match, they both obtain a value

of vc(f) and vf (c), respectively.
3 Determining the suitability of a match is costly for both sides,

as it is a time-consuming process. Children and families incur search costs κC ∈R+ and κF ∈R+,

respectively, each time the suitability of a match including them is determined. All agents discount

the future; however, they only discount time steps in which they are active. Children’s and families’

discount factors are δC ∈ [0,1) and δF ∈ [0,1), respectively.4 Although we keep homogeneous costs

and discount factors to keep the analysis and notation concise, they can be made type-specific

without loss of generality, and all our results go through.

We model adoption matching as a dynamic process that we assume to be stationary. An instance

(v, δC , δF , κC , κF , p, λ) together with a search technology (which we will introduce) induce a game.

To reduce notation, we assume that instance (v, δC , δF , κC , κF , p, λ) is fixed unless stated otherwise.

Agents’ strategies in this game are captured as follows: Child c is either interested in a family of type

f or not. Similarly, each family f is either interested in a child of type c or not. We assume that all

agents of the same type play the same strategy, and agents don’t change their strategies in different

time steps. Therefore, we can represent a strategy for a child c as a vector sc ∈ {0,1}m, where

sc(f) = 1 if c is interested in matching with a family of type f . Similarly, a strategy for a family f

is given by a vector sf ∈ {0,1}n, where sf (c) indicates whether f is interested in children of type c.

2 Our model does not endogenize the number of agents present in the system. This kind of instant replacement is
a standard large-market assumption in the search-and-matching literature, and it is necessary to keep our model
tractable.

3 Note that a uniform, binary suitability probability p is an abstraction made to keep the model tractable. See online
Appendix B.

4 An alternative interpretation is to think of children and families leaving the process before the next time step when
they are active with probability 1− δC and 1− δF , respectively.
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A strategy profile is a tuple of vectors s= (sc1 , . . . , scn , sf1 , . . . , sfm), while we let S denote the finite

set of all possible strategy profiles. For i∈A we let s−i denote the tuple of all agents’ strategies in

s, except that agent i is excluded. We say that c and f are mutually interested in each other under

strategy profile s if sc(f) = 1 and sf (c) = 1. The set M(s) = {(c, f) ∈C ×F | sc(f) = sf (c) = 1} is

called the matching correspondence of s. We use Mi(s) to denote the set of agents that agent i is

mutually interested in under s.

In the remainder of this section, we describe the two search technologies. We analyze the dynamic

stochastic games induced by an instance and a search technology in a full information environment.

Family-driven Search (FS): At the beginning of each time step, after a child c is randomly

chosen to be active, each family that is active and interested in c lets the child’s caseworker know

of their interest. This corresponds to families responding to an email announcement made by a

caseworker. The caseworker immediately discards any families without mutual interest in c, i.e.,

where sc(f) = 0 or sf (c) = 0. The caseworker then investigates all remaining families to determine

whether they would actually be a suitable match. Recall that each investigated family is a suitable

match for c with probability p—which is determined independently for each family—and that each

agent incurs cost for each investigation in which they are involved. After all families have been

processed by the caseworker, c either matches with the most preferred choice from among those

families identified as suitable matches or remains unmatched if no such family exists. We move on

to the next time step.

Caseworker-driven Search (CS): After a child c is randomly chosen to be active at the

beginning of a time step, the child’s caseworker can sequentially inform any of the active families.

We assume families are informed in decreasing order of vc(f).
5 If there is mutual interest between

c and f , the suitability of a match between c and f is investigated. If the match turns out to be

suitable, c’s search is over, c and f are matched and leave.6 We then move on to the next time

step. Otherwise, the caseworker continues the search by selecting the next family in the list. If

all families have been processed, the child remains unmatched and we move on to the next time

step. Proposition 11 in online Appendix C.1 shows that c’s utility is maximized if the caseworker

processes families in decreasing order of vc(f).

5 While this is trivially optimal in our model, higher degrees of uncertainty may warrant contacting families in a
different order. See online Appendix B for a discussion.

6 In practice, both sides still need to agree to the match. However, given that it would not be rational to investigate
a match you are not willing to accept and that the remaining families all have lower values, refusing a suitable match
at this point is never rational.
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4.2. Utilities

We define agents’ utilities at a time step and characterize their flow utilities in both FS- and

CS-induced stochastic games. Assume child c is active at the current time step and that active

families are yet to be determined. Let f be an arbitrary family. For any s ∈ S, let bcf (s) = |{f ′ ∈

Mc(s) | vc(f ′)> vc(f)}| denote the number of families in Mc(s) that c likes better than f . Further,

let βcf (s) denote the probability that c will not match with any other family that c prefers over

f at the current time step. Noting that for any child c the probability that a mutually interested

family f ′ is active at the current time step and a suitable match is λp, it follows immediately that

βcf (s) = (1−λp)bcf (s) for both FS and CS.

In FS, since investigations are conducted simultaneously, search costs are incurred for all of them,

and therefore, the expected immediate utility for the active child c at an arbitrary time step follows

as

ūFS
c (s) = λ

∑
f ′∈Mc(s)

(
βcf ′(s)pvc(f

′)−κC

)
. (1)

In CS, as investigations are conducted sequentially, search costs κC are only incurred if the child

has not successfully matched with a higher-valued family. Consequently, the expected immediate

utility of the active child c follows as

ūCS
c (s) = λ

∑
f ′∈Mc(s)

βcf ′(s) (pvc(f
′)−κC) . (2)

In both cases above, λ is the probability that a family is present to be investigated when the child

is active.

Similarly, for a family f , we can express the expected immediate utilities for FS and CS at an

arbitrary time step (conditional on f being active) by

ūFS
f (s) =

1

n

∑
c′∈Mf (s)

(
βc′f (s)pvc′(f)−κF

)
(3)

ūCS
f (s) =

1

n

∑
c′∈Mf (s)

βc′f (s) (pvc′(f)−κF ) , (4)

where 1/n is the probability that a given child is active in a timestep.

From this, the crucial difference between FS and CS in our model becomes apparent: In FS,

search costs are always incurred if there is mutual interest between agents. In CS, however, the

sequential nature of the search means that search costs are only incurred if there is mutual interest

and all previous match attempts at the time step have been unsuccessful.

We assume that each agent is risk-neutral and maximizes their expected (overall) utility, which

is the expected discounted value of their eventual match minus the total discounted search costs
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they incur.7 We use (z)+ as shorthand notation for max{z,0}. 1
[
·
]
is the indicator function, which

has value 1 if its argument is true and value 0 otherwise. We denote the expected (overall) utility

of agent i under strategy profile s by uFS
i (s) in FS and uCS

i (s) in CS. Whenever it is clear from

context whether we are referring to FS or CS we will simply write ui(s). Proposition 1 characterizes

children’s and families’ utilities in FS and CS via balance equations.

Proposition 1. Given strategy profile s, child c’s utility in FS is the unique value uFS
c (s) that

satisfies

uFS
c (s) = δCu

FS
c (s)+λ

∑
f∈Mc(s)

(
βcf (s)p

(
vc(f)− δCu

FS
c (s)

)
−κC

)
. (5)

Similarly, family f ’s utility in FS is the unique value uFS
f (s) that satisfies

uFS
f (s) = δFu

FS
f (s)+

1

n

∑
c∈Mf (s)

(
βcf (s)p

(
vf (c)− δFu

FS
f (s)

)
−κF

)
. (6)

In CS, child c’s utility in CS is the unique value uCS
c (s) that satisfies

uCS
c (s) = δCu

CS
c (s)+λ

∑
f∈Mc(s)

βcf (s)
(
p
(
vc(f)− δCu

CS
c (s)

)
−κC

)
. (7)

Similarly, family f ’s utility in CS is the unique value uCS
f (s) that satisfies

uCS
f (s) = δFu

CS
f (s)+

1

n

∑
c∈Mf (s)

βcf (s)
(
p
(
vf (c)− δFu

CS
f (s)

)
−κF

)
. (8)

A formal proof can be found in online Appendix D.1. One difference between FS and CS is

immediately apparent from the above balance equations. In CS, search costs only incur if previous

match attempts have been unsuccessful. In FS, however, costs are always incurred if a family is

present and mutually interested.

5. Equilibria

We use a tie-breaking assumption, which allows us to exclude degenerate equilibria later on. After

stating this assumption, we introduce two classes of strategies — one for CS and one for FS — and

show that these classes capture agents’ best responses. This will be helpful for obtaining results

later on. We show that for both search technologies equilibria always exist and that equilibria form

a lattice.

7 In practice, while caseworkers have multiple cases assigned to them, their goal with each case is to maximize the
utility of the child belonging to that case. That is, based on our interviews with domain experts, the caseworker
considers all assigned cases separately, and each child-caseworker pair is considered a separate self-interested agent.
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5.1. Threshold Strategies

For both search technologies, we make the following tie-breaking assumption: If agent i’s utility

would (weakly) increase from mutual interest with agent j, then i will be interested in j—even if j

is not interested in i. Similarly, if agent i’s utility would decrease from mutual interest with agent j,

then i will not be interested in j. This assumption allows us to exclude degenerate equilibria (e.g.,

no agent being interested in any other agent) later on without restricting agents in their endeavor

to maximize their utility.

We now introduce threshold strategies for FS and CS. As we will see, our tie-breaking assumption

implies that agents’ best responses belong to the class of threshold strategies. Note that a best

response always exists, because S is finite.

Definition 1. Child c plays a CS threshold strategy (CS-TS) with threshold yc ∈R in s, if

sc(f) = 1
[
p(vc(f)− δCyc)≥ κC

]
for all f ∈ F. (9)

Family f plays a CS-TS with threshold yf in s, if

sf (c) = 1
[
p(vf (c)− δFyf )≥ κF

]
for all c∈C. (10)

Child c plays an FS threshold strategy (FS-TS) with threshold yc in s, if

sc(f) = 1
[
βcf (s)p(vc(f)− δCyc)≥ κC

]
for all f ∈ F. (11)

Family f plays an FS-TS with threshold yf in s, if

sf (c) = 1
[
βcf (s)p(vf (c)− δFyf )≥ κF

]
for all c∈C. (12)

In a CS-TS or an FS-TS, the threshold yi can be interpreted as i’s reservation utility. However,

note that these threshold strategies are more involved than standard simple threshold strategies

(Adachi 2003, Immorlica et al. 2023). While in a simple threshold strategy, an agent would be

interested if the expected value is above their reserve utility, i.e., pvi(j)≥ yi, this does not suffice in

this case. Instead, agents also have to account for their costs and for the likelihood that the child

may find another match with a higher value during the same period.8

Let uFS∗
i (s−i) and uCS∗

i (s−i) denote i’s utility from a best response to s−i in FS and CS, respec-

tively. As before, we simply write u∗
i (s−i) if there is no ambiguity. Proposition 2 shows that agents’

best responses always have the form of a threshold strategy.

Proposition 2. Let i ∈ A and s−i be an arbitrary strategy profile of all agents excluding i.

In both FS and CS, a best response of i to s−i corresponds to a threshold strategy with threshold

u∗
i (s−i).

8 See Proposition 12 in online Appendix C.2 for an illustration of the non-existence of simple threshold best responses.
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A formal proof can be found in online Appendix D.2. To derive results later on, it will prove

useful to switch between thresholds and strategies. We therefore provide the following definition.

Definition 2. In CS, a strategy profile induced by threshold profile y ∈ Rn+m is denoted by

sCS(y) and satisfies for each i∈A, sCS
i (y) is a CS-TS with threshold yi in sCS(y). In FS, a strategy

profile induced by threshold profile y ∈ Rn+m is denoted by sFS(y) and satisfies for each i ∈ A,

sFS
i (y) is a FS-TS with threshold yi in sFS(y).

We again omit the superscript if this does not lead to ambiguity. It is trivial to obtain sCS(y)

by inserting y in the corresponding equations in Definition 1. Algorithm 1 from online Appendix E

can be used to compute sFS(y). From now on, we use βFS
cf (y) and βCS

cf (y) as shorthand-notation for

βcf (s
FS(y)) and βcf (s

CS(y)), respectively. Whenever it is clear from the context, we simply write

βcf (y).

5.2. Equilibrium Existence and Lattice Structure

In this section, we show that Nash equilibria always exist under both search technologies.9 We say

that strategy profile s is an equilibrium in FS (FSE) if s is a Nash equilibrium in the game induced

by FS. Analogously, strategy profile s is an equilibrium in CS (CSE) if s is a Nash equilibrium in

the game induced by CS. We use SFS to denote the set of FSE, and let Y FS = {(ui(s))i∈A}s∈SFS

be the corresponding set of equilibrium threshold profiles in FS. For CS, those sets are defined

analogously. Before we can prove that these sets are never empty, we need to define a partial order

≤C on Y = [0, v̄]n+m. Note that if agents only play individually rational strategies, their utility is

always lower bounded by 0 and upper bounded by v̄.

Definition 3. Let ≤C be the partial order on Y , where for all y, y′ ∈ Y it holds that y≤C y′ if

and only if yc ≤ y′
c for all c∈C and yf ≥ y′

f for all f ∈ F .

Having defined partial order ≤C , we can now prove that equilibria always exist in both settings.

We state this result in Proposition 3.

Proposition 3. The set of FS and CS equilibrium threshold profiles Y FS and Y CS is non-empty

and both (Y FS,≤C) and (Y CS,≤C) form complete lattices.

A formal proof can be found in online Appendix D.3. The proof proceeds by defining a best-response

mapping and showing fixed-point existence using Tarski’s fixed-point theorem (Tarski 1955). Such

fixed points coincide with pure-strategy equilibria.

In general, there can be more than one FSE or CSE for a fixed instance (v, δC , δF , κC , κF , p, λ).

Proposition 3 not only guarantees that equilibria always exist in both settings, but also highlights

9 Technically, we have a stochastic game model, and therefore, these are Nash equilibria of stochastic games. They
correspond to the Markov-perfect Nash-equilibrium selection among subgame-perfect Nash equilibria when considered
as a repeated game.
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that there is a special ordering over equilibria: there exists a child-optimal equilibrium that children

unanimously prefer over all other equilibria; i.e., their utility is weakly higher compared to any

other equilibrium. Similarly, there exists a family-optimal equilibrium that families prefer. From

now on, we let sco−CS denote the child-optimal CSE (co-CSE), sco−FS the child-optimal FSE (co-

FSE), sfo−CS the family-optimal CSE (fo-CSE), and sfo−FS the family-optimal FSE (fo-FSE).

