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Abstract 

Energy price shocks pose complex challenges for climate policy, combining efficiency 

concerns with distributional tensions. We develop a micro-founded method to estimate 

the behavioral and environmental effects of energy price changes, combining household 

expenditure microdata, a structural demand system (EASI), and supply-use tables with 

production-based GHG inventories. The approach enables consistent attribution of 

emissions to household demand and captures heterogeneous responses across income 

groups. Applying the method to a national case study, we simulate price shocks in 

electricity, heating, and transport fuels. Results reveal asymmetrical and regressive 

impacts, especially for essential goods with low price elasticity. Emission effects are 

highly dependent on substitution patterns, with some shocks triggering rebound effects. 

A lump-sum transfer mitigates welfare losses for electricity and heating, but not for fuels. 

Comparing predicted and observed aggregate responses during recent crises highlights 

the limits of elasticity-based instruments in practice. Our findings underscore the need for 

flexible, context-sensitive compensation mechanisms in carbon pricing design and 

illustrate a transferable method applicable across national settings. 
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1. Introduction 

Energy price volatility and climate policy reforms pose significant challenges for 

households, especially in terms of affordability, inequality, and emissions. Residential 

energy consumption—through electricity, heating, and transport fuels—is both a key 

driver of greenhouse gas (GHG) emissions and a central component of household welfare 

(Belaïd, 2022; Guan et al., 2023). As governments increasingly rely on carbon pricing 

and tax-based instruments to meet climate targets, understanding the behavioral and 

distributional consequences of energy price changes become essential for effective and 

equitable policy design. 

These tensions are particularly salient when viewed through a national lens, as countries 

face varying degrees of exposure to external shocks and overlapping structural transitions. 

In Spain, for example, residential energy use accounts for nearly 20% of final energy 

consumption and remains heavily reliant on fossil fuels, especially for heating (MITERD, 

2023; de Arriba Segurado, 2025). In response to the 2022 energy crisis (IEA, 2022), 

temporary fiscal measures, including VAT reductions and fuel subsidies, were introduced 

to contain rising household energy costs. However, structural reforms are expected to 

intensify these pressures: VAT on electricity returned to 21% in 2025 in Spain, and the 

extension of the EU Emissions Trading System (ETS-2) to buildings and transport from 

2027 will further increase household exposure to carbon pricing (European Commission, 

2024). Despite the widely acknowledged need for global carbon pricing mechanisms to 

address climate externalities efficiently (Stiglitz et al., 2017), these developments 

highlight the need to anticipate the socio-environmental effects of energy price reforms, 

particularly for vulnerable groups. 

A substantial literature has examined household energy demand and its responsiveness to 

prices and income (Labandeira et al., 2017). Existing studies rely on either aggregate data 

(Blázquez et al., 2013a, 2013b) or household microdata (Labandeira et al., 2006), using 

models ranging from single-equation (Filippini & Pachauri, 2004) to discrete-continuous 

frameworks (Dubin & McFadden, 1984; Hanemann et al., 2024). Demand systems such 

as AIDS, QUAIDS, and EASI (Deaton & Muellbauer, 1980; Banks et al., 1997; Lewbel 

& Pendakur, 2009, respectively) have gained traction for their flexibility in capturing 

cross-price and income effects. Recent applications have emphasized distributional 

impacts and associated carbon emissions (Tovar-Reaños & Wölfing, 2018; van der Ploeg 

et al., 2022; Levell et al., 2024; Bonnet et al., 2025). 
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This paper simulates the effects of a stylized 20% increase in energy prices, reflecting the 

combined influence of market dynamics and forthcoming policy changes. Using 2017–

2022 microdata from the Spanish Household Budget Survey and a flexible EASI demand 

system, we estimate price and expenditure elasticities for electricity, heating fuels, and 

motor fuels by income group. We assess the distributional impact of price shocks and 

evaluate the mitigating effect of a revenue-neutral lump-sum rebate. To validate the 

behavioral predictions, we compare simulated outcomes with aggregate expenditure and 

emissions data, accounting for deviations observed during crises such as COVID-19 and 

the 2021–2022 energy price surge. 

Our findings reveal significant heterogeneity in elasticities and welfare effects. Electricity 

demand is inelastic (–0.90 to –0.82), especially among low-income groups. Heating and 

motor fuels are more elastic, with stronger substitutions among wealthier households. 

Price increases in electricity and heating are regressive; motor fuels are less so but impose 

larger aggregate welfare losses. Environmentally, electricity shocks raise emissions 

(+1.14%) via substitution toward heating (+1,121 tCO₂e), while gas shocks reduce them 

(–0.85%), i.e., –1,463 tCO₂e. Fuel taxes generate marginal gains (+0.34%) but also trigger 

behavioral rebounds. 

The lump sum revenue-neutral rebate partially mitigates electricity losses (61% net 

winners) and gas (54%) but proves inadequate for fuels (≈80% net losers). Moreover, 

demand reactions during crises diverge from model predictions, underscoring the limits 

of elasticity-based approaches when non-price constraints dominate (e.g., lockdowns, 

precautionary behavior, and supply constraints). These findings stress the need for 

differentiated context-sensitive instruments to design effective and equitable carbon 

pricing policies. 

The remainder of the paper is structured as follows: Section 2 reviews the literature; 

Section 3 presents the theoretical model; Section 4 describes the data and results; and 

Section 5 concludes. 

2. Literature Review 

Understanding residential energy demand is crucial for evaluating the equity and 

effectiveness of climate policy, particularly in the context of carbon pricing. A growing 

body of research stresses the importance of simulating realistic price scenarios and 

incorporating behavioral responses to assess welfare and distributional impacts (Evald et 
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al., 2022). Within ex-ante evaluation frameworks, microsimulation models based on 

household budget surveys are especially suited to capturing heterogeneous responses 

across income groups (Köppl & Schratzenstaller, 2023). 