This is reminiscent of the structure of the set of stable matchings in standard two-sided matching

markets (Knuth 1997).

6. Comparison of Family-driven Search and Caseworker-driven Search

In this section, we investigate the impact of the two search technologies on equilibrium outcomes.

Here, we present our main theoretical result: An FSE can never Pareto dominate a CSE, as any

increase in utility for one agent can only arise if another agent lowers their interest threshold,

corresponding to a decrease in that agent’s utility. There exist instances, however, where each CSE

is a Pareto improvement over all FSEs. We further find that no approach is always preferable for

either children or families.

6.1. Pareto Comparison

A natural way to determine which equilibrium outcomes are preferable is to check whether one

equilibrium is a Pareto improvement over the other. We first formalize the Pareto dominance

relationship for strategy profiles in our model.

Definition 4. Strategy profile s ∈ S is a Pareto improvement over strategy profile s′ ∈ S if

ui(s
′)≤ ui(s) for all i∈A and there exists j ∈A, such that uj(s

′)<uj(s).

Note that ui(s) either denotes u
CS
i (s) or uFS

i (s), depending on whether we refer to s as a CSE or

an FSE. We find that FSEs can never Pareto dominate CSEs, but there are instances where each

CSE Pareto dominates all FSEs. Before we can formally show this, we need to state two lemmas.

The first lemma is useful for understanding why FSEs cannot Pareto dominate CSEs. Lemma 1

shows that if there is a pair with mutual interest in FS that is not present in CS, then at least one

of the two agents in the pair must be strictly worse off in FS compared to CS.

Lemma 1. Let sFS ∈ SFS and sCS ∈ SCS. If there exists c ∈ C and f ∈ F , such that (c, f) ∈

M(sFS) and (c, f) /∈M(sCS), then either uc(s
FS)<uc(s

CS) or uf (s
FS)<uf (s

CS).

A formal proof can be found in online Appendix D.4. Intuitively, if two agents are not mutually

interested in each other in CS but are in FS, then at least one of them had to lower their interest

threshold in FS—which means that their optimal reservation utility is lower in FS. However, since

the optimal reservation utility corresponds to the once-discounted utility, this agent must be strictly

worse off.
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The next lemma almost immediately follows from Lemma 1 and is used for the proof of Theorem 1

as well as for later results.

Lemma 2. Let sFS ∈ SFS, sCS ∈ SCS, and c∈C. If Mc(s
FS)⊆Mc(s

CS), then uc(s
FS)≤ uc(s

CS).

A formal proof can be found in online Appendix D.5.

It is quite intuitive that a child c cannot be worse off under CS if all families that are mutually

interested in c under FS are also interested in c under CS. This allows us to show the following

theorem as our main result.

Theorem 1. An FSE can never be a Pareto improvement over a CSE. On the other hand, there

exists an instance where all CSEs are Pareto improvements over all FSEs.

A formal proof can be found in online Appendix D.6. The main intuition for why an FSE can

never be a Pareto improvement over a CSE is that the only way an agent can be better off in FS

compared to CS is to have a higher chance of matching with someone they like. But with Lemma 1,

this implies that some other agent had to lower their interest threshold, which means that their

utility decreased. There are two reasons why a CSE can Pareto dominate an FSE. First, CS can

save agents’ search costs. Second, because search costs are only incurred in CS if previous match

attempts at the current time step have been unsuccessful, agents do not have to worry about

accumulating search costs as much in CS as in FS. Therefore, agents are incentivized to express

interest in more potential match candidates in CS compared to FS.

6.2. No Approach Dominates the Other

Even though CSEs can be Pareto improvements over FSEs, we find that CS is not always better

for everyone compared to FS. In fact, a CSE might yield arbitrarily higher (or lower) utility for all

children or families compared to an FSE.

Proposition 4. For any L> 0 and 0< ϵ<L, there exists an instance where

1. the child-optimal equilibrium, which we denote as sco, is the same in both CS and FS, and

similarly, the family-optimal equilibrium, which we denote as sfo, is the same in both CS and FS,

2. uc(s
co) =L for all c∈C and uf (s

co)≤ ϵ for all f ∈ F , and

3. uc(s
fo)≤ ϵ for all c∈C and uf (s

fo) =L for all f ∈ F .

A formal proof can be found in online Appendix D.7. It proceeds by constructing examples where

child and family utilities are mismatched, causing the utility gap between child-optimal and family-

optimal equilibria to be arbitrarily large in both FS and CS. Thus, depending on which equilibria

are realized, both approaches can be arbitrarily better for either side of the market.

Both a single child and a single family can be arbitrarily worse off in equilibrium under CS, even

if FS and CS admit only one equilibrium each. This is highlighted by the following two propositions.
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Proposition 5. There exists an instance where a child is strictly worse off under the unique

CSE compared to the unique FSE.

A formal proof can be found in online Appendix D.8. It proceeds by constructing an example with

two child and family types where child c1 is significantly preferred over c2 by all families, while all

children slightly prefer f1 over f2. This implies that family f2 is only matched with child c1 if no

f1 family is currently present. The higher search costs in FS can then make f2 lose interest in c1,

regardless of patience levels, causing f2 to settle for c2. This allows c2 to be matched. Conversely,

in CS, family f2 does not incur high search costs for waiting until they are matched with a c1. If

they are patient enough, f2 therefore prefers waiting for their preferred choice c1. This leaves c2

without any interested family and, therefore, unmatched.

Similarly, a family can be worse off in CS when FS and CS each only admit one equilibrium.

Proposition 6. There exists an instance where a family is strictly worse off under the unique

CSE compared to the unique FSE.

A formal proof can be found in online Appendix D.9. Just as children can benefit from families

that decide to settle for a less preferred child, so can other families. It can be the case that a family

f is interested in a child c in a CSE but f is not interested in c in an FSE, because the associated

expected costs would be too high. Not having f as competition might be enough incentive for

another family f ′ to be interested in c under the FSE. As a result, f ′ can be strictly better off in

FS.

7. Effects of Model Parameters

We showed that FSEs cannot be Pareto improvements over CSEs, but CSEs can be Pareto improve-

ments over FSEs. Additionally, we found that some agents can be better off under an FSE compared

to a CSE. In order to better understand the conditions under which one of the two approaches

might be preferable, we explore the effects that different parameters have on equilibrium outcomes

in FS and CS. We provide two more results in favor of CS: First, we show that as families’ patience

decreases, at some point all children will be weakly better off in any CSE compared to any FSE.

Second, increasing supply on the family side, i.e., increasing the market thickness indicator λ, can

negatively affect children’s utilities in FS but not in CS. Finally, as a sanity check, we investigate

the effect of certain parameters or parameter combinations in the limit; all of these latter results

can be found in Section F.
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7.1. Discount Factors

For this subsection, let SCS(δ′F ) and SFS(δ′F ) denote the set of CSEs and FSEs when δF = δ′F ,

respectively. We now demonstrate that as families’ patience decreases below a certain threshold,

all children will always be better off in CS than in FS.

Proposition 7. For each instance there exists δ̄F ∈ [0,1), such that for all δ′F ∈ [0, δ̄F ] it holds

that uc(s
FS)≤ uc(s

CS) for all c∈C, sCS ∈ SCS(δ′F ), s
FS ∈ SFS(δ′F ).

A formal proof can be found in online Appendix D.10. Intuitively, the statement follows because in

CS, families’ interest in a very unlikely match incurs lower search costs than in FS. While patient

families may still not be interested in some children in CS that they are interested in under FS

(which drives Proposition 5), any sufficiently impatient family will be unwilling to wait.

However, as can be seen in the proof of Proposition 6, an analogous statement for families’

utilities and children’s patience level does not hold. Intuitively, a family f might be worse off in CS,

because another family f ′ is not shying away from c, as f ′ does not have to worry about wasted

search efforts in CS.

7.2. Market Thickness

Adoption agencies might intuitively prefer to have a larger pool of available families to choose

from. Here, we present another result that suggests this might be generally beneficial in CS but

not always in FS when it comes to children’s utilities. Increasing supply on the family side, i.e.,

increasing the market thickness indicator λ, can negatively affect children’s utilities in FS but not

in CS. For the remainder of Section 7.2, assume that all instance parameters are fixed except for

λ. Let sco−CS,λ denote the child-optimal CSE given market thickness indicator λ. Definitions for

sfo−CS,λ, sco−FS,λ, and sfo−FS,λ are analogous. Proposition 8 shows that increasing λ can lead to

some children being worse off in FS.

Proposition 8. There exists an instance with a child c ∈C and λ,λ′ ∈ (0,1] with λ< λ′, such

that uc(s
co−FS,λ)>uc(s

co−FS,λ′
).

A formal proof can be found in online Appendix D.11. Effectively, what is happening is that if

multiple families are interested in a child, then increased market thickness λ increases competition

and, therefore, the search costs for less preferred families. If the child is close to being indifferent

between families and some families lose interest due to the higher cost, then the resulting decrease

in the child’s utility can be larger than the increase caused by a higher chance to match with a

slightly more preferred family.

In CS, on the other hand, increasing λ can only have a positive effect on children’s utilities in

equilibrium.
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Proposition 9. Let λ,λ′ ∈ (0,1], such that λ ≤ λ′. Then uc(s
co−CS,λ) ≤ uc(s

co−CS,λ′
) and

uc(s
fo−CS,λ)≤ uc(s

fo−CS,λ′
) for all c∈C.

A formal proof can be found in online Appendix D.12. The reason why this holds in CS is that,

unlike in FS, families will not shy away from children in whom they are interested just because

the probability of matching with them decreases. This result is reminiscent of a similar result in

standard two-sided matching markets, as the number of agents in one side increases, the other

side agents become all unambiguously better off under side-optimal stable matchings (Gale and

Sotomayor 1985). However, it only holds for CS and only for the children’s welfare.

8. Numerical Evaluation

We previously established that CSEs can be Pareto improvements over FSEs while FSEs cannot

be Pareto improvements over CSEs, and that agents can be better off in either approach (see

Theorem 1 and Proposition 4). Additionally, we have shown that all children will be better off

in CS compared to FS if families are sufficiently impatient. Here, we present numerical results to

further investigate the conditions under which children and families will be better off in CS or

FS. Our results suggest that CS is almost always preferable for both sides of the market. Only

when agents’ preferences are perfectly correlated and families are very patient do we find that, on

average, there are more child types better off in FS than in CS in equilibrium.

Section 8.1 describes how our numerical experiments are set up. We then explain how equilibria

are computed in Section 8.2. In Section 8.3, we compare FS and CS in terms of their Pareto

dominance relationship. We further quantify how many agents are typically better off in either

approach.

8.1. Setup

We now describe the setup of our numerical evaluation. We set the number of agent types on each

side to be n=m= 50.

Valuations: For the generation of agents’ valuations, we follow other approaches from the

matching literature (Abdulkadiroğlu et al. 2015, Mennle et al. 2015). Each agent type i ∈ A is

uniformly assigned a “quality” qi at random from [0,1]. Then, for each child-family pair (c, f)∈C×

F , idiosyncratic values ηc(f) and ηf (c) are randomly drawn from [0,1]. For a given value α∈ [0,1],

we obtain the preliminary valuations v′c(f) = αqf +(1−α)ηc(f) and v′f (c) = αqc+(1−α)ηf (c). Note

that as α increases, agents’ preferences become more similar and end up being identical (vertical)

for α= 1. Final valuations v are obtained by normalizing v′, such that the minimal and maximal

value that each agent has for a match is 0 and 1, respectively. Although we consider various values

for α, note that the practical level of verticality in child welfare tends to be relatively low. For
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example, data provided by the platform that we examine in Section 9 shows notable variation in

families’ stated preferences on several dimensions, which, taken together, suggests that preferences

are not very aligned. See online Appendix G for details.

Data: We generated 200 quality-value pairs (q(1), η(1)), . . . , (q(200), η(200)) as described above.

Parameters p and λ are chosen to be p= λ= 0.5, and we let δ := δC = δF and κ := κC = κF For

each pair (q(k), η(k)), we computed the child-optimal CSE/FSE and the family-optimal CSE/FSE

for each combination of α, δ, and κ, where α ∈ {0,1/3,2/3,1.0}, δ ∈ {0.8,0.9,0.975,0.99}, and

κ∈ {0.01,0.02,0.05,0.1}. Thus, we consider 200 · 4 · 4 · 4 = 12800 different instances and compute a

total of 51200 equilibria. Unless specified otherwise, results are averaged over all instances.

8.2. Equilibrium Computation

The mapping T defined in the proof of Proposition 3 can be used to find the child-optimal and

family-optimal equilibria. The following procedure converges to an equilibrium threshold profile:

Start from the ≤C-minimal element in Y , i.e., the minimum point of the lattice spanned by the

partial order ≤C over the threshold vectors in the game, and recursively apply T to it. The ≤C-

minimal element in Y is the threshold vector y where y
c
= 0 for each child c and y

f
= v̄ for each

family f . This produces a sequence y0, y1, y2, . . . of threshold profiles, which converges to the fo-

FSE. Starting from the ≤C-maximal element in Y , i.e., the maximum point of the lattice spanned

by the partial order ≤C over the threshold vectors in the game, yields the co-FSE. The ≤C-maximal

element is the threshold vector y where yc = v̄ for each child c and yf = 0 for each family f . In

order to terminate after a finite number of steps, we force the procedure to stop once |yk
i −yk+1

i | ≤ ϵ

for all i ∈ A for some previously chosen small parameter ϵ > 0. The threshold profiles obtained

by this procedure can then be mapped to the corresponding strategy profiles. We have performed

additional checks to validate that the computed strategy profiles are indeed equilibria.

8.3. Results

Before comparing FS and CS, we first note that family- and child-optimal equilibria in FS coincide

roughly 97% of the time. The same holds for CS. For simplicity, we only consider family-optimal

equilibria in our analysis. As equilibria are almost always unique within each search technology,

results for child-optimal equilibria do not differ markedly. We do, however, observe substantial

differences between FS and CS. Of all cases considered, the CSE and the FSE only coincide once

in the sense that the same agents are mutually interested in each other.

Consistent with Theorem 1, the family-optimal FSE never represents a Pareto improvement upon

the corresponding family-optimal CSE. However, for approximately 22% of all instances, the CSE

Pareto dominates the corresponding FSE. Figure 1 shows the distribution of cases in which the CSE

dominates an FSE for different discount factors and levels of correlation among preferences. Two
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insights emerge from this analysis: First, as agents become more impatient, CSEs more frequently

constitute Pareto improvements over FSEs. As indicated by Proposition 7, once families become

sufficiently impatient, any CSE will Pareto dominate all FSEs. Second, when preferences exhibit

high correlation, CSEs rarely Pareto dominate FSEs. The case of vertical preferences — i.e., α= 1

— helps to explain this effect. If agents are patient enough, a family f in the CS regime might

wait for an opportunity to match with a high-type child c, even if f is not c’s first choice and f

must wait a long time until getting matched. In FS, however, if there are enough other families

that c prefers over f , f or c might shy away from being interested in order to avoid accumulating

search costs for such an “unlikely” match. In that case, f might settle for another low-type child

or multiple low-type children instead (see the example from the proof of Proposition 5). These

low-type children now benefit from FS, while f will be worse off in FS compared to CS.

Figure 1 Percentage of instances in which the CSE is a Pareto improvement over the corresponding FSE for

different combinations of agents’ patience levels and degree of preference correlation.

The previous Pareto comparison only allows for a very high-level comparison of FS and CS. To

better understand the conditions under which certain agents benefit from FS or CS, we compare

the number of agents who are better off in either search discipline. Our numerical experiments show

that all families are almost always better off in CS. We refer the reader to online Appendix H.1

for more details on families’ statistics. For children, the combination of model parameters affects

which approach appears more appealing. Figure 2 shows how many children are (strictly) better

off (in terms of utilities) in CS and FS for different parameter combinations.

CS provides higher utility than FS for almost all children when agents are sufficiently impatient

(e.g., δ= 0.8) because CS allows agents to express interest in more potential match partners without

risking wasted search efforts. Being interested in more agents increases the probability of getting

matched at each time step, which is especially valuable to children when patience is low. On the

other hand, FS incentivizes agents to focus on a smaller set of match candidates due to higher

expected total search costs. When δ= 0.8, families will, on average, be interested in 35.9 and 43.5
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Figure 2 The ratio of children on average (strictly) better off in terms of utilities in either approach in the

family-optimal equilibrium for different combinations of agents’ patience and preference correlation

level.

child types in FS and CS, respectively.10 Interestingly, more children benefit from FS than CS

when agents are extremely patient and agents’ preferences are almost completely aligned. Although

unlikely to occur in practical child welfare settings, this explains why CSEs are less frequently

Pareto improvements over FSEs under these conditions, as we previously saw in Figure 1.

Figure 3 The ratio of children on average (strictly) better off in terms of (expected discounted) match value

in either approach in the family-optimal equilibrium for different combinations of agents’ patience and

the level of preference correlation.

Figure 3 shows that CS not only reduces wasted search efforts in many cases but also enables

children to match with more preferred families. We calculate a child’s match value as the child’s

utility, ignoring the expected search costs, which might be less relevant to a policymaker trying to

improve child outcomes.

9. Empirical Evidence from a Field Implementation

To validate our model and understand the real-world implications of switching from an FS to a

CS approach, we analyze children’s outcomes for a multi-county region in Florida that started

10 The probability of matches occurring is another metric of interest to stakeholders. Our findings on match proba-
bilities can be found in Section H.2.



Dierks, Olberg, Seuken, Slaugh and Ünver: Search and Matching for Adoption from Foster Care 25

0%

10%

20%

30%

40%

50%

60%

70%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Pe
rc

en
t o

f C
hi

ld
re

n

N
um

be
r o

f C
hi

ld
re

n

Florida Children Eligible for Adoption on July 1 and Outcomes by June 30 of Following Year
Adopted Not Adopted % Adopted

Figure 4 Children eligible for adoption in Florida on July 1 of each year and whether they are adopted by June

30 of the following year (Florida Department of Children and Families 2019, 2024).

implementing a CS approach on July 1, 2018, by adopting a technology platform which we simply

refer to as the platform. The region, one of 20 circuits in Florida, is administered on the state’s

behalf by a non-profit organization — which we refer to as the agency. The agency’s previous FS

approach relied on regular email announcements to the full pool of registered families to advertise

children in need of adoption. Out of frustration with the difficulties in finding adoptive placements

for children, the agency’s leadership decided to implement the technology platform and follow a

CS discipline. In the new approach, caseworkers contact individual families listed on the platform

whom they consider a good match for a child. The platform’s purpose in this approach is to provide

an easy-to-navigate database of prospective families. Additionally, it offers family recruitment,

evaluation, and recommendation services to support caseworkers.

Our analysis compares the agency’s performance to outcomes for children in Florida reported in

the Adoption and Foster Care Analysis and Recruiting System (AFCARS) from the US Children’s

Bureau, Administration on Children, Youth and Families (2023a,b) for FY2015 to FY2021, which

is the most recently available data on all foster care cases and finalized adoptions. From 766,527

AFCARS foster care 6-month update records for Florida children during this period, we identified

10,286 children as legally free and clear for adoption with cases starting after October 1, 2014. While

the platform’s usage is free to all agencies in Florida, the overwhelming majority of placements

during the observed period were still searched via traditional methods, with only the considered

agency utilizing CS as their primary method. While some other agencies occasionally employed

the platform’s tools to help identify families for harder-to-place children, these constitute less than

4% of adoptions in the AFCARS dataset.

For the agency, we obtained case data from the platform about 279 children in need of adoptive

placements who were listed by the agency before the AFCARS cut-off date of October 1, 2021.

The platform provided its first matches around July 1, 2018. While the agency listed all children in
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need of an adoptive placement on the platform, a small number of these children found placement

through other channels, such as word of mouth within the agency, Florida’s online photolisting

websites, and other contracted recruitment efforts for specific children. We include these placements

in our analysis because serendipitous matches occur outside the primary (FS or CS) search channel

in any system but cannot be identified in the AFCARS dataset. Details of how the data is assembled

and pre-processed can be found in online Appendix I.1.

It should be noted that Florida experienced at least two dramatic shocks to its child welfare

system in the years over which the platform was implemented. As shown in Figure 4, the statewide

population of children legally free for adoption — which also includes children on a path to adoption

by relatives and foster parents — increased by nearly 50% from 2015 to 2018 (Florida Department

of Children and Families 2019, 2024). Quast et al. (2018) document a relationship between opioid

prescriptions and child welfare system entries in Florida in the early 2010s that could partially

explain this increase in children in need of adoption as the opioid crisis worsened. Despite an

increase in children needing adoptive placements, the state’s reported metric of the percentage

of children eligible for adoption on June 30 of some year and adopted by July 1 of the following

year remained above 55% from 2017 until 2019. However, that metric dropped below 50% in the

years after the coronavirus pandemic, as caseworker turnover, staffing shortages, and slower judicial

processing times may have hindered adoptive searches. After reaching the lowest reported value

of 46.7% for 2022-2023, the metric only returned to above 50% in the most recent report covering

2023-2024.

9.1. Statistical Approaches

Using the AFCARS and platform datasets, we assess the platform’s impact on children’s outcomes

through two statistical approaches that take advantage of the datasets’ similar structure. First,

we construct a benchmark for the set of agency children using the Florida AFCARS case data.

Second, we statistically measure the treatment effect of the platform by appending the platform

case data to the AFCARS case data and including a variable for being listed on the platform. This

approach dampens the estimated platform effect and its statistical significance, as the 279 children

of the platform are double-counted in the AFCARS dataset without the treatment variable. Thus,

we expect real treatment effects to be larger than those estimated.

Table 1 presents child statistics for the AFCARS and platform data, highlighting some key

differences: The platform’s population of children tends to be older, more male, and more likely

to have a clinically diagnosed disability — all factors associated with greater difficulty in placing

children. The difference in the age distribution between the AFCARS and platform datasets is

statistically significant at the 0.05 level by both a Welch’s t-test and a Mann–Whitney U test.
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Table 1 Summary Statistics for AFCARS and Platform Data

AFCARS (N=10,286) Platform (N=279)

Attribute Covariate Mean (SD) or Percent Mean (SD) or Percent

Case Duration (years) 1.47 (1.17) 1.60 (0.91)

Adopted before End of Data Horizon 46% 59%†

Age at TPR (years) Age 7.71 (5.16) 8.39 (4.73)
Sex

Female Female 48.9% 42.3%
Male 51.1% 57.7%

Race (may be multiple)
American Indian or Alaskan Native 0.3% 0.0%
Asian 0.6% 0.0%
Black or African American Black 36.1% 23.3%
Native Hawaiian/Other Pacific Islander 0.2% 0.0%
White 70.5% 65.2%
Other N/A 11.5%

Hispanic or Latino Ethnicity Hispanic 14.6% 3.6%
Clinical Disability Diagnosis Disability 32.7% 37.6%
† Includes 144 adoptions via the platform and 21 children listed on the platform but adopted by
non-relative/non-foster families found off-platform.

Using a chi-squared test, the difference is also significant at that level for the Female variable but

not for the Disability variable. Fewer children on the platform are Black, which reflects regional

variations in Florida’s population. Due to differences in how the datasets treat multi-racial children,

we provide analysis in Section I.2.3 of the Appendix that shows how estimates of the platform’s

performance improve if the Black variable refers only to children with the Black or African American

variable exclusively selected as a race variable in the AFCARS dataset.

We also note that the AFCARS dataset’s inability to explicitly identify children in need of

adoptive search resources results in a conservative assessment of the platform’s performance; i.e.,

it will underestimate the platform’s impact. Specifically, managers with experience in Florida child

welfare agencies report that some children in the AFCARS dataset may go through the termination

of parental rights (TPR) judicial process with an already-identified adoptive placement with a

non-relative, such as a teacher, church member, or neighbor.

Both of our statistical approaches model children’s time to placement using a Cox proportional

hazards model (Cox 1972). The Cox proportional hazards model includes a baseline hazard function

that describes how the likelihood of a placement changes over time, as well as a parameter for

each covariate that affects the baseline hazard. The following characteristics were available in both

AFCARS and the platform data, allowing us to control for them in the hazards model (for discrete

variables, one of the categories is omitted for statistical identification):

1. female (versus male, the omitted category);

2. Black or African-American (versus no such designation, the omitted category);

3. Hispanic or Latino ethnicity designation (versus no such designation, the omitted category);

4. clinical disability diagnosis (versus no diagnosis, the omitted category);
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5. age in years upon termination of parental rights; and

6. federal fiscal year (e.g., October 1, 2014, to September 30, 2015, for FY2015) of the termination

of the parental rights (TPR) order, with FY2015 as the omitted category.

Focusing on Model 1 — the Cox proportional hazards model without a platform effect that is

used for benchmarking — let t= 0 denote the TPR date for some child i. The hazard of adoption

finalization at time t is given by the semi-parametric Cox model

h(t |Xi) = h0(t) exp
(
β1Femalei +β2Blacki +β3Hispanici +β4Disabilityi +β5Agei +β6Age2i

+
∑2021

y=2016βy 1{FYi = y}
)
, (13)

where h0(t) is a baseline hazard rate common to all children11 and Xi collects the covariates listed

above. The indicator 1{FYi = y} flags the fiscal year in which TPR occurred. Estimation relies

on Cox’s partial likelihood, which is obtained using the hazard rates of all children. Maximizing

the log-partial likelihood yields the coefficient estimates. An exponentiated coefficient exp(βk)> 1

indicates that covariate k is associated with a faster-than-baseline adoption rate, whereas exp(βk)<

1 signals a slower rate. We explain how the estimated model in Equation (13) changes when the

platform effect is included for the second approach in Section 9.3.

9.2. Benchmark Against Statewide Outcomes

Using only the statewide AFCARS data, we construct a benchmark for the outcomes of children

served by the platform. Model 1 of Table 2 shows how demographic factors affect the time to

placement using the AFCARS dataset for Florida children, i.e., the maximum-likelihood estimation

of the Cox model in Equation (13). Controlling for the fiscal year in which the search started,

covariates associated with a faster placement are being female and having Hispanic ethnicity;

factors associated with a slower time to or diminished likelihood of adoption are being older, having

a disability, and being Black. Using this fitted model, we collected the necessary covariate data on

each child served by the platform and predicted the likelihood of a finalized adoption at monthly

intervals, as explained below. If a child is adopted, the benchmark adoption probability continues

accumulating as if the child’s search continued until the earlier date of February 1, 2023, or the

child’s 18th birthday.

By adding the predicted adoption probabilities of all children served by the platform, we can

establish a benchmark against which to compare the actual adoptions of children on the platform.

Let C represent the set of children on the platform. For any child i ∈ C with attributes Xi, we

11 The baseline hazard rate is estimated using the methodology of Breslow (1972).
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Table 2 Cox Proportional Hazards Models of Time Until Adoption

Model 1 Model 2

Female 1.080∗∗ 1.089∗∗

(2.615) (2.965)
Black 0.768∗∗∗ 0.769∗∗∗

(−8.379) (−8.441)
Hispanic 0.827∗∗∗ 0.841∗∗∗

(−4.313) (−3.963)
Age at TPR (years) 0.889∗∗∗ 0.891∗∗∗

(−9.563) (−9.507)
(Age at TPR)2 0.999 0.999

(−0.791) (−1.072)
Disability 0.881∗∗∗ 0.866∗∗∗

(−3.766) (−4.345)
TPR in FY2016 0.967 0.954

(−0.605) (−0.844)
TPR in FY2017 1.052 1.031

(0.918) (0.560)
TPR in FY2018 0.927 0.888∗

(−1.419) (−2.238)
TPR in FY2019 0.753∗∗∗ 0.750∗∗∗

(−5.191) (−5.308)
TPR in FY2020 0.516∗∗∗ 0.522∗∗∗

(−10.847) (−10.827)
TPR in FY2021 0.493∗∗∗ 0.503∗∗∗

(−8.613) (−8.626)
Platform 1.272∗∗

(2.974)

Platform Cases 0 279
N 10,286 10,565
Concordance 0.680
Log-likelihood ratio test 1969.148 2038.169

on 12 d.f. on 13 d.f.