Recent empirical work increasingly relies on flexible demand systems to estimate price 

and income elasticities of energy goods. While the QUAIDS model (Banks et al., 1997) 

remains widely used (e.g., Douenne, 2020), growing evidence suggests that the Exact 

Affine Stone Index (EASI) model by Lewbel and Pendakur (2009) provides greater 

flexibility in capturing nonlinear Engel curves and heterogeneous preferences, especially 

at the distribution’s tails (Jacksohn et al., 2023; Wang et al., 2024). Applications of the 

EASI model have addressed energy price shocks (Tovar-Reaños & Wölfing, 2018), 

compensatory policy design (van der Ploeg et al., 2022), and unobserved heterogeneity 

(Ramírez-Hassan & López-Vera, 2024). 

Beyond elasticity estimation, recent EASI-based studies emphasize the distributional 

impacts of energy price reforms and the effectiveness of compensation mechanisms. In 

Germany, Tovar-Reaños and Wölfing (2018) find stronger regressive effects for heating 

than for electricity and highlight the superiority of targeted transfers. Eisner et al. (2021) 

simulate a carbon tax in Austria, showing that regressivity varies by region, household 

type, and dwelling characteristics, suggesting the need for tailored instruments. In Ireland, 

Tovar-Reaños and Lynch (2022) document vertical and horizontal inequalities, 

particularly affecting rural and elderly households, and recommend income-based 

transfers. Van der Ploeg et al. (2022) further integrate labor supply responses, comparing 

lump-sum transfers, tax cuts, and hybrid strategies, and find that policy combinations 

improve both equity and political acceptability. 

At the EU level, large-scale analyses (Maier et al., 2024; Immervoll et al., 2023) 

underscore the importance of behavioral responses and redistribution to ensure fairness 

and legitimacy. Feindt et al. (2021), using an input–output model with household 

microdata, simulate the incidence of a €25/tCO₂ tax in 23 EU countries. While the tax 

appears distributionally neutral at the EU level, many countries show regressive effects, 

prompting the authors to recommend targeted redistribution to enhance fairness and 

political feasibility. 

3. Theoretical framework  

3.1. The demand system, specification and estimation 
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To align with recent empirical evidence advocating flexible demand systems, we estimate 

household energy demand using the Exact Affine Stone Index (EASI) model proposed by 

Lewbel and Pendakur (2009).1 The EASI model constitutes a major advancement in 

demand modelling, as it allows for highly flexible Engel curves and captures nonlinear 

income effects more effectively than earlier systems. Crucially, its structure permits the 

interpretation of error terms as random utility components, incorporating unobserved 

household heterogeneity. The model is grounded in a cost function that flexibly models 

nonlinear income-consumption relationships while preserving analytical tractability. 

Formally, the model assumes the following cost function: 

log⁡[𝐶(𝑝, 𝑦)] ⁡= ⁡𝑦⁡ +⁡∑ 𝑚𝑖(𝑦, 𝑧) log(𝑝𝑖)𝑖 ⁡+ ⁡
1

2
∑ ∑ 𝑎𝑖𝑗 log(𝑝𝑖) log(𝑝𝑗) +𝑗𝑖

⁡∑ 𝜖𝑖log⁡(𝑖 𝑝𝑖)           (1) 

where pi, pj are commodity prices, y denotes implicit household utility, mi is a function 

which can parametrise the model assuming specific functional forms. 𝜀𝑖 is defined by 

Lewbel and Pendakur (2009) as parameters which model unobserved preference 

heterogeneity, with the assumption E [𝜀𝑖] = 0. We follow the original proposal of Lewbel 

and Pendakur (2009) with the following specifications for y and mi: 

𝑦 = log(𝑥) +⁡∑ 𝑤𝑗 log(𝑝𝑗) −⁡
1

2
∑ ∑ 𝑎𝑖𝑗 log(𝑝𝑖) log(𝑝𝑗)𝑗𝑖𝑗 ,   (2) 

𝑚𝑖 =⁡∑ 𝑏𝑟log⁡(𝑦)
𝑟 +⁡∑ 𝑔𝑖𝑙𝑧𝑙𝑙

𝑅
𝑟=0        (3) 

This specification permits highly flexible Engel curves while maintaining a transparent 

and tractable functional form. A key feature of the EASI system is its ability to model 

interactions between prices and total expenditure, further enhancing its flexibility—

though at the cost of less interpretable coefficients and increased computational demands. 

In addition to its flexibility, the EASI model is structurally related to the Almost Ideal 

(AI) demand system, which facilitates direct comparisons with results derived from 

QUAIDS. 

r ranges from 0 to R, and R is the maximum degree of the polynomial chosen by the 

modeller. The variables zl, l = 1, …, L, represent demographic characteristics, and br, dil 

and gil are the parameters to be estimated. This specification permits highly flexible Engel 

curves while maintaining a transparent and tractable functional form. A key feature of the 

 
1 Since we need to obtain robust results for our microsimulation analysis, we provide in the Appendix B 

elasticities obtained though the estimation of the Quadratic Almost Ideal Demand System (QUAIDS, Banks 

et al., 1997) for comparison.  
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EASI system is its ability to model interactions between prices and total expenditure, 

further enhancing its flexibility, though at the cost of less interpretable coefficients and a 

higher computational burden. In addition to its flexibility, the EASI model is structurally 

related to the Almost Ideal (AI) demand system, which facilitates direct comparisons with 

results derived from QUAIDS. 

Applying Shephard's lemma to equation (1) and using equations (2) and (3), we obtain 

the following set of equations for the budget shares: 

𝑤𝑖 =⁡∑ 𝑏𝑟log⁡(𝑦)
𝑟𝑅

𝑟=0 +⁡∑ 𝑎𝑖𝑗 log(𝑝𝑗) +⁡∑ 𝑔𝑖𝑙𝑧𝑙 +⁡∈𝑖𝑙𝑗      (4) 

To ensure that equation (4) is homogeneous of degree one in prices and satisfies Slutsky 

symmetry, the following restrictions must hold: 

∑ 𝑎𝑖𝑗𝑗 =⁡∑ 𝑎𝑖𝑗𝑖 =⁡∑ 𝑏𝑖𝑟𝑖 = 0,∑ 𝑔𝑖𝑙𝑧𝑙𝑙 = 0, 𝑎𝑖𝑗 =⁡𝑎𝑗𝑖     (5) 

Note that ∑ 𝑏𝑖𝑟 = 0𝑖  must hold only for r ≠ 0 whereas ∑ 𝑏𝑖0 = 1𝑖 . Once these constraints 

are introduced in the system, the final restricted specification to estimate is: 

𝑤𝑖 =⁡𝑏𝑖0 +⁡∑ 𝑏𝑟log⁡(𝑦)
𝑟 +⁡∑ 𝑎𝑖𝑗 log (

𝑝𝑗

𝑝𝐽
)𝐽−1

𝑗=1 +⁡𝑅
𝑟=1 ∑ 𝑔𝑖𝑙𝑧𝑙 +⁡∈𝑖𝑙    (6) 

The Marshallian own-price and total expenditure elasticities are expressed as: 

𝑒𝑖𝑖
𝑢 = [

𝜕𝑤𝑖

𝜕𝑙𝑜𝑔𝑝𝑖
]
1

𝑤𝑖
− 1 

𝑒𝑖 = [
𝜕𝑤𝑖

𝜕𝑙𝑜𝑔𝑥
]
1

𝑤𝑖
+ 1 

With x total expenditure. 

Equation (6) shares the core structure of the QUAIDS model, incorporating commodity 

prices and sociodemographic variables. A key distinction, however, is the inclusion of 

the implicit utility term y, which introduces two econometric challenges. First, y is a 

function of the budget shares, it gives rise to an endogeneity problem. Second, because y 

also depends on the parameters to be estimated, the system becomes non-linear in 

parameters. To address both issues, we follow Lewbel and Pendakur (2009) and estimate 

the system using iterated Three-Stage Least Squares (3SLS). This approach instruments 

y with all available exogenous variables and applies iterative linear approximations to 

solve the non-linearity. To account for potential heteroscedasticity, we compute standard 

errors using a non-parametric bootstrap. 
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As a preliminary step, Figure 1 presents non-parametric kernel regressions of Engel 

curves for selected goods. Marked non-linear patterns emerge for categories such as food, 

motor fuels, and leisure, highlighting the risk of bias when income non-linearities are 

omitted. Other aggregates, like housing, exhibit more linear trends. While these curves 

are illustrative and do not control demographics or prices, they underscore the relevance 

of a flexible specification. 

In the EASI model, we include log-income terms up to the fourth order (i.e., r=4) in the 

expansion ∑ 𝑏𝑟log⁡(𝑦)
𝑟⁡4

𝑟=1 . Although we tested a fifth-order term, its high correlation 

with the fourth introduced multicollinearity; thus, we retained the fourth-order 

specification. Tables 3 and B.1 (Appendix) confirm the statistical significance of higher-

order income terms in key categories, including heating, motor fuels, and leisure. 

While non-parametric methods offer visual insight, they are sensitive to unobserved 

heterogeneity and prone to bias (Blundell et al., 2007). Following Tovar-Reaños and 

Wölfing (2018), we therefore adopt a parametric approach that allows for rich behavioral 

heterogeneity and demographic controls, while maintaining tractability for simulation and 

welfare analysis. 

3.2. Welfare analysis 

The estimated parameters of the model enable the computation of welfare measures like 

the Equivalent Variation (EV) (see Tovar-Reaños & Wölfing, 2018, and Ramírez-Hassan 

& López-Vera,2024). The EV is defined as 𝐶(𝑝1, 𝑈) − ⁡𝐶(𝑝0, 𝑈) where U represents the 

level of household utility.  Tovar-Reaños & Wölfing (2018) derive a measure for EV that 

can be expressed as: 

𝐸𝑉 = 𝑥 − exp {log(𝑥) −⁡∑ (log(𝑝𝑖
1𝑤𝑖

1) − log(𝑝𝑖
0𝑤𝑖

0))𝐼
𝑖=1 +

⁡⁡⁡
1

2
⁡∑ ∑ 𝑎𝑖𝑗[log(𝑝𝑖

1𝑝𝑗
1) − log(𝑝𝑖

0𝑝𝑗
0)]𝐼

𝑗=1
𝐼
𝑖=1 },     (7) 

 

where superscripts 0 and 1 refer to prices p before and after the price change, respectively. 

We can define 𝑥𝑒 such that 𝑣(𝑝1, 𝑥𝑒) = 𝑣(𝑝0, 𝑥) with v(.) being the indirect household 

utility (King, 1983; Tovar-Reaños & Wölfing, 2018). If we assume y = v, then:    

𝑥𝑒 =⁡exp {log(𝑥) −⁡∑ (log(𝑝𝑖
1𝑤𝑖

1) − log(𝑝𝑖
0𝑤𝑖

0))𝐼
𝑖=1 +⁡⁡⁡

1

2
⁡∑ ∑ 𝑎𝑖𝑗[log(𝑝𝑖

1𝑝𝑗
1) −𝐼

𝑗=1
𝐼
𝑖=1

log(𝑝𝑖
0𝑝𝑗

0)]}          (8) 
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𝑥𝑒 refers to the income level which gives the same utility as the current income level, but 

under a different regime of prices, i.e., the equivalent income (King, 1983). 

We compute the budget shares for new prices as:  

wi
1 =⁡wi

0 (1 + eij
y
∆pj)⁡,  

Where eij
y
 is the Marshallian price elasticity for good i when price of good j changes, and 

∆pj is the variation of good j price. wi
0 is the pre-change in price budget share for good i.  

To assess the impact of a carbon tax on Spanish households, we simulate four scenarios, 

including separate 20% price increases for electricity, heating fuels, and transport fuels 

(Scenarios 1-3).2 Results are reported as equivalent variation relative to household 

expenditure, averaged by income quintile. This allows for a clear interpretation of the 

distributional burden across the income spectrum. 