Note: exponentiated coefficients; z-statistics in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

can use the survival probability to predict the adoption probability function using the estimated

hazard function ĥ(·|Xi) in Model 1

π̂(Xi, t) := 1− exp

(
−
∫ t

0

ĥ(u |Xi)du

)
(14)

for the likelihood that child i has a finalized adoption within t years.

A child’s maximum possible search horizon from TPR until the child turns 18 is denoted by

τ e
i . We use τd

i to represent the time between the TPR date and the earliest possible adoption

finalization date after registration on the platform. We calculate τd
i as the time between the case

creation date and the TPR date, plus an additional three months to account for the legally required

period in Florida during which a child must reside with the adoptive family before the adoption is

finalized.12

12 We provide an alternate analysis in which we assume τd
i = 0, as well as an analysis excluding platform children

whose placement was identified through other channels in online Appendix I.2.



30 Dierks, Olberg, Seuken, Slaugh and Ünver: Search and Matching for Adoption from Foster Care

To account for the time that a child might have already been eligible for adoption before being

listed on the platform, we calculate a conditional survival probability for child i at any time t > τd
i

since TPR as

π̃(Xi, t, τ
e
i , τ

d
i ) :=

π̂(Xi,min{t, τ e
i })− π̂(Xi, τ

d
i )

1− π̂(Xi, τd
i )

, (15)

which provides the AFCARS benchmark µ̂(t) for the number of expected matches by time t:

µ̂(t) :=
∑

i∈C π̃(Xi, t, τ
e
i , τ

d
i ). (16)

Figure 5 shows the adoptions achieved through the platform compared to this benchmark from

the AFCARS proportional hazards model. The results show that the platform has outperformed

the commonly used two-year and three-year search window benchmarks. For children listed on the

platform before October 1, 2021, 138 adoptions were finalized within two years — 123 enabled

by the platform and 15 through other channels — while the predicted number for children on

the platform was only 117.2. At the three-year mark, this difference between adoptions achieved

and the predicted number extends to an extra 31.6 adopted children, or a 24% increase over the

benchmark. However, the platform’s performance fell short of the AFCARS benchmark one year

after the search began, even though the platform not only made up for this gap but surpassed the

benchmark at the two-year and three-year marks. The difference in performance may be attributed

to a limitation of the AFCARS datasets mentioned above: some cases included in the benchmark

might not have actually required a search for a family but rather had a potentially faster and

easier non-relative adoptive placement. One subject-matter expert shared that it is common for

foster families to network and recruit on behalf of children in their care who might need adoptive

placements; these children might have an adoptive resource identified at TPR who is not a relative

or foster parent and be included in our benchmark dataset.

Despite this disadvantage, the platform’s over-performance over longer time horizons may indi-

cate that the technology helps caseworkers to be more persistent in their search efforts for hard-

to-place children. When Avery (2000) investigated the longest-waiting children in New York, case-

workers were found to be pessimistic about the children’s chances at adoption. They also neglected

to use the search tools available to them. However, in addition to the evidence of usage from the

actual placements generated by the platform, a survey of the platform’s 73 active users in Florida

suggests a positive assessment of caseworker satisfaction with the new CS-driven system. A total

of 51 respondents — mostly caseworkers but also some supervisors and recruitment specialists —

responded to the survey in 2023. About 30% of the respondents had been in their current role for

at least five years, so many of the respondents were familiar with other search methods besides
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Figure 5 Actual adoptions by the agency using the platform and other channels compared to Florida AFCARS

benchmark model. Dashed lines represent the 95% confidence interval defined by the Poisson binomial

distribution.

the platform. When asked how satisfied they were with the platform, approximately 33% were

very satisfied, and 31% were somewhat satisfied. Only 5% were very dissatisfied, and only 9%

were somewhat dissatisfied. Thus, this case study shows that providing leads of potential adoptive

families may encourage caseworkers to persist in finding families.

9.3. Platform Effect in Cox Proportional Hazards Model

To provide additional evidence of the platform’s effectiveness compared to statewide outcomes, we

re-estimated the Cox proportional hazards model on a combined dataset to verify that engagement

with the online adoption matching platform speeds the journey from TPR to adoption finalization.

Because AFCARS restrictions bar direct record linkage and obscure dates of birth (i.e., to the

month of birth), a given child can appear in both treatment and control groups — an approach that

biases estimates toward understating, rather than exaggerating, any positive or negative platform

effect.

Since there is a significant difference between the TPR date for some children and the date on

which they were added to the platform, we treat the platform variable as time-varying: the child’s

timeline starts at TPR, with the platform variable’s value switching from zero to one at a point

three months after the platform case is created. The three-month delay accounts for the minimum

period Florida law requires before an adoption can be finalized after placement. Thus, any adoption

within the three months after listing cannot be attributed to the platform’s search.

More precisely, when compared with the Cox proportional hazards model introduced in Equation

(13), we add a binary covariate to account for whether the child has been on the platform or

not. We make the term OnPlatformi(t) time dependent, and the binary variable OnPlatformi(t) is
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turned on three months after the child is listed on the platform. Each case’s timeline still begins

on the TPR date.13

We call this Model 2, with resulting coefficients found in Table 2. We see that control variables

behave as expected. Girls experience higher adoption hazards than boys, while Black and Hispanic

children tend to be adopted more slowly than children of other racial groups. A clinical disability

diagnosis and a child’s increasing age are also linked to decreased adoption hazards, as well as TPR

in pandemic years or immediately before.

This analysis finds that the platform is consistently associated with faster adoption. The esti-

mated platform hazard ratio is 1.272, indicating a 27.2% increase in the hazard rates compared to

not using the platform (i.e., faster adoptions on average). This ratio is significant at the 1% level,

despite the biases against the platform built into the dataset construction mentioned above. Taken

together, these results confirm that the agency has seen accelerated adoption and finalization rates

compared to statewide outcomes after implementing the platform.

Conclusion

Treating the search for adoptive families as an operations challenge, we develop the first formal

game-theoretic model for the child welfare system adoption process and introduce a novel search-

and-matching framework to compare caseworker-driven and family-driven search paradigms. We

characterize the Nash equilibria of these models, showing that agents adopt threshold strategies

under a mild tie-breaking condition and that equilibria form a non-empty complete lattice. We find

that caseworker-driven search better avoids wasted search efforts and, in most settings, improves

outcomes. While caseworker-driven equilibria can Pareto dominate all family-driven equilibria, the

converse does not hold. Although caseworker-driven equilibria do not always Pareto dominate those

of family-driven search, they typically perform better for most agents, as confirmed through exten-

sive numerical analysis. However, we also identify conditions — notably, highly patient agents with

strongly correlated preferences — under which caseworker-driven search may harm children. Yet

such conditions are rare in practice: families usually desire a timely placement after completing the

adoption approval process, and preferences tend to be idiosyncratic. When families are sufficiently

impatient, caseworker-driven search unambiguously benefits all children.

Empirically, we analyze adoption outcomes for 279 children in need of adoptive placements who

were served by a Florida agency that shifted from family-driven to caseworker-driven search. Using

Cox proportional hazards models that control for observable characteristics as a benchmark, we

find a 24% increase in the likelihood of adoption finalization within three years. Similarly, a hazard

13 We provide an alternative analysis with non-time-varying platform variables, that is, where the timeline for platform
children begins once they are listed on the platform, in online Appendix I.2.
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model fitted on a combined dataset indicates 27% increases in the instantaneous adoption rate

despite conservative bias in the data construction.

Our work provides a foundation for future empirical research into managing the operation of

adoptive placement searches, especially how to allocate caseworkers’ efforts across difference search

channels. While existing research in child welfare literature emphasizes the effectiveness of highly

specialized recruiters, we show how technology can help frontline caseworkers achieve better out-

comes for children. Furthermore, our benchmarking approach that utilizes AFCARS data provides

a replicable tool for evaluating agency performance and child welfare system reforms. Additional

study of caseworker behavior, family engagement, and children’s outcomes under different search

practices is essential to improving services for this vulnerable population.
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Abdulkadiroğlu A, Che YK, Yasuda Y (2015) Expanding “Choice” in School Choice. American Economic

Journal: Microeconomics 7(1):1–42.

Adachi H (2003) A search model of two-sided matching under nontransferable utility. Journal of Economic

Theory 113(2):182–198.

Akbarpour M, Combe J, He Y, Hiller V, Shimer R, Tercieux O (2020a) Unpaired kidney exchange: Overcom-

ing double coincidence of wants without money. Proceedings of the 21st ACM Conference on Economics

and Computation, 465–466.

Akbarpour M, Li S, Gharan SO (2020b) Thickness and information in dynamic matching markets. Journal

of Political Economy 128(3):783–815.

Albrecht JW, Gautier PA, Vroman SB (2006) Equilibrium directed search with multiple applications. Review

of Economic Studies 73(4):869–891, URL http://dx.doi.org/10.1111/j.1467-937X.2006.00400.x.

Altinok A, MacDonald D (2023) Designing the menu of licenses for foster care. Available at SSRN 4466506

.

Andersson T, Ehlers L, Martinello A (2018) Dynamic Refugee Matching. Technical report, Lund University,

Lund, Sweden.

Arnosti N, Johari R, Kanoria Y (2021) Managing congestion in matching markets. Manufacturing & Service

Operations Management 23(3):620–636.

Arnosti N, Shi P (2020) Design of lotteries and wait-lists for affordable housing allocation. Management

Science 66(6):2291–2307.

Atakan AE (2006) Assortative Matching with Explicit Search Costs. Econometrica 74(3):667–680.

Auster S, Gottardi P, Wolthoff RP (2025) Simultaneous search and adverse selection. Review of Economic

Studies URL http://dx.doi.org/10.1093/restud/rdaf014, advance online publication.

Avery RJ (2000) Perceptions and practice: Agency efforts for the hardest-to-place children. Children and

Youth Services Review 22(6):399–420.

Avery RJ, Butler J, Schmidt EB, Holtan BA (2009) AdoptUsKids national photolisting service: Char-

acteristics of listed children and length of time to placement. Children and Youth Services Review

31(1):140–154.

Baccara M, Collard-Wexler A, Felli L, Yariv L (2014) Child-Adoption Matching: Preferences for Gender and

Race. American Economic Journal: Applied Economics 6(3):133–158.

Baccara M, Lee S, Yariv L (2020) Optimal dynamic matching. Theoretical Economics 15(3):1221–1278.

Bansak K, Ferwerda J, Hainmueller J, Dillon A, Hangartner D, Lawrence D, Weinstein J (2018) Improving

refugee integration through data-driven algorithmic assignment. Science 359(6373):325–329.

http://dx.doi.org/10.1111/j.1467-937X.2006.00400.x
http://dx.doi.org/10.1093/restud/rdaf014
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36 Dierks, Olberg, Seuken, Slaugh and Ünver: Search and Matching for Adoption from Foster Care

Feldman SW, Price KM, Ruppel J (2016) Not too late: Effects of a diligent recruitment program for hard

to place youth. Children and Youth Services Review 65:26–31.

Florida Department of Children and Families (2019) Adoption incentive annual report. Office of Child Wel-

fare, URL https://www.myflfamilies.com/sites/default/files/2023-02/2019%2520Adoption%

2520Incentive%2520Report.pdf, accessed: 2024-02-28.

Florida Department of Children and Families (2022) A comprehensive, multi-year review of the revenues,

expenditures, and financial position of all community-based care lead agencies with system of care

analysis. Technical report, Florida Department of Children and Families, Tallahassee, FL, URL https:

//www.myflfamilies.com/programs/childwelfare/dashboard/, state Fiscal Years 2020–2021 and

2021–2022.

Florida Department of Children and Families (2024) Adoption incentive annual report. Office of Child and

Family Well-Being, URL https://www.myflfamilies.com/sites/default/files/2024-12/2024%

20Annual%20Adoption%20Incentive%20Report.pdf, accessed: 2025-03-11.

Fradkin A (2017) Search, Matching, and the Role of Digital Marketplace Design in Enabling Trade: Evidence

from Airbnb. Technical report, Boston University Questrom School of Business.

Gale D, Sotomayor M (1985) Ms. Machiavelli and the stable matching problem. The American Mathematical

Monthly 92(4):261–268.

Gypen L, Vanderfaeillie J, De Maeyer S, Belenger L, Van Holen F (2017) Outcomes of children who grew

up in foster care: Systematic-review. Children and Youth Services Review 76:74–83.

Halaburda H, Piskorski MJ, Yildirim P (2018) Competing by restricting choice: The case of matching plat-

forms. Management Science 64(8):3574–3594, URL http://dx.doi.org/10.1287/mnsc.2017.2797.

Hanna M, McRoy R (2011) Innovative Practice Approaches to Matching in Adoption. Journal of Public

Child Welfare 5(1):45–66.
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e-Companion
A. Home Studies

Before a family can be considered for adoption, they have to complete a home study. State reg-

ulations determine minimum requirements for home studies. For example, 2024 Florida Statutes

Chapter 63 Section 092 states:

The preliminary home study must be made to determine the suitability of the intended adoptive

parents and may be completed prior to the identification of a prospective adoptive child. The

study must include, at a minimum, the following:

• An interview with the intended adoptive parents.

• Records checks of the department’s central abuse registry, which the department shall pro-

vide to the entity conducting the preliminary home study, and criminal records correspondence

checks under s. 39.0138 through the Department of Law Enforcement on the intended adoptive

parents.

• An assessment of the physical environment of the home.

• A determination of the financial security of the intended adoptive parents.

• Documentation of counseling and education of the intended adoptive parents on adoptive

parenting, as determined by the entity conducting the preliminary home study. The training

specified in s. 409.175(14) shall only be required for persons who adopt children from the

department.

• Documentation that information on adoption and the adoption process has been provided

to the intended adoptive parents.

• Documentation that information on support services available in the community has been

provided to the intended adoptive parents.