We compute a metric for social welfare following Creedy and Sleeman (2006) 

parametrisation of Sen (1976) index:  

𝑆𝑜𝑐𝑖𝑎𝑙⁡𝑊𝑒𝑙𝑓𝑎𝑟𝑒 = ⁡
∑ 𝑥𝑒⁡/⁡√ℎ𝑠𝑖𝑧𝑒ℎ
𝐻
ℎ=1

𝐻
⁡ . (1 − 𝐺)⁡, 

Where G is the Gini index, hsize is the size of household h and there are H households in 

our sample.  

3.3. Effects on emissions 

To evaluate the welfare effects of price changes and their implications for emissions, we 

use the following standard expenditure share equation: 

wi
1 =⁡wi

0 (1 + eij
y
∆pj)⁡, 

Where wi
1 represents the predicted expenditure share under new price conditions, wi

0 is 

the observed expenditure share, eij
y
 denotes the estimated price elasticity, and ∆pj is the 

percentage change in price for good j.  

 
2 The 20% price increase is not arbitrarily chosen but reflects plausible future price developments based on 

recent regulatory changes. First, the Spanish government reduced the VAT on electricity to 5% during the 

energy crisis but reinstated the standard 21% rate as of January 2025. This policy change directly raises 

household electricity costs, contributing significantly to potential price increases. Second, the European 

Union’s upcoming Emissions Trading System 2 (ETS 2), set to take effect in 2027, will introduce a carbon 

pricing mechanism for fuels used in buildings and road transport. 
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wi
0 =

𝑝𝑖
0𝑞𝑖

0

∑ 𝑝𝑖
0𝑞𝑖

0
𝑖

, 

Given the observed values, we can derive 𝑞𝑖
0. Then, using the estimated elasticities (eij

y
), 

we predict new expenditure shares under the revised price scenario:  

wi
1 =

𝑝𝑖
1𝑞𝑖

1

∑ 𝑝𝑖
1𝑞𝑖

1
𝑖

, 

Where we obtain the new consumption quantities 𝑞𝑖
1, which allow us to estimate the 

impact of price changes on total emissions.   

The Spanish National Statistics Institute (INE) provides GHG emissions by production 

branch, following the CNAE-2009 classification, and disaggregates emissions 

attributable to households (INE, 2023). The Annual National Accounts of Spain (INE 

2024) provides the share of each production branch's output that is allocated to household 

final demand. By multiplying this share by the total GHG emissions of each branch, we 

estimate the emissions attributable to households from each production activity. 

Each ECOICOP aggregate i is linked to one or more production branches c in the Spanish 

supply-use tables (CNAE classification). For each branch, we take total emissions 𝐸𝑐 

from the official 2022 greenhouse gas inventory (INE, 2023). To allocate emissions to 

consumption aggregates, we compute the share of each branch's output that is absorbed 

by household demand for aggregate i. Formally: 

𝐺𝐻𝐺𝑖𝑐
0 =⁡𝐸𝑐

g𝑖𝑐
∑ g𝑘𝑐𝑐

 

where g𝑖𝑐 is total expenditure by households on goods from branch c within aggregate i. 

Summing across branches yields the emissions attributable to each consumption 

aggregate: 

𝐺𝐻𝐺𝑖
0 =⁡∑ 𝐺𝐻𝐺𝑖𝑐

0
𝑐 , 

This approach accounts for the composition of each aggregate's supply sources and 

ensures consistency with the structure of the input-output system. In practice, we proxy 

g𝑖𝑐 using national household expenditure microdata merged with product-branch 

mapping based on ECOICOP–CNAE concordance. After the price shock, the new 

branch-level emissions are obtained:  
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𝐺𝐻𝐺𝑖
1 =⁡𝐺𝐻𝐺𝑖

0 wi
1

wi
0 , 

Summing over all goods yields household emissions before and after the shock: 

𝐺𝐻𝐺𝑖
0 =⁡∑ 𝐺𝐻𝐺𝑖

0
𝑖 , 𝐺𝐻𝐺𝑖

1 =⁡∑ 𝐺𝐻𝐺𝑖
1

𝑖 ,  

The current approach assumes that changes in emissions are proportional to changes in 

expenditure shares. This assumption holds only under two conditions: 

1. There is no substitution between goods within the same aggregate. 

2. Emission intensities remain constant along the period of analysis 

3.4. Welfare framework and compensation design 

Given that we observe both pre-tax and post-tax consumption values—denoted as 𝑝𝑖
0𝑞𝑖

0 

and 𝑝𝑖
1𝑞𝑖

1, respectively—we can estimate the tax revenue before and after the price 

change. This is possible because we also have information on indirect tax rates, including 

not only VAT but also other effective excise-equivalent rates. 

We assume that the full price increase is attributable to the introduction of a tax. 

Accordingly, the tax revenue for each good i before and after the price change is computed 

as follows: 

𝑇𝑖
0 =⁡𝑝𝑖

0𝑞𝑖
0𝜏𝑖, 

𝑇𝑖
1 =⁡𝑝𝑖

1𝑞𝑖
1𝜏𝑖, 

Where 𝜏𝑖 represents the effective tax rate applied to good i. The change in tax revenue 

per good is then computed as:  

∆𝑇𝑛 =⁡∑ (𝑇𝑖
1 −⁡𝑇𝑖

0)𝑖 , 

To estimate the aggregate tax revenue at the population level, we apply an uplifting factor 

(𝑓ℎ) to scale household-level estimates to the national population. The total additional tax 

revenue is then given by: 

∆𝑇𝑇𝑜𝑡𝑎𝑙 =⁡∑ 𝑓ℎℎ ⁡∆𝑇𝑛, 

By aggregating across all goods, we obtain both the overall tax revenue increase and the 

contribution of each good to this increase. 
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We implement a revenue-neutral compensation scheme based on a uniform lump-sum 

transfer. Under this approach, the total tax revenue is redistributed equally across all 

households, ensuring that each receives the same absolute amount, regardless of income 

or consumption levels. 

To assess whether households gain or lose under the compensation mechanism, we 

compute the following equation for each income quintile: 

∆𝑊ℎ =⁡ (𝑝𝑖
1𝑞𝑖

1 +⁡𝑆ℎ) − (𝑝𝑖
0𝑞𝑖

0 +⁡𝑉𝐸ℎ), 

Where 𝑆ℎ is the subsidy received under the compensation scheme and 𝑉𝐸ℎ is the 

equivalent variation.  

4. Data and sources 

Our analysis uses data from the Spanish Household Budget Survey (EPF), conducted 

annually by the Spanish Statistical Office (INE) since 2006. We pool the six most recent 

waves (2017–2022), covering 123,403 households. The survey provides detailed 

expenditure and sociodemographic data via face-to-face interviews over two consecutive 

years. 

Following the ECOICOP classification, we group expenditure into nine categories: 1. 

Food and beverages, 2. Housing expenses,3 3. Electricity, 4. Heating,4 5. Motor fuels, 6. 

Transport, 7. Communications, 8. Leisure, and 9. Other non-durable goods and services 

(see Table 1). Unlike most studies, which aggregate all energy-related items into a single 

category, our disaggregated structure allows for identifying potential substitution effects 

between energy goods. This is particularly important, as household energy needs relate to 

functions (e.g. heating or mobility), not specific fuels. Household-specific prices are 

computed using Lewbel’s methodology (Lewbel, 1989, see Appendix C.1) and Consumer 

Price Indexes (CPIs) from INE, improving precision relative to aggregate indices 

(Hoderlein & Mihaleva, 2008). To reduce outlier influence, we trim households below 

the 1st or above the 99th percentiles in income, expenditure, and budget shares. 

 
3 This section on housing expenses does not include imputed rents for owner-occupied housing. 
4 To ensure that the expenditure refers to the aggregate of heating fuels, we perform the following steps. We 

remove households that primarily use electricity and solid fuels as their main source of heating and retain 

those that use liquefied natural gas or other fossil fuels as their primary source. We keep households where 

the most significant energy good within the aggregate matches the primary energy source used. 
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To ensure consistency in the heating fuel aggregate, we retain households whose main 

reported heating source aligns with the dominant expenditure item. We exclude those 

using electricity or solid fuels, given the lack of consistent CPI micro-indices. The 

resulting subsample, focused on fossil fuels (natural gas, LPG, liquid fuels), improves the 

interpretability of price elasticities and welfare simulations. We also exclude households 

with zero expenditure in any category to ensure strictly positive budget shares, a 

requirement for consistent demand estimation. The final sample includes 12,047 

households, representing a behaviorally consistent set of energy consumers. To account 

for climatic variation, we merge heating and cooling degree days (HDD and CDD) at the 

NUTS-3 level from Eurostat.5 

Table 2 presents descriptive statistics for the weighted sample.6 On average, households 

allocate 23.3% of non-durable spending to food, 9.0% to housing, and 3.0%, 2.7%, and 

7.9% to electricity, heating fuels, and motor fuels, respectively. Log prices and total 

expenditures show moderate household-level variation. 

Additional descriptive statistics outline the socio-demographic profile of the sample. The 

average household head is 52 years old; 28.5% are male. Regarding education, 34.5% 

hold an undergraduate degree, 12.6% a postgraduate degree, and 20.6% only primary 

education. Most households are couples with children (53.7%), followed by childless 

couples under 65 (14.3%) and lone parents (6.9%). Elderly single-adult households 

represent 1.6%. Climate variation is captured via HDD (141) and CDD (23) per year. The 

sample is balanced across years and concentrated in Madrid (35.5%), Catalunya (19.4%), 

and País Vasco (9.2%). Canarias, Ceuta, and Melilla are excluded. 

5. Results  

5.1. Baseline results  

Table 4 reports uncompensated own-price elasticities. Electricity demand ranges from -

0.90 to -0.82, confirming its inelastic nature in Spain. Elasticity declines (in absolute 

terms) with income, indicating greater price responsiveness among lower-income 

households. This reflects not greater adjustment capacity but tighter budget constraints; 

electricity represents a larger share of their spending, leaving them with little choice but 

 
5 https://ec.europa.eu/eurostat/databrowser/bookmark/af12da61-61d6-40a1-ac74-7d404350c1d6?lang=en 

– downloaded 01/07/2024. Methodological details are presented in Appendix C.2. 
6 All descriptive statistics are computed using household survey weights provided by INE to ensure 

population representativeness. 

https://ec.europa.eu/eurostat/databrowser/bookmark/af12da61-61d6-40a1-ac74-7d404350c1d6?lang=en
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to reduce consumption.7 Thus, the observed elasticity signals necessity rather than 

flexibility: while wealthier households can absorb price hikes with minimal impact, 

lower-income groups face substantial sacrifices in essential energy use. 

For heating fuels, estimated price elasticities range from -1.05 to -1.15, indicating elastic 

demand. Elasticities rise with income, suggesting greater responsiveness among higher-

income households. This can reflect non-essential consumption (e.g., for comfort), easier 

access to alternatives (e.g., renewables or efficient systems), and lower welfare impacts, 

as heating comprises a smaller budget share. Wealthier households are also better 

positioned to adopt energy-saving technologies or behaviours, enhancing flexibility. In 

contrast, lower-income households may lack such options, making their demand less 

responsive despite potentially greater vulnerability to energy price increases. 

Motor fuel elasticities range from -1.30 to -1.37, with no clear pattern across income 

levels. The highest responsiveness appears in the top quintile, the lowest in the third. 

Wealthier households may adjust more due to discretionary use and urban access to 

transport alternatives.8  

Tables A.1 to A.5 reveals notable substitution effects between electricity and heating fuels 

across all income quintiles, intensifying with income. Higher-income households respond 

to electricity price increases by raising heating fuel use, reflecting greater flexibility. In 

contrast, lower-income groups show limited substitution capacity. Similar patterns 

emerge for motor fuels, with higher-income households displaying stronger substitutions 

with both electricity and heating. These results suggest that wealthier households are 

better able to adapt energy use or invest in alternatives when relative prices shift. 