• A copy of each signed acknowledgment of receipt of disclosure required by s. 63.085.

However, most agencies perform more comprehensive studies than required by law to ensure a

smoother process. In practice, home studies typically also include additional information on

• Family background, including education and health

• Relationships and social environment

• Parenting experiences

• A description of daily life routines

• Details about home and neighborhood

• Reasons for seeking an adoptive placement

• Recommendations by the caseworker about what types of children the family is suited for

(e.g., especially regarding special needs, but also other factors such as gender or age)
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B. Increased Uncertainty or Heterogeneity

Our analytical model assumes a relatively limited amount of variability and uncertainty: the value

of every match is known a priori. The only uncertainty is whether the child is compatible with

the considered family, with the suitability probability p being the same for all matches. This

is not without loss of generality. In practice, compatibility is a spectrum, and values may be

uncertain. This means that while caseworkers and families may have prior beliefs based on their

own experiences and potentially supplemented by recommender systems, the actual value of a

match is not known until the investigation is conducted. Unfortunately, explicitly modeling such

higher degrees of uncertainty is intractable in a model where both market sides are strategic and

more than one match may be investigated per time period.

This is because if values are uncertain, family utility is no longer monotonic in terms of how

selective a child is. While children being less selective (i.e., considering families it has lower expected

value for) still increases a family’s utility if it causes the child to be interested in them, it often

reduces a family’s utility if the child was already interested in them (as the child has some proba-

bility of instead matching with a different family they didn’t even consider before). This may lead

to non-convergence of best responses and non-existence of equilibria in pure strategy, even if only

either the suitability or market thickness is heterogeneous.

Proposition 10. If suitability probabilities are heterogeneous, i.e., if there exist different pc,f

for different child/family pairs, or if families have heterogeneous probabilities λf to be present, then

pure strategy equilibria do not always exist.

Proof. Consider the following example in FS where each child/family pair has its own proba-

bility pc,f for being suitable. Let C = {c1, c2}, F = {f1, f2, f3}, and let valuations and suitability

probabilities be according to the following tables

vc(f) f1 f2 f3
c1 2 1 0.5
c2 0.5 0 1

vf (c) f1 f2 f3
c1 20 0.11 2
c2 5 0 2

pc,f f1 f2 f3
c1 0.1 0.99 1
c2 0.5 0.5 0.5

Let λ= 1 (i.e., all family types are always present). Further, assume children are very impatient

and have negligible search costs, i.e. δC = κC = 0, while families are very patient δF = 1 and have

search cost κF = 0.1. Note that this implies that a) both children are so impatient, that they will

be interested in all families and b) families will be so patient, that they are at most interested in a

single-child type (unless both children types give almost the same expected utility, which cannot

happen in pure strategy with these parameters). Note that setting these extreme values is not

required for equilibrium non-existence and is only done for brevity.
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In this setting, it is not rational for f2 to be interested in c2, independent of the other agent’s

strategies. Further, if f1 is interested in c1 in equilibrium, f2 cannot be interested in c1 as doing so

would result in negative utility, as c1 prefers f1 to f2: the probability that c1 doesn’t successfully

match with f1 times the probability that f2 and c1 are compatible times vf2(c1) equals (1− 0.1)×
0.99× 0.11 = 0.09801 ≤ 0.1 = κF . However, if f1 is not interested in c1, f2 would obtain positive

utility (i.e., 0.99× 0.11 = 0.1089≥ 0.1) and therefore would be interested.

Thus, we only have 4 possible equilibrium candidates, depending on in which child families f1

and f3 are interested.

1. If f1 and f3 are interested in c1 in equilibrium, then f1 will obtain utility 0.1× 20− 0.1 = 1.9.

However, f1 deviating to be (solely) interested in c2 would yield utility 0.5× 5− 0.1 = 2.4> 1.9, a

contradiction.

2. If f1 is interested in c1 and f3 is interested in c2 in equilibrium, then f3 will obtain utility

0.5× 2− 0.1 = 0.9. However, f3 deviating to be (solely) interested in c1 would yield utility (1−
0.1)× 1× 2− 0.1 = 1.7> 0.9, a contradiction.

3. If f1 and f3 are interested in c2 in equilibrium, then f1 will only be chosen if f3 is incompatible,

thus obtaining expected utility 0.5 × 0.5 × 5 − 0.1 = 1.15. However, f1 deviating to be (solely)

interested in c1 would yield utility 0.1× 20− 0.1 = 1.9> 1.15, a contradiction.

4. If f1 is interested in c2 and f3 is interested in c1 in equilibrium, then f2 is interested in c1.

Since c1 prefers f2 and has a pc1,f2 = 0.99 likelihood of being compatible, this implies that f3 only

obtains utility (1− 0.99)× 1× 2− 0.1 =−0.08, an immediate contradiction.

In conclusion, there can be no equilibrium in pure strategies, because f1 always prefers the child

type f3 is not interested in, while f3 always prefers the child type f1 is interested in.

To see the nonexistence of equilibria for heterogeneous λf , consider the following example. Let

C = {c1, c2}, F = {f1, f2, f3} and let valuations and λf be according to the following tables

vc(f) f1 f2 f3
c1 2 1 0.5
c2 0.5 0 1

vf (c) f1 f2 f3
c1 4 0.11 2
c2 5 0 1

f1 f2 f3
λf 0.1 0.99 1

Let p= 1 (i.e., all families are suitable). Further, assume children are impatient and have neg-

ligible search costs, i.e. δC = κC = 0, while families are very patient δF = 1 and have search cost

κF = 0.1. Note that this implies that a) both children are so impatient, that they will be interested

in all families and b) families will be so patient, that they are at most interested in a single-child

type (unless both children types give almost the same expected utility, which cannot happen in

pure strategy with these parameters). Note that setting these extreme values are not required for

equilibrium non-existence and is only done for brevity.
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In this setting, it is not rational for f2 to be interested in c2, independent of the other agent’s

strategies. Further, if f1 is mutually interested in c1 in equilibrium, f2 cannot be interested in c1

as doing so would result in negative utility: due to c1 preferring f1 whenever present (10% of the

time), the immediate expected value of showing interest is only (1− 0.1)× 0.11 = 0.099, less than

the search cost of 0.1. However, if f1 is not mutually interested in c1, f2 is the child’s first choice

and would obtain positive utility (i.e., 0.11≥ 0.1). Therefore, f2 would be interested.

Thus, we only have 4 possible equilibrium candidates, depending on which child families f1 and

f3 are interested in.

1. If f1 and f3 are interested in c1 in equilibrium, f1 will obtain utility 4− 0.1 = 3.9. However,

f1 deviating to be (solely) interested in c2 would yield utility 5− 0.1 = 4.9> 3.9, a contradiction.

2. If f1 is interested in c1 and f3 is interested in c2 in equilibrium, f3 will obtain utility 1−0.1 =

0.9. However, f3 deviating to be (solely) interested in c1, it would successfully match whenever f1

is not present, yielding utility (1− 0.1)× 2− 0.1 = 1.7> 0.9, a contradiction.

3. If f1 and f3 are interested in c2 in equilibrium, f1 will obtain no utility, as c2 will always match

successfully with f3, a contradiction since f1 can guarantee positive utility by being interested in

c1.

4. If f1 is interested in c2 and f3 is mutually interested in c1 in equilibrium, f2 is interested in

c1. Since c1 prefers f2 over f3, f3 only obtains utility (1−0.99)×1×2−0.1 =−0.08, an immediate

contradiction.

In conclusion, there can be no equilibrium in pure strategies, because f1 always prefers the child

type f3 is not interested in, while f3 always prefers the child type f1 is interested in.

□

As the same effect can be recreated by uncertainty about match values, we immediately obtain

the following.

Corollary 1. If values are uncertain, pure strategy equilibria do not always exist.

While equilibria still exist in mixed strategy (i.e., where agents play randomized strategies), it

is intractable to fully characterize or calculate mixed strategy equilibria in such a complex system.

While we, therefore, restrict our formal analysis to a low level of uncertainty, it is important to

note that uncertainty typically favors CS: In CS, the caseworker can decide whether to investigate

another family based on the expected utility gain while already knowing the true value of previ-

ously investigated matches. Additionally, investigating a family does not prevent the caseworker

from going back and matching with previously investigated families. This allows caseworkers more

flexibility than FS, where all investigation decisions must be made simultaneously, increasing the

chance of “wasted” investigations.
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However, our insight that neither approach always dominates the other still holds. Similar to

before, the lower cost of being mutually interested in CS changes strategic considerations on both

sides of the market and can lead to more matches in FS (e.g., if families are so patient that they

are only interested in a small set of very attractive children in CS).

C. Additional Lemmas and Propositions
C.1. Proposition 11

Here, we show that processing families in decreasing order of vc(f) is optimal for children in CS.

Proposition 11. In CS, c’s utility is maximized if the caseworker processes families in decreas-

ing order of vc(f).

Proof. Assume child c is active at the current time step. Note that families without interest in

c do not affect c’s utility in any way. For the remaining families, c faces a Pandora’s box problem

(Weitzman 1979) where c receives a payoff of vc(f) with probability p and a payoff of 0 with

probability 1− p when the box corresponding to family f is opened. Notice that the reservation

value of the box corresponding to family f is higher than for family f ′ if and only if vc(f)> vc(f
′).

C.2. Proposition 12

Strategy sf is a simple threshold strategy with threshold z ∈ R for family f if sf = 1[vf (c) ≥ z],

∀c∈C. Here, we show that there exist instances where families cannot best respond with a simple

threshold strategy.

Proposition 12. In FS, there exists an instance with a family f and other agents’ strategies

s−f , such that no simple threshold strategy sf is a best response for f .

Proof. Consider the following example: Let C = {c1, c2}, F = {f1, f2} and let valuations be

according to the following tables for some ϵ > 0.

vc(f) f1 f2
c1 1 1− ϵ
c2 1 1− ϵ

vf (c) f1 f2
c1 1 1
c2 1− ϵ 1− ϵ

Suppose strategy profile s is such that sc(f) = sf (c) = 1 for all c∈C, f ∈ F . If ϵ is small enough

and (1−λp)p < κF ≤ p, then it is optimal for f2 to only be interested in c2, even though f2 strictly

prefers c1.
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D. Remaining Proofs
D.1. Proof of Proposition 1

In FS, one way to express c’s utility is as follows:

uFS
c (s) =

[
1−λp

∑
f∈Mc(s)

βcf (s)

]
δCu

FS
c (s)+λ

∑
f∈Mc(s)

[
βcf (s)pvc(f)−κC

]
. (17)

The probability of a match forming between c and f at the current time step is λpβcf (s) if there

is mutual interest, in which case c obtains a value of vc(f) and leaves the process. For any active

family that showed interest, c incurs search costs κC . If c remains unmatched, then c receives

δCu
FS
c (s). By pulling δCu

FS
c (s) out of the sums, we get

uFS
c (s) = δCu

FS
c (s)+λ

∑
f∈Mc(s)

(
βcf (s)p

(
vc(f)− δCu

FS
c (s)

)
−κC

)
. (18)

The proof for families’ utilities in FS and agents’ utilities in CS is analogous and omitted.

D.2. Proof of Proposition 2

First of all, notice that whether agent i is interested in some agent j or not does not affect agent

i’s utility if j is not interested in i. Further, for an arbitrary family f in FS, βcf (s) does not depend

on sf . By slightly modifying Equation (6), we can see that when f plays a best response in s it

must hold that

uFS∗
f (s−f ) = δFu

FS∗
f (s−f )+

1

n

∑
c∈Mf (s)

(
βcf (s)p

(
vf (c)− δFu

FS∗
f (s−f )

)
−κF

)
. (19)

By Equation (19) it must hold for all c∈C that

sf (c) = 1[βcf (s)p
(
vc(f)− δFu

FS∗
f (s−f )

)
≥ κF ] (20)

when there is mutual interest between c and f , as sf would otherwise not be a best response.

That is, because all children c contribute non-negatively to f ’s utility if and only if βcf (s)p
(
vc(f)−

δFu
FS∗
f (s−f )

)
≥ κF . By our tie-breaking assumption, the claim of the proposition follows for families

in FS. The proof for families in CS is analogous and thus omitted.

In the remainder of the proof, we show that the statement holds for children in FS. The proof

for CS is again analogous and therefore omitted. Let c be an arbitrary child. For a best response

sc to s−c we have that

uFS∗
c (s−c) = δCu

FS∗
c (s−c)+λ

∑
f∈F

sc(f)sf (c)
(
βcf (s)p

(
vc(f)− δCu

FS∗
c (s−c)

)
−κC

)
. (21)

As for families, it must be the case that

sc(f) = 1[βcf (s)p
(
vc(f)− δCu

FS∗
c (s−c)

)
≥ κC ] (22)
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because for all f, f ′ ∈ F

βcf (s)≥ βcf ′(s) ⇐⇒ vc(f)≥ vc(f
′), (23)

and otherwise sc would not be a best response to s−c. Again, by our tie-breaking assumption, the

claim of the proposition follows for children in FS.

D.3. Proof of Proposition 3

For FS, define a mapping T FS : Y → Y as follows: T FS = (T FS
i )i∈A, where

T FS
c (y) = δCyc +λ

∑
f∈F

1[βcf (y)p(vf (c)− δFyf )≥ κF ]
(
βcf (y)p(vc(f)− δCyc)−κC

)+

(24)

for all c∈C and

T FS
f (y) = δFyf +

1

n

∑
c∈C

1[βcf (y)p(vc(f)− δCyc)≥ κC ]
(
βcf (y)p(vf (c)− δFyf )−κF

)+

. (25)

for all f ∈ F . Note that any fixed point of T FS (i.e., any y with T FS(y) = y) is an equilibrium

threshold profile in FS. We now show that T FS is monotonically increasing according to ≤C . Let

c∈C, y, y′ ∈ Y , and y≤C y′. We have

T FS
c (y) = δCyc +λ

∑
f∈F

1[βcf (y)p(vf (c)− δFyf )≥ κF ]
(
βcf (y)p(vc(f)− δCyc)−κC

)+

(26)

≤ δCy
′
c +λ

∑
f∈F

1[βcf (y
′)p(vf (c)− δFy

′
f )≥ κF ]

(
βcf (y

′)p(vc(f)− δCy
′
c)−κC

)+

(27)

= T FS
c (y′). (28)

The inequality holds for the following reason: Suppose a family f is interested in c under s(y)

but not under s(y′). Since f is weakly less selective in s(y′), it must be the case that there exists

another family f ′ with vc(f
′) > vc(f) that is not mutually interested in c under s(y) but under

s(y′). Note that for any family that loses interest in c under s(y′), there must exist such a unique

family that replaces it and is preferred by c.