Table 5 presents expenditure elasticities by quintile from the EASI demand system, with 

bootstrap standard errors (500 replications). A key result is that motor fuels exhibit 

declining expenditure elasticities with income. For lower-income households, motor fuels 

 
7 In our sample, the first quintile households spend 4.43% of their budget in electricity on average while 

top income households devote to electricity services 1.90% of total expenditure. 
8 This result is consistent with evidence from the Encuesta de Características Esenciales de la Población 

y Viviendas conducted by the Spanish National Statistics Institute (INE), which shows that vehicle 

ownership increases with income: low-income households (under €1,000) are more likely to own no vehicle 

(10.5%), while high-income households (over €3,000) are more likely to own two or more vehicles (6.8% 

for three or more). This suggests that higher-income households can adjust motor fuel use both on the 

intensive margin (reduced use or switching to efficient vehicles) and on the extensive margin (vehicle 

ownership). In contrast, low-income households devote a higher share of their total budget to fuel—8.82% 

for the lowest quintile versus 7.25% for the highest—limiting their flexibility to reduce consumption 

without affecting essential travel. 
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behave as luxuries, while for higher-income groups they are necessities, reflecting more 

regular car use. In contrast, electricity and heating are necessities across quintiles, with 

no clear income gradient. This suggests that, although essential, wealthier households 

may adjust consumption more easily, potentially due to access to energy-efficient 

technologies or alternatives. While the model controls for urban–rural residence, 

simulations are not disaggregated by geography, and exploring this source of 

heterogeneity is an avenue for future research. 

Overall, these findings suggest that motor fuel taxes may disproportionately affect lower-

income households, for whom such fuels are a luxury. In contrast, electricity and heating 

policies impact all income groups, though higher-income households may have greater 

capacity to adjust consumption in response to price changes. 

5.2. Welfare simulations 

Table 6 reports the equivalent variation (EV) as a share of total expenditure by income 

quintile under three policy scenarios: price increases in electricity, heating fuels, and 

motor fuels. 

Scenario 1: Increase in electricity prices 

Under the electricity price increase scenario, the equivalent variation declines with 

income: the lowest quintile faces a burden of 0.804% of expenditure, while the highest 

sees only 0.347%. This has a regressive impact, as lower-income households spend a 

larger share of their budget on electricity. 

Scenario 2: Increase in heating fuel prices 

A similar regressive pattern emerges under heating fuel price increases: the lowest-

income quintile bears a 0.697% burden, compared to 0.324% for the highest. The smaller 

gap suggests heating expenditures are more evenly distributed or that higher-income 

households also devote a notable share of their budget to heating. 

Scenario 3: Increase in motor fuel prices 

In the motor fuel price scenario, equivalent variation is higher across all quintiles: 1.588% 

for the lowest-income group and 1.309% for the highest. Unlike electricity and heating, 

the burden does not decline uniformly with income. Middle-income households face 

slightly lower impacts, but welfare losses remain substantial even for wealthier groups, 
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possibly reflecting differences in car ownership, fuel use, and commuting patterns across 

income distribution. 

Table 8 presents Sen index results across scenarios. In the no-tax baseline, the Gini is 

0.2712, mean equivalent income €20,162.24, and the Sen index €15,223.54. Under the 

electricity tax, the Gini rises slightly to 0.2718 and mean income falls to €20,064.49, 

reducing the Sen index by €86.81. The heating tax similarly increases the Gini (0.2717) 

and lowers mean income to €20,072.63, with a Sen index drop of €77.56. Both policies 

slightly reduce welfare without significantly worsening inequality. 

The motor fuels tax scenario results in the largest welfare loss, with the Sen index falling 

by €216.85, despite a slight Gini decline to 0.2711. This stems from a sharper drop in 

mean equivalent income (€19,860.63), which outweighs the marginal equity gain. 

Although the income quintile ratio remains stable across scenarios, these results show 

that moderate income changes can significantly affect welfare. Thus, the fuel tax has the 

most adverse impact, highlighting the need to jointly assess efficiency and equity in tax 

reform design. 

5.3. Emissions effects of price-induced demand changes 

Simulation results (Table 7) reveal asymmetric behavioral and environmental responses 

to energy price shocks across expenditure categories. A 20% increase in electricity prices 

raises the electricity budget share (+2.29%) and, more notably, heating-fuel expenditure 

(+3.55%), while food (-0.22%) and leisure (-0.29%) contract slightly. This reallocation, 

consistent with electricity’s inelasticity and substitution toward complementary energy 

sources, leads to a net rise in emissions (+0.75%). Only 25% stems from electricity itself 

(+304 tCO₂e); the remainder originates from heating (+418 tCO₂e), illustrating a rebound 

effect (Chitnis & Sorrell, 2015). 

This pattern aligns with earlier findings: high-income households substitute electricity 

and heating in response to relative prices, unlike lower-income groups. A similar gradient 

appears for motor fuels. Thus, emission rebounds are largely driven by wealthier 

households shifting toward more carbon-intensive energy. These results underscore the 

need for integrated carbon pricing or complementary measures to prevent 

environmentally counterproductive substitution. 

In contrast, the gas price shock is the only scenario that reduces emissions (–0.40%), 

largely due to a sharp contraction in heating-related demand (–4.63%), cutting 546 tCO₂e. 
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While electricity use increases modestly (+0.88%), the offsetting emissions remain 

relatively small (+117 tCO₂e). The fuel shock, meanwhile, fails to deliver environmental 

benefits: although motor fuel use declines (–6.94%; –343 tCO₂e), emissions increase 

overall (+0.64%) due to compensatory rises in heating (+511 tCO₂e) and transport-related 

emissions (+262 tCO₂e). 

These findings highlight the central role of heating in household emissions, i.e., small 

expenditure shifts can produce sizable emission effects. Electricity contributes both 

directly and indirectly, amplifying the rebound through substitution toward more 

polluting energy uses. Limited behavioral responses in essential categories like food and 

housing (share changes < ±0.5%) suggest that price instruments alone are insufficient for 

deep decarbonization without structural support. Our assumption of proportionality 

between spending and emissions (i.e., GHGᵢ¹ = GHGᵢ⁰ × wᵢ¹/wᵢ⁰) likely overstates impacts, 

as intra-aggregate substitution and efficiency gains remain unobserved. Households may 

adopt cleaner fuels or more efficient appliances, reducing actual emissions. Since the 

simulation applies pre-shock emission factors to post-shock spending, results should be 

interpreted as upper-bound estimates. Overall, uniform price signals risk unintended 

outcomes unless accompanied by targeted support and access to cleaner alternatives—

key considerations for effective and equitable climate policy. 

5.4. Distributional results under compensation 

Figure 2 illustrates significant heterogeneity in household outcomes across income 

quintiles under different energy price scenarios. Under the electricity tax, 61.02% of 

households are net winners and 38.98% losers. Although relatively balanced overall, low-

income households face a higher incidence of losses, while high-income groups may also 

incur net losses due to high absolute consumption only partially offset by uniform 

transfer. 

For the heating tax, outcomes are more evenly distributed: 54.39% winners and 45.61% 

losers. This reflects that heating expenditure depends more on dwelling characteristics 

(e.g., insulation, system efficiency) than income alone. However, the lump-sum transfer 

still fails to fully compensate many low-income households with greater heating needs. 

In contrast, the fuels tax is markedly regressive: 79.86% of households are net losers, and 

only 20.14% benefit. Although the lowest quintile includes a slightly higher share of 

winners, it is likely due to lower car ownership—middle- and upper-income households 
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absorb most losses given higher, less flexible fuel use. These results emphasize the 

inadequacy of uniform compensation in the context of transport fuels and underscore the 

need for targeted mechanisms that reflect actual energy needs and mobility constraints. 

5.5 On the evaluation of behavioral responses and policy implications 

To evaluate the alignment between our empirical model and aggregate behavior, we 

implement a national-level validation exercise. Annual household energy expenditures 

are constructed by multiplying budget shares (electricity, heating, fuels) by total 

household expenditure and a grossing-up factor, yielding aggregate figures for the EPF 

sample. Since the EPF excludes certain groups (e.g., institutional households), we apply 

a correction factor, computed as the ratio between total national expenditure reported in 

the Spanish National Accounts (INE, 2024) and the EPF aggregate. Table 9 summarizes 

this adjustment. 

To capture price dynamics, we use monthly averages for Gasoline 95 E5, Diesel A, and 

compressed natural gas (Ministry for the Ecological Transition), and the electricity CPI 

(INE, base 2021). We then compare observed changes in energy demand with 

counterfactuals derived from: (i) our model-based elasticities and (ii) meta-analysis 

estimates from Labandeira et al. (2017). 

Table 10 presents annual prices and demand variations. Two episodes dominate. First, 

during the COVID-19 crisis (2020-21), electricity prices rose sharply (+35.6%), yet 

demand fell only -20.9%, below both model (-30.7%) and literature-based (-25.1%) 

predictions. Heating demand rose (+8.3%), and fuel use increased slightly (+0.9%), likely 

due to more time spent at home, teleworking, and private vehicle reliance. Second, during 

the 2021-22 energy crisis following Russia’s invasion of Ukraine, heating prices surged 

(+127.8%), along with electricity (+26.8%) and fuel (+36.3%). Still, observed demand 

reductions were far milder than predicted: electricity fell -13.7% (vs. -23.2% and -18.9%); 

heating -53.5% (vs. -193.6% and -158.1%); and fuels -6.1% (vs. -48.8% and -29.7%). 

These gaps highlight how, in crisis contexts, effective elasticities shrink as non-price 

constraints, precautionary motives, supply restrictions, and limited short-run flexibility, 

dominate behavior. This reflects the well-established divergence between micro-

econometric estimates (typically more elastic) and muted aggregate responses in turbulent 

conditions (Labandeira et al., 2017). 
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Table 11 compares observed and predicted changes in household GHG emissions. For 

electricity, the model captures the direction of change annually but consistently overstates 

the magnitude. For example, it overshoots the 2017-18 decline (-5.3% vs. -3.9% 

observed), underpredicts the 2019-20 rebound (+1.1% vs. +3.7%), and again exaggerates 

the 2020-21 drop (-2.0% vs. -1.3%). Heating emissions display major sign mismatches: 

emissions increased in both 2017-18 and 2020-21 (+4.2% and +3.9%), while models 

predicted declines. Fuel emissions show similar discrepancies: 2019-20 predicted a -12% 

fall (vs. -1% observed), and 2020-21 predicted a +11% rise (vs. a slight -0.5% fall), likely 

due to mobility collapse during lockdowns, an effect unrelated to prices. 

Overall, elasticity-based counterfactuals tend to overstate both declines (e.g., 2019-20: -

3.6% estimated vs. -0.6% observed) and rebounds (e.g., 2021-22: +1.4% vs. +0.1%). 

These findings confirm that during health or geopolitical crises, non-price forces 

dominate. To further illustrate, we approximate the effects of the standardized 20% price 

increase for each energy aggregate by linearly scaling the average annual variations 

observed in Table 11. These back-of-the-envelope calculations show that elasticity-based 

counterfactuals tend to significantly overstate both reductions (e.g., electricity: –2.32% 

estimated vs. –0.30% observed) and increases (e.g., fuels: +4.70% estimated vs. +0.44% 

observed). This confirms that during periods of external shocks—such as health or 

geopolitical crisis-price determinants overwhelmingly drive household consumption 

patterns. Elasticity-based models, while useful, may substantially exaggerate actual 

behavioral responses, underscoring the need to contextualize their predictions when 

assessing the climate impact of price-based interventions. 