Since each child c is weakly more selective under s(y′) than s(y), we have for all f ∈ F

T FS
f (y) = δFyf +

1

n

∑
c∈C

1[βcf (y)p(vc(f)− δCyc)≥ κC ]
(
βcf (y)p(vf (c)− δFyf )−κF

)+

(29)

≥ δFy
′
f +

1

n

∑
c∈C

1[βcf (y
′)p(vc(f)− δCy

′
c)≥ κC ]

(
βcf (y

′)p(vf (c)− δFy
′
f )−κF

)+

(30)

= T FS
f (y′). (31)

Note that T FS maps elements from Y to Y and (Y,≤C) is a complete lattice. By Tarski’s fixed

point theorem, the claim follows for FS.
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For CS, we define a mapping TCS : Y → Y as follows: TCS = (TCS
i )i∈A, where

TCS
c (y) = δCyc +λ

∑
f∈F

1[p(vf (c)− δFyf )≥ κF ]βcf (y)
(
p(vc(f)− δCyc)−κC

)+

(32)

for all c∈C and

TCS
f (y) = δFyf +

1

n

∑
c∈C

1[p(vc(f)− δCyc)≥ κC ]βcf (y)
(
p(vf (c)− δFyf )−κF

)+

. (33)

for all f ∈ F . Note that any fixed point of TCS is an equilibrium threshold profile in CS. We now

show that TCS is monotonically increasing according to ≤C . Let c ∈ C, y, y′ ∈ Y , and y ≤C y′. It

holds that

TCS
c (y) = δCyc +λ

∑
f∈F

1[p(vf (c)− δFyf )≥ κF ]βcf (y)
(
p(vc(f)− δCyc)−κC

)+

(34)

≤ δCy
′
c +λ

∑
f∈F

1[p(vf (c)− δFy
′
f )≥ κF ]βcf (y

′)
(
p(vc(f)− δCy

′
c)−κC

)+

(35)

= TCS
c (y′), (36)

because each family is weakly less selective under s(y′) than s(y).

Similarly, since each child is weakly more selective under s(y′) than s(y), we have for all f ∈ F

TCS
f (y) = δFyf +

1

n

∑
c∈C

1[p(vc(f)− δCyc)≥ κC ]βcf (y)
(
p(vf (c)− δFyf )−κF

)+

(37)

≥ δFy
′
f +

1

n

∑
c∈C

1[p(vc(f)− δCyc)≥ κC ]βcf (y
′)
(
p(vf (c)− δFy

′
f )−κF

)+

(38)

= TCS
f (y′). (39)

Note that TCS maps elements from Y to Y and (Y,≤C) is a complete lattice. By Tarski’s fixed

point theorem, the claim for CS follows.

D.4. Proof of Lemma 1

Proof. If (c, f)∈M(sFS) and (c, f) /∈M(sCS), then it holds that βcf (s
FS)p(vc(f)−δCuc(s

FS))≥

κC and βcf (s
FS)p(vf (c)− δFuf (s

FS))≥ κF . Further, either p(vc(f)− δCuc(s
CS))<κC or p(vf (c)−

δFuf (s
CS))<κF . If the former is true we have

δCuc(s
FS)≤ vc(f)−

κC

βcf (s
FS)p

≤ vc(f)−
κC

p
< δCuc(s

CS), (40)

since 0<βc(f, s
FS)≤ 1. Otherwise, we get

δFuf (s
FS)≤ vf (c)−

κF

βcf (s
FS)p

≤ vf (c)−
κF

p
< δFuf (s

CS). (41)
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D.5. Proof of Lemma 2.

Proof. If c responds to sCS
−c with sFS

c , c is mutually interested in the same families as under

sFS since Mc(s
FS)⊆Mc(s

CS). Further, c’s expected costs are weakly lower in CS compared to FS.

Hence, there exists a strategy for c in CS where c’s utility is weakly higher than uc(s
FS). The fact

that c plays a best response in sCS completes the proof.

D.6. Proof of Theorem 1

Proof. It is easy to see why all CSEs can be Pareto improvements over all FSEs: Consider the

following example: Let C = {c}, F = {f1, f2} and let valuations be according to the following tables

for some ϵ > 0.

vc(f) f1 f2
c1 1 1− ϵ

vf (c) f1 f2
c1 1 1

Assume that p ≥max{κC , κF}, and ϵ and δC are sufficiently small. If p(1− λp) ≥ κF then the

matching correspondences of the unique FSE and the unique CSE are identical, and f2 only incurs

search costs in CS if the match between f1 and c1 is not suitable. Thus, an agent can be made

strictly better off in CS compared to FS without making anyone else worse off by saving wasted

search efforts. If p(1− λp)< κF , then in the unique FSE there is only mutual interest between c

and f1 while in the unique CSE, all agents have again mutual interest in each other. Furthermore,

the CSE is a Pareto improvement over the FSE.

Let sFS ∈ SFS and sCS ∈ SCS. We now show that if there exists an agent i ∈ A, such that

ui(s
FS) > ui(s

CS), then there exists another agent j ∈ A with uj(s
FS) < uj(s

CS). Suppose i ∈ C.

If ui(s
FS) > uCS

i (sCS), we get by Lemma 2 that Mc(s
FS) ̸⊆ Mc(s

CS). Then, by Lemma 1, the

claim immediately follows. Now suppose i ∈ F . Further, for the sake of contradiction, assume

Mc(s
FS)⊆Mc(s

CS) for all c ∈ C, as otherwise by Lemma 1 the claim would immediately follow.

Therefore, f ’s increase in uf (s
FS) can only come from the fact that there exists a child c∈Mf (s

FS)

and another family f ′ ∈ F with vc(f
′)> vf (f) that is not interested in c under sFS but under sCS.

Suppose c responds to sCS
−c with sFS

c in CS. By Lemma 2, this would imply uc(s
FS)≤ uc((s

FS
c , sCS

−c )).

However, note that c’s utility would strictly increase if c would be interested in f ′ instead of f

since vc(f
′)> vc(f). Hence, c does not play a best response in sCS, a contradiction.

D.7. Proof of Proposition 4

Proof. Consider the following example: Let C = {c1, c2}, F = {f1, f2} and let valuations be

according to the following tables.
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vc(f) f1 f2
c1 L ϵ
c2 ϵ L

vf (c) f1 f2
c1 ϵ L
c2 L ϵ

If agents are patient enough (i.e., δC and δF are close enough to 1) and search costs are small

enough, there exist only two equilibria, independent of search technology. In the child-optimal

equilibrium, sco, children are only interested in their preferred choice (i.e., the agent type for which

they have a match value of L) and in the family-optimal equilibrium sfo families are only interested

in their preferred choice. Note that if each child is mutually interested in at most one family in

strategy profile s, then uCS
i (s) = uFS

i (s) for all i ∈ A. As p, δF , δC → 1, children’s utilities will be

weakly less than ϵ under sfo while being positive and converging to L under sco. Similarly, families’

utilities will be weakly less than ϵ under sco while being positive and converging to L under sfo.

D.8. Proof of Proposition 5

Proof. Consider the following example: Let C = {c1, c2}, F = {f1, f2} and let valuations be

according to the following tables for some ϵ > 0.

vc(f) f1 f2
c1 1 1− ϵ
c2 1 1− ϵ

vf (c) f1 f2
c1 1 1
c2 0 κF/p

If ϵ > 0 is small enough and p(1− λp) < κF , then in the unique FSE sFS, only c1 and f1 will

be mutually interested in each other and c2 and f2. Family f2 will not be interested in c1 in FS,

independent of how patient f2 is. That is, because the probability of actually matching with c1

while facing competition from c1 is too small, yet f2 would have to incur search costs every time

c1 is active. However, if δF is sufficiently large, then the unique CSE matching correspondence is

M(sCS) = {(c1, f1), (c1, f2)}. In CS, c2, the “low-type” child, will remain unmatched.

D.9. Proof of Proposition 6

Proof. Consider the following example: Let C = {c}, F = {f1, f2, f3} and let valuations be

according to the following tables for some ϵ > 0.

vc(f) f1 f2 f3
c 1 1− ϵ 1− 2ϵ

vf (c) f1 f2 f3
c 1 κF/p+ ϵ 1

Choose δC = δF = 0. If both ϵ and κC are sufficiently small and further κF < p we get the

following: In the unique FSE sFS, child c will be mutually interested in both f1 and f3. In the

unique CSE, all agents will have mutual interest in each other, and therefore f3’s utility strictly

decreases.
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D.10. Proof of Proposition 7

Proof. Suppose all instance parameters except for δF are fixed. Let M be the set of all child-

family pairs (c, f) for which there exists δF ∈ [0,1), such that c and f are mutually interested in

each other under some FSE sFS. Further, let vmin denote the smallest value a family in M has for

a mutually interested child, i.e., vmin =min(c,f)∈M vf (c). For δF , such that

δF ≤ vmin −κF/p

v̄
, (42)

it follows that p(vf (c)−δF v̄)≥ κF for all (c, f)∈M. Since v̄ is an upper bound for agents’ utilities,

for any such δF and any (c, f)∈M, being interested in c is (weakly) advantageous for f under CS,

independent of all other strategies. As in the proof of Lemma 2, this implies that c must be weakly

better off in CS compared to FS.

D.11. Proof of Proposition 8

Proof. Consider the following example: Let C = {c1, c2}, F = {f1, f2} and let valuations be

according to the following tables for some ϵ > 0.

vc(f) f1 f2
c 1 1− ϵ

vf (c) f1 f2
c 1 1

Choose p and κF , such that p(1−λ′p)<κF ≤ p(1−λp). If κC , δC , and δF are sufficiently small,

child c will be mutually interested in f1 and f2 in the unique FSE for λ. But in the unique FSE

for λ′, only c and f1 will be mutually interested in each other. However, if the difference between λ

and λ′ is very small, c’s utility can be smaller in the case where the market thickness indicator is

λ, as the increased probability of f1 being active might not compensate for the loss of f2’s interest.

D.12. Proof of Proposition 9

Let u= (ui(s
co−CS,λ))i∈A denote the vector of agents’ utilities under sco−CS,λ and let Y ′ = [uc, v̄]

n×
[0, uf ]

m ⊆ [0, v̄]n+m = Y . We now define a mapping T λ : Y → Y as follows: T λ = (T λ
i )i∈A, where

T λ
c (y) = δCyc +λ

∑
f∈F

1[p(vf (c)− δFyf )≥ κF ]βcf (y)
(
p(vc(f)− δCyc)−κC

)+

(43)

for all c∈C and

T λ
f (y) = δFyf +

1

n

∑
c∈C

1[p(vc(f)− δCyc)≥ κC ]βcf (y)
(
p(vf (c)− δFyf )−κF

)+

. (44)

As we have seen in a previous proof, T λ is ≤C-monotone on Y . We now show that T λ′
maps

from Y ′ to Y ′, which by Tarski’s fixed-point theorem yields the result. Since T λ is ≤C-monotone

and u is the ≤C-minimal element of Y ′, it is sufficient to show that T λ′
(u)∈ Y ′.

Because u is an equilibrium threshold profile, we have that T λ(u) = u∈ Y ′. Further, it can easily

be verified that T λ(y)≤C T λ′
(y) for all y ∈ Y . Hence, T λ′

(u)∈ Y ′, which completes the proof.
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E. Algorithm to Compute FS-TSs from Threshold Profiles

Algorithm 1 can be used to compute sFS(y) for a given threshold profile y ∈ Rn+m. Since βcf (s)

only depends on families f ′ ∈ F with vc(f
′) > vc(f) and for each child families are processed in

decreasing order of vc(f), the final strategy profile satisfies the equations for FS from Proposition 1.

Algorithm 1: Thresholds to strategy profile

Input: y ∈Rn+m

Output: Strategy profile s∈ S

sc(f) := 0 and sf (c) := 0 for all c∈C, f ∈ F

for c∈C do
U := F

while U ̸= ∅ do
f := argmaxf ′∈U vc(f

′)

if βcf (s)p(vf (c)− δFyf )≥ κF then
sf (c) := 1

end

if βcf (s)p(vc(f)− δCyc)≥ κC then
sc(f) := 1

end

U :=U \ {f}
end

end

F. Limit Results

Here, we provide a collection of limit results that all illustrate how the differences between FS and

CS disappear as certain parameters take on extreme values.

F.1. Negligible Search Costs

The next proposition shows that the games induced by CS and FS become identical as search costs

become negligible.

Proposition 13. As κC → 0 and κF → 0, |uFS
i (s)−uCS

i (s)| → 0 for all s∈ S, i∈A.

Proof. Assume that κC = κF =: κ and let s ∈ S. For each family f , define T FS
s,f : Y → R and

TCS
s,f : Y →R as follows:

T FS
s,f (y) = δFyf +

1

n

∑
c∈C

sc(f)sf (c)
(
βcf (s)p(vf (c)− δFyf )−κ

)
(45)
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and

TCS
s,f (y) = δFyf +

1

n

∑
c∈C

sc(f)sf (c)βcf (s)
(
p(vf (c)− δFyf )−κ

)
. (46)

Similarly, for all c∈C, let

T FS
s,c (y) = δCyc +λ

∑
f∈F

sc(f)sf (c)
(
βcf (s)p(vc(f)− δCyc)−κ

)
(47)

and

TCS
s,c (y) = δCyc +λ

∑
f∈F

sc(f)sf (c)βcf (s)
(
p(vc(f)− δCyc)−κ

)
. (48)

Notice that the unique fixpoints yFS, yCS ∈ Y of T FS
s (y) and TCS

s (y) define agents’ utilities under

s in FS and CS, respectively. For all y ∈ Y and f ∈ F it holds that

lim
κ→0

(
δFyf +

1

n

∑
c∈C

sc(f)sf (c)
(
βcf (s)p(vf (c)− δFyf )−κ

))
(49)

=δFyf +
1

n

∑
c∈C

sc(f)sf (c)
(
βcf (s)p(vf (c)− δFyf )

)
(50)

= lim
κ→0

(
δFyf +

1

n

∑
c∈C

sc(f)sf (c)βcf (s)
(
p(vf (c)− δFyf )−κ

))
. (51)

Similarly, for all y ∈ Y and c∈C we have that

lim
κ→0

(
δCyc +λ

∑
f∈F

sc(f)sf (c)
(
βcf (s)p(vc(f)− δCyc)−κ

))
(52)

=δCyc +λ
∑
f∈F

sc(f)sf (c)
(
βcf (s)p(vc(f)− δCyc)

)
(53)

= lim
κ→0

(
δCyc +λ

∑
f∈F

sc(f)sf (c)βcf (s)
(
p(vc(f)− δCyc)−κ

))
, (54)

and hence limκ→0 |uFS
i (s)−uCS

i (s)|= 0 for all i∈A.

FS and CS do not necessarily become identical if only one side has negligible search costs. In

both cases—i.e., if only κC → 0 or only κF → 0—we can create instances where the sets of equilibria

differ from each other in the two approaches.

F.2. High Match Success Probability and Market Thickness

Match success probability and market thickness indicator are strongly connected in our model,

such that we cannot make any insightful statements about the limit behavior if only one of them

approaches 1. However, if it is certain that a family of each type will be present at each time step

and that each family would be a suitable match, we observe once more that FS and CS become

equivalent in a slightly different way.
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Proposition 14. As λp→ 1, |uFS
i (sFS(y))−uCS

i (sCS(y))| → 0 for all y ∈ Y , i∈A.

Proof. For each family f , define T FS
f : Y →R and TCS

f : Y →R as follows:

T FS
f (y) = δFyf +

1

n

∑
c∈C

1[βFS
cf (y)p(vc(f)− δCyc)≥ κC ]

(
βFS
cf (y)p(vf (c)− δFyf )−κF

)+

(55)

and

TCS
f (y) = δFyf +

1

n

∑
c∈C

1[p(vc(f)− δCyc)≥ κC ]β
CS
cf (y)

(
p(vf (c)− δFyf )−κF

)+

. (56)

Similarly, for all c∈C, let

T FS
c (y) = δCyc +λ

∑
f∈F

1[βFS
cf (y)p(vf (c)− δFyf )≥ κF ]

(
βFS
cf (y)p(vc(f)− δCyc)−κC

)+

(57)

and

TCS
c (y) = δCyc +λ

∑
f∈F

1[p(vf (c)− δFyf )≥ κF ]β
CS
cf (y)

(
p(vc(f)− δCyc)−κC

)+

. (58)

Notice that the unique fixpoints yFS, yCS ∈ Y of T FS(y) and TCS(y) define agents’ utilities under

an FS-TS and CS-TS with threshold y in FS and CS, respectively. For all y ∈ Y and f ∈ F , it holds

that

lim
λp→1

(
δFyf +

1

n

∑
c∈C

1[βFS
cf (y)p(vc(f)− δCyc)≥ κC ]

(
βFS
cf (y)p(vf (c)− δFyf )−κF

)+
)

(59)

=δFyf +
1

n

∑
c∈C

1

[
f = argmaxf ′∈F :vf ′ (c)−δF yf ′>κF∧vc(f ′)−δCyc>κC

vc(f
′)
](

vf (c)− δFyf −κF

)
(60)

= lim
λp→1

(
δFyf +

1

n

∑
c∈C

1[βCS
cf (y)p(vc(f)− δCyc)≥ κC ]β

CS
cf (y)

(
p(vf (c)− δFyf )−κF

)+
)
. (61)

Similarly, for all y ∈ Y and c∈C we have that

lim
λp→1

(
δCyc +λ

∑
f∈F

1[βFS
cf (y)p(vf (c)− δFyf )≥ κF ]

(
βFS
cf (y)p(vc(f)− δCyc)−κC

)+
)

(62)

=δCyc +λ
∑
f∈F

1

[
f = argmaxf ′∈F :vf ′ (c)−δF yf ′>κF∧vc(f ′)−δCyc>κC

vc(f
′)
](

vc(f)− δCyc −κC

)
(63)

= lim
λp→1

(
δCyc +λ

∑
f∈F

1[p(vf (c)− δFyf )≥ κF ]β
CS
cf (y)

(
p(vc(f)− δCyc)−κC

)+
)
. (64)

and hence limλp→1 |ui(s
FS
i (y))−ui(s

CS
i (y))|= 0. This concludes the proof for families. For children,

the proof is analogous and omitted.

In order to see why Proposition 14 holds, notice that the probability of child c matching with

his first choice from Mc(s) goes to 1 as λp→ 1. Thus, the contribution of all other families from

Mc(s) goes to zero. As only these first choices contribute to utilities, the difference between FS

and CS again disappears.
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F.3. Low Market Thickness

As the supply on the family side becomes very small, the differences between CS and FS disappear

in equilibrium.

Proposition 15. As λ→ 0, |uFS
i (s)−uCS

i (s)| → 0 for all s∈ S, i∈A.

Proof. Notice that the unique fixpoints yFS, yCS ∈ Y of T FS
s (y) and TCS

s (y) (recall definitions

from the proof of Proposition 13 define agents’ utilities under s in FS and CS, respectively. For all

y ∈ Y and f ∈ F it holds that

lim
λ→0

(
δFyf +

1

n

∑
c∈C

sc(f)sf (c)
(
βcf (s)p(vf (c)− δFyf )−κF

))
(65)

=δFyf +
1

n

∑
c∈C

sc(f)sf (c)
(
p(vf (c)− δFyf )

)
(66)

= lim
λ→0

(
δFyf +

1

n

∑
c∈C

sc(f)sf (c)βcf (s)
(
p(vf (c)− δFyf )−κF

))
, (67)

because βcf (s)→ 1 as λ→ 0. Similarly, for all y ∈ Y and c∈C we have that

lim
λ→0

(
δCyc +λ

∑
f∈F

sc(f)sf (c)
(
βcf (s)p(vc(f)− δCyc)−κC

))
(68)

=δCyc (69)

= lim
λ→0

(
δCyc +λ

∑
f∈F

sc(f)sf (c)βcf (s)
(
p(vc(f)− δCyc)−κC

))
, (70)

and hence limλ→0 |uFS
i (s)−uCS

i (s)|= 0 for all i∈A.

The reason why the statement holds is that for very small λ, families do not have to worry about

competition in FS, as it is likely that there is no other family active at any given time step.

F.4. Patient Agents

Here, we first need to revisit classical matching markets. The matching market induced by

(v, δC , δF , κC , κF , p, λ) is a tuple (C,F,≻), where f ≻c f
′ if and only if vc(f) > vc(f

′) and c ≻f c′

if and only if vf (c) > vf (c
′). Further, f ≻c c if and only if pvc(f) ≥ κC and c ≻f f if and only if

pvf (c)≥ κF . For the remainder of this section, we assume that δC = δF =: δ.

Proposition 16. There exists δ̄ ∈ [0,1), such that for all δ ∈ [δ̄,1) the set of equilibrium match-

ing correspondences are identical in FS and CS and coincide with the set of stable matchings in

the induced marriage market.

For small p and large search costs, the statement above is trivial: If search costs become too large

or the probability of a match being suitable becomes too small, no agent will have an incentive to
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be interested in any potential match candidate in either FS or CS. Hence, no matches will form in

any equilibrium.

We only prove the statement for iii) here, as i) and ii) are trivial. For this proof, we first need

to revisit classical matching markets. The matching market induced by (v, δC , δF , κC , κF , p, λ) is a

tuple (C,F,≻), where f ≻c f
′ if and only if vc(f)> vc(f

′) and c≻f c
′ if and only if vf (c)> vf (c

′).

Further, f ≻c c if and only if pvc(f)≥ κC and c≻f f if and only if pvf (c)≥ κF .

Let (C,F,≻) be a matching market where agents have strict preferences.

Definition 5. A pair of functions g = (gC , gF ) is called a pre-matching if gC : C → A and

gF : F →A, such that if gC(c) ̸= c then gC(c)∈ F and if gF (f) ̸= f then gF (f)∈C.

We say that a pre-matching g induces a matching w if the function w : A → A defined by

w(i) = g(i) is a matching. Consider the following set of equations:

gC(c) =max
≻c

({f ∈ F | c⪰f gF (f)}∪ {c}) , c∈C, (71)

gF (f) =max
≻f

({c∈C | f ⪰c gC(c)}∪ {f}) , f ∈ F, (72)

where the maxima are taken with respect to agents’ preferences.

Lemma 3 (Adachi (2003)). If a matching w is stable, then the pre-matching g defined by w

solves the above equations. If a pre-matching g solves the above equations, then g induces a stable

matching w.

With the above lemma, we can now prove Lemma 4. Assume that δC = δF =: δ.

Lemma 4. There exists δ̄ ∈ [0,1), such that for all δ ∈ [δ̄,1) the set of equilibrium matching

correspondences are identical in FS and CS and coincide with the set of stable matchings in the

induced marriage market.

Proof. Let s∈ SFS and c∈C. c’s utility under s is the unique value uFS
c (s) that satisfies

uc(s) = δuc(s)+λ
∑
f∈F

sf (c)
(
βcf (s)p(vf (c)− δuc(s))−κC

)+

(73)

⇐⇒ (1− δ)uc(s) = λ
∑
f∈F

sf (c)
(
βcf (s)p(vf (c)− δuc(s))−κC

)+

. (74)

Therefore, as δ→ 1 we get

1

n

∑
f∈F

sf (c)
(
βcf (s)p(vf (c)− δuFS

c (s))−κC

)+

→ 0. (75)

For the sake of contradiction, assume that |Mc(s)| ≥ 2. Let f∗ = argmaxf∈F :s
f∗ (c)=1 vc(f) and

f ∈Mc(s) \ {f∗}. Because of Equation (75), it must hold that

βcf (s)
(
vc(f)− δuc(s)−κC/p

)+

→ 0. (76)
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However, since vc(f
∗)> vc(f) and βcf∗(s)>βcf (s) we get that

βcf∗(s)
(
vc(f

∗)− δuc(s)−κC/p
)+

→ ϵ (77)

for some ϵ > 0, a contradiction. Hence, Mc(s) = {f∗} if pvc(f
∗)≥ κC or Mc(s) = ∅ otherwise. Notice

that this is equivalent to the expression of Equation (71). Now that we have established that

children will be mutually interested in at most one family, the same can similarly be shown for

families, which completes the proof for FS. The proof for CS is analogous and thus omitted.

G. Family Preferences

Using data on 1,364 families across the state of Florida who completed a multi-step registration

and approval process with the platform examined in Section 9, we provide high-level insights

on preference alignment to help understand which parameter regions discussed in Section 8 best

represent reality. It should be noted that, as a snapshot of the population registered on the platform,

this may not necessarily be representative of all families looking to adopt in Florida. As these

preferences are based on families’ answers to a registration questionnaire, they are not binding

on how families respond when they are solicited for their interest in specific children, nor do they

indicate the family’s suitability to care for such a child.
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Figure 6 Acceptable child ages for 1,364 families in Florida active on the platform.

First, as shown in Figure 6, age preferences vary significantly. While a mean lower age limit

of 1.8 combined with a standard deviation of 3.0 indicates a high willingness among families to

adopt younger children, a mean upper age limit of 10.5 with a standard deviation of 4.8 indicates

a reluctance to accept older children. The age that families find most acceptable is five years old,

which is within the minimum and maximum age range for 75% of families.

Concerning the child’s gender, almost 70% of families chose “no preference,” with 12.7% prefer-

ring boys and 15.4% preferring girls. Although not pronounced, this difference in gender preference
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presents a challenge due to the higher number of boys that become available for adoption (see

Table 1 in Section 9) and partially explains why male children have worse adoption hazard rate

coefficients. We note that — while outside the scope of what our model considers — choosing “no

preference” may also indicate an interest in sibling groups, and the mean maximum number of

children that a family expresses interest in is 2.2, with a standard deviation of 1.2.

Ethnicity and race offer additional attributes over which families express heterogeneous prefer-

ences. While 70% of families expressed an openness to a child of any ethnicity, 21% expressed an

interest in white children, 16% in biracial children, and between 7% and 14% in each of four other

racial categories. Half of families are interested in children of Hispanic or Latino ethnicity, which

is indicated separately from race.

Figure 7 Preferences over child attributes for 1,364 families in Florida active on the platform.

Family preferences over seven additional attributes shown in Figure 7 further diminish the plau-

sibility of highly aligned preferences among families on some dimensions. For example, while nearly

all families are open to a child impacted by neglect or substance abuse, only 41% of families would

consider or definitely be interested in a child with a criminal record.

H. Numerical Evaluation: Supplementary Material
H.1. Families

Figure 8 The ratio of families that are on average (strictly) better off in either approach in the family-optimal

equilibrium for different combinations of agents’ patience and the level of preference correlation.
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From Figure 8, we can see that the majority of families achieves a higher utility under CS, and

almost no families achieve a higher utility under FS.

H.2. Match Probabilities

Figure 9 shows that, on average, children are more likely to get matched in CS than FS at any

given time step.

Figure 9 Children’s average match probability (averaged over all children and over all instances) in the family-

optimal equilibrium for different combinations of agents’ patience and the level of preference correlation.

I. Empirical Analysis: Supplementary Material
I.1. Data

Our main analysis relies on multiple data sets: the AFCARS Foster Care 6-month File (Children’s

Bureau, Administration on Children, Youth and Families 2023b), the AFCARS Adoption File

(Children’s Bureau, Administration on Children, Youth and Families 2023a), and case history data

from the platform. From 766,527 AFCARS foster care 6-month update records for Florida children,

we identified 10,286 children as legally free and clear for adoption with cases starting after October

1, 2014, which is the closest federal fiscal year cut-off for the data in Figure 4. Regrettably, and

despite significant efforts, the agency implementing the platform could not extract information

from Florida’s statewide case management system and assemble its own comparable case history

dataset. However, we provide validation in online Appendix I.3 that uses circuit-level data in state

reports to verify that the platform had roughly average performance for all adoptions compared

to other circuits in the state. Filtering children based on case goals and the relationships with

adoptive families proved to be the biggest obstacles to using the agency’s data. However, the agency

was helpful in manually tracking down the outcomes of children who left the platform without an

adoptive placement. In Figure 10, we provide an outline of how we combined different data sources

to create the dataset used and how it is used in various analyses.

For our analysis, children’s timelines begin with the termination of parental rights (TPR) order

and end with the last status update, which could be the adoption finalization date. For AFCARS
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AFCARS Foster 
Care File

AFCARS 
Adoptions File

Platform Case 
Data

Agency Case 
Look-Ups

FL Adoption 
Incentive Reports

Florida 
Benchmark Cases

Predictions for 
Agency Cases

Benchmark 
Analysis

(Section 9.2)

Cox Hazards
Model 2

Verify Agency 
Trends

(Appendix I.3)

Platform Cases Hazards Analysis 
(Section 9.3)

Cox Hazards
Model 1

Figure 10 Data sources used in the analyses of Section 9 and online Appendix I.3.

cases to qualify for this analysis, children had to have a case goal of adoption in their final record

or previously had a case goal of adoption with (a) a resulting non-relative adoption, (b) a final

case goal of “emancipation”, or (c) a discharge reason of “emancipation”. We excluded children

listed in the Adoption File as being adopted by a relative, step-parent, or foster parent. Because

the most recent AFCARS Adoptions File only covers adoptions through September 30, 2021, we

excluded case data past that date as we would not be able to tell if adoptions resulted from relative,

step-parent, or foster placements. We also excluded any cases with a duration less than 120 days

— a 30-day appeal window after TPR before a search can start, plus a legal minimum of 90 days

between placement with the adoptive family and adoption finalization — or over 18 years.

We note that the AFCARS datasets’ inability to explicitly identify children in need of adoptive

resources results in a conservative benchmark on the platform’s performance; i.e., it will make

the platform appear less helpful than it actually was. Specifically, some children included in the

AFCARS dataset may quickly find placements with non-relatives, such as teachers, church mem-

bers, or neighbors. Such children have short times until adoption, but would not have been listed

on the platform because they had an identified adoptive placement at TPR. While we filter out

cases with implausibly short durations of 120 days or fewer, some of these cases with durations

exceeding 120 days may still be included in the AFCARS benchmark model, as we cannot identify

them separately. Child welfare professionals have also mentioned the possibility that users of the

AFCARS reporting system may inadvertently classify adoptions by foster parents as non-relative

adoptions. These potential limitations show the importance of more explicitly identifying children
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Figure 11 Actual adoptions by the agency using the platform and other channels compared to Florida AFCARS

benchmark model assuming the platform case creation date as the start of the hazards model time

horizon.

for whom an active search is being conducted in child welfare data sources to aid in evaluating

performance.

We received case data from the platform about 279 children in need of adoptive placements

who were listed by the agency before the AFCARS cut-off date of October 1, 2021. The platform

provided its first matches around July 1, 2018. Because the platform allows caseworkers to register

children and indicate the time since TPR using time intervals, the TPR date is estimated using

the average of the interval endpoints and subtracting that value from the platform case creation

date. Of the children listed on the platform, 165 had finalized adoptions by February 1, 2023. Of

the finalized adoptions, the adoptive parents for 144 children were found through the platform,

and 21 were actively listed on the platform when a match was found through some other channel,

such as serendipitous encounters in the agency’s office. We excluded an additional 66 children who

were listed at one time on the platform but achieved permanency through adoptive placement

with relatives or foster care parents or were reunified. Our data only includes activity and case

updates through February 1, 2023; children adopted after that date are not counted as adopted in

our dataset.

I.2. Robustness Checks

We now provide three additional model variations for our empirical analysis as a robustness check.

I.2.1. Analysis without Conditional Adoption Probabilities or Time-varying Plat-

form Effects We observe similar results from this comparison to the AFCARS benchmark, which

is shown in Figure 11. For children listed on the platform before October 1, 2021, the predicted

number of finalized adoptions within two years was 121.4. However, 138 adoptions were finalized
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within two years. Within three years of listing, this difference extends to an extra 27.3 adopted

children, or a 20% increase over the benchmark.

Similarly, we present an alternate model to Model 2, where we assume children’s timelines start

when the respective adoptive search starts: at TPR for the AFCARS children and at case creation

for the platform children. This means we can treat the platform indicator as static and employ a

standard, non-time-varying Cox hazards model. Formally, we use a constant binary covariate over

time, OnPlatformi, for each child i. This covariate is 1 for any child who has been listed on the

platform at any point in time before adoption and time t= 0 for this child is when the child’s case

is created on the platform.

Table 3 Cox Proportional Hazards Model of Time Until Adoption:

Model 1 from the Main Text and New Model with Unconditional Adoption Probabilities and Time-constant

Platform Effect

Model 1 Model 3

Female 1.080∗∗ 1.089∗∗

(2.615) (2.955)
Black 0.768∗∗∗ 0.764∗∗∗

(−8.379) (−8.659)
Hispanic 0.827∗∗∗ 0.830∗∗∗

(−4.313) (−4.243)
Age at TPR (years) 0.889∗∗∗ 0.892∗∗∗

(−9.563) (−9.459)
(Age at TPR)2 0.999 0.999

(−0.791) (−1.077)
Disability 0.881∗∗∗ 0.870∗∗∗

(−3.766) (−4.198)
TPR in FY2016 0.967 0.967

(−0.605) (−0.602)
TPR in FY2017 1.052 1.040

(0.918) (0.714)
TPR in FY2018 0.927 0.911

(−1.419) (−1.762)
TPR in FY2019 0.753∗∗∗ 0.763∗∗∗

(−5.191) (−5.010)
TPR in FY2020 0.516∗∗∗ 0.527∗∗∗

(−10.847) (−10.648)
TPR in FY2021 0.493∗∗∗ 0.511∗∗∗

(−8.613) (−8.429)
Platform 1.175∗

(2.005)

Platform Cases 0 279
N 10,286 10,565
Concordance 0.680 0.680
Log-likelihood ratio test 1969.148 2023.878

on 12 d.f. on 13 d.f.

Note: exponentiated coefficients; z-statistics in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

We call this Model 3, with resulting coefficients found in Table 3. Control variables still behave

as expected, with Girls experiencing higher adoption hazards than boys, while Black and Hispanic



Dierks, Olberg, Seuken, Slaugh and Ünver: Search and Matching for Adoption from Foster Care 23

0

20

40

60

80

100

120

140

160

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

N
um

be
r o

f F
in

al
iz

ed
 A

do
pt

io
ns

Months Since Case Creation on Platform

Adoptions via Platform AFCARS Benchmark

Figure 12 Actual adoptions by the agency using the platform and other channels compared to Florida AFCARS

benchmark model, excluding children adopted via channels other than the platform.

children tend to be adopted more slowly than children of other racial groups. A clinical disability

diagnosis and a child’s increasing age are also still linked to decreased adoption hazards, as well

as TPR in pandemic years or immediately before. The platform is also still consistently associated

with faster adoption, with an estimated platform hazard ratio of 1.175 and statistical significance

at the 5% level.

I.2.2. Excluding Off-platform Adoptions We also present results in Figure 12 that exclude

the children who were adopted by families found through channels other than the platform. With

these 21 adoptions removed, the platform continues to outperform the state benchmark. The num-

ber of platform adoptions by the two-year and three-year marks is 12% and 15%, respectively, over

the statewide benchmark for adoptions. The number of adoptions achieved exceeds the confidence

interval from the Poisson binomial distribution for times until adoption of 23 months and longer.

I.2.3. A More Exclusive AFCARS Race Variable. We also consider an alternate version

characterization of the Black variable, as the approach in Section 9 takes a conservative approach

due to differences in how the AFCARS and platform data treat multi-racial children. The AFCARS

dataset allows children to have multiple race categories indicated, while the platform only allows

one race to be selected and also has a category labeled “other” that presumably is used for some

multi-racial children.

In this alternate approach, we treat the Black variable as referring to children identified exclu-

sively as Black; i.e., only the Black race category has value 1 in the AFCARS data. Table 4 shows

the updated hazards models. For all three models, the coefficient of the Black variable decreases,

which indicates that multi-racial children experience a higher likelihood of adoption. Because the

number of children designated as Black in the platform’s dataset does not change — i.e., unlike
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Table 4 Cox Proportional Hazards Models of Time Until Adoption with Exclusively Black AFCARS Race

Variable

Model 1b Model 2b Model 3b

Female 1.078∗∗ 1.087∗∗ 1.087∗∗

(2.555) (2.902) (2.893)
Black 0.755∗∗∗ 0.752∗∗∗ 0.751∗∗∗

(−8.277) (−8.495) (−8.549)
Hispanic 0.830∗∗∗ 0.842∗∗∗ 0.833∗∗∗

(−4.242) (−3.927) (−4.167)
Age at TPR (years) 0.889∗∗∗ 0.891∗∗∗ 0.892∗∗∗

(−9.558) (−9.513) (−9.454)
(Age at TPR)2 0.999 0.999 0.999

(−0.731) (−1.002) (−1.017)
Disability 0.882∗∗∗ 0.868∗∗∗ 0.872∗∗∗

(−3.707) (−4.282) (−4.142)
TPR in FY2016 0.971 0.959 0.971

(−0.522) (−0.753) (−0.519)
TPR in FY2017 1.062 1.041 1.050

(1.088) (0.730) (0.883)
TPR in FY2018 0.931 0.892∗ 0.914

(−1.350) (−2.164) (−1.694)
TPR in FY2019 0.757∗∗∗ 0.754∗∗∗ 0.766∗∗∗

(−5.105) (−5.216) (−4.923)
TPR in FY2020 0.516∗∗∗ 0.522∗∗∗ 0.527∗∗∗

(−10.850) (−10.821) (−10.648)
TPR in FY2021 0.495∗∗∗ 0.505∗∗∗ 0.513∗∗∗

(−8.561) (−8.575) (−8.375)
Platform 1.298∗∗ 1.200∗

(Time-varying in Model 2b) (3.231) (2.274)

Platform Cases 0 279 279
N 10,286 10,565 10,565
Concordance 0.680 0.680
Log-likelihood ratio test 1968.562 2040.332 2023.160

on 12 d.f. on 13 d.f. on 13 d.f.

Note: exponentiated coefficients; z-statistics in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

the analysis in the main paper, they are assumed to be exclusively Black due to the presence of

the “other” category — the platform’s hazards coefficient increases slightly.

Figure 13 shows the corresponding benchmark comparison. Narrowing the Black definition lowers

the predicted three-year adoptions for the platform cohort from 131.4 to 129.7, widening the

observed-versus-expected gap and slightly strengthening the evidence that the caseworker-driven

search platform accelerates placements.

I.3. Validation from State Reports

To validate our empirical analysis — especially to understand how the circuit that implemented the

platform compares to statewide averages before and after implementation — we use the “Adoption

Incentive” annual reports published by the Florida Department of Children and Families (2019,

2024). The analysis using AFCARS data implicitly assumes that the agency is representative of

statewide patterns; if the agency already outperformed statewide averages — controlling for the
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Figure 13 Actual adoptions by the agency using the platform and other channels compared to Florida AFCARS

benchmark model when the Black variable refers children in the AFCARS data who only have a Black

racial designation.

population of children — before implementing the platform, the analysis would overestimate the

effect of the platform.

The Adoption Incentive reports provide annual statistics for how the 20 circuits in Florida

perform on various measures. We note that Florida provides data on 19 entities; while most are

individual circuits, some circuits are split or combined. Of the provided statistics, adoption success

is best measured by the “number of children who were eligible for adoption on 7/1 who were

adopted by 6/30,” which is displayed in Figure 4 in the main paper. In this case, eligibility refers

to children for whom a termination of parental rights order has been granted. We refer to this

metric as the adoption clearance rate. Using the case timelines of the children on the platform,

approximately 40% of the children eligible for adoption every year on July 1 belonged to the set

of 279 children who required search services through the platform. The remaining children likely

already had a path to adoption identified through a foster parent or relative and would be expected

to have a faster path to adoption.

Table 5 Mean annual adoption clearance rate for the circuit that implemented a caseworker-driven search

platform compared to state averages. The clearance rate refers to the percentage of children eligible for adoption

on July 1 of a year whose adoption is finalized by June 30 of the following year.

Before After
Comparison Period 7/1/2014-6/30/2018 7/1/2019-6/30/2024
Platform-Implementing Circuit Annual Mean % Adopted 57% 58%
Statewide Annual Mean % Adopted 55% 51%
Circuit-Statewide Ratio Mean 103% 115%
Mean Rank (of 19 circuits) 9.25 5.60
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In Table 5, we compare the circuit’s average adoption case clearance rate performance against

the statewide average for the four years before implementing the platform and the five years after

implementation. Because the monthly case creation peaked after July 1, 2018, as the platform’s

usage gradually ramped up into fall 2018, we disregard the annual report for July 1, 2018, to

June 30, 2019, as a transition period. Thus, we compare the mean across annual statistics from

July 1, 2014, until June 30, 2018, against July 1, 2019, until June 30, 2024. In the four years

before implementation, the agency’s performance was only 3% higher than the statewide average,

corresponding to an average ranking among all circuits of 9.25 out of 19. Thus, we expect the

statewide AFCARS case data used for benchmarking to accurately reflect the agency’s performance

without the platform.

Considering the averages over the five years since implementation, the circuit has seen a slight

increase in its own performance and outperformed statewide averages. We note that the statewide

average for the percentage of eligible children adopted decreased compared to before 2018, which

could reflect higher acuity in children’s needs or increased difficulties in casework and judicial

processes from the COVID-19 pandemic. Considering the five years of data after implementation,

the mean ratio for the circuit’s case clearance rate compared to the statewide rate increased to

14.6%. While it is difficult to directly link the percentage of eligible children adopted over a one-

year time frame to the outcomes explored in Section 9, this data indicates circuit has improved

its performance in relation to the state as a whole and lends credence to the value of our previous

analysis using benchmarks from statewide AFCARS data.
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