Table 12 compares observed annual price elasticities with estimates from our model and 

Labandeira et al. (2017), revealing strong year-to-year variation. In 2017-18, heating 

demand rose despite price increases (+2.14), likely due to an unusually cold winter. In 

2018-19, elasticities for all energy types were around -1.5, suggesting greater substitution 

under mild conditions. Electricity and heating remained price-sensitive in 2019-20 (-2.37 

and -1.51), while fuel demand was largely unresponsive (-0.11). In 2020-21, elasticities 

for heating and fuels turned positive, reflecting lockdown-induced increases in home 

energy use and car reliance. By 2021-22, elasticities returned to negative signs but 

remained low (-0.51 to -0.17), well below model and literature benchmarks. On average, 

electricity is more elastic (-1.13) than expected, whereas heating (+0.10) and fuel (-0.39) 
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are far less so. These findings reinforce that micro-level elasticities may overstate 

aggregate responsiveness, especially during crises. 

On average, electricity demand appears more elastic (-1.13) than both model (–0.86) and 

literature (–0.71) suggest, while heating (+0.10) and fuels (–0.39) are markedly less 

elastic. These deviations underscore a broader point: micro-based elasticities, while 

informative, often overstate short-run aggregate responsiveness, especially during crises 

when household decisions are shaped by non-price constraints. 

These discrepancies between observed and predicted responses suggest that price-based 

energy policies may be less effective than expected during periods of economic or 

geopolitical turmoil. In such contexts, households face rigidities—technological, 

behavioral, or contextual—that limit their ability to adjust consumption, even in the face 

of large price swings. This has two key implications: first, relying solely on carbon pricing 

may not deliver the intended environmental outcomes unless complemented by measures 

that facilitate substitution (e.g., building retrofits, public transport access, or clean heating 

alternatives). Second, policymakers must anticipate the limited behavioral responsiveness 

during crises and design compensation schemes accordingly, to avoid regressive impacts 

without overestimating environmental gains. 

6. Conclusion 

This study examines the distributional and environmental effects of energy price changes 

in Spain using a flexible demand system (EASI) and microsimulation techniques. Our 

results highlight the heterogeneous behavioral responses across income groups: 

electricity demand is inelastic but more responsive among low-income households, while 

heating and motor fuels are more elastic, especially for wealthier groups. Cross-price 

effects, particularly substitution between electricity and heating fuels, play a central role 

in shaping both welfare and emissions outcomes. 

Price increases in electricity and heating are regressive, disproportionately affecting 

lower-income households. Motor fuel taxes are less clearly regressive but generate the 

largest aggregate welfare losses. Lump-sum transfers partially offset these impacts for 

electricity and heating, but are insufficient in the case of transport fuels, where nearly 

80% of households experience net losses—especially those with high mobility needs. 

More targeted compensation schemes may be needed to ensure fairness and political 

viability. 
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On the environmental side, substitution patterns can undermine climate goals. Electricity 

price hikes increase emissions due to shifts toward more carbon-intensive heating, while 

only gas price shocks reduce emissions meaningfully. These findings underscore the 

importance of accounting for behavioral substitutions when designing price-based 

instruments. 

Finally, comparing model predictions with aggregate data during recent crises reveals that 

real-world responses are often weaker than elasticities suggest, due to non-price 

constraints. Policymakers must therefore consider household heterogeneity, substitution 

effects, and structural barriers when designing equitable and effective carbon pricing. 

References  

Banks, J., Blundell, R., & Lewbel, A. (1997). Quadratic Engel curves and consumer 

demand. Review of Economics and statistics, 79(4), 527-539. 

Belaïd, F. (2022). Implications of poorly designed climate policy on energy poverty: 

Global reflections on the current surge in energy prices. Energy Research & Social 

Science, 92, 102790. 

Blázquez, L., Boogen, N., & Filippini, M. (2013a). Residential electricity demand in 

Spain: New empirical evidence using aggregate data. Energy economics, 36, 648-657. 

Blázquez, L., Filippini, M., & Heimsch, F. (2013b). Regional impact of changes in 

disposable income on Spanish electricity demand: A spatial econometric analysis. Energy 

economics, 40, S58-S66. 

Blundell, R., Chen, X., & Kristensen, D. (2007). Semi‐nonparametric IV estimation of 

shape‐invariant Engel curves. Econometrica, 75(6), 1613-1669. 

Bonnet, O., Fize, É., Loisel, T., & Wilner, L. (2025). Compensating against fuel price 

inflation: Price subsidies or transfers?. Journal of Environmental Economics and 

Management, 129, 103079. 

Chitnis, M., & Sorrell, S. (2015). Living up to expectations: Estimating direct and indirect 

rebound effects for UK households. Energy Economics, 52, S100-S116. 

Creedy, J., & Sleeman, C. (2006). The distributional effects of indirect taxes: Models and 

applications from New Zealand. Edward Elgar Publishing. 

Deaton, A., & Muellbauer, J. (1980). An almost ideal demand system. American 

Economic Review, 70(3), 312-326. 

de Arriba Segurado, P. (2025). Tendencias y políticas de eficiencia energética en España 

(2000–2022). Instituto para la Diversificación y Ahorro de la Energía (IDAE) – Proyecto 

ODYSSEE-MURE. https://www.odyssee-mure.eu/publications/national-reports/espana-

eficiencia-energetica.pdf 

https://www.odyssee-mure.eu/publications/national-reports/espana-eficiencia-energetica.pdf
https://www.odyssee-mure.eu/publications/national-reports/espana-eficiencia-energetica.pdf


21 

 

Douenne, T. (2020). The vertical and horizontal distributive effects of energy taxes: A 

case study of a french policy. The Energy Journal, 41(3), 231-254. 

Dubin, J. A., & McFadden, D. L. (1984). An econometric analysis of residential electric 

appliance holdings and consumption. Econometrica, 52(2), 345-362. 

Eisner, A., Kulmer, V., & Kortschak, D. (2021). Distributional effects of carbon pricing 

when considering household heterogeneity: An EASI application for Austria. Energy 

Policy, 156, 112478. 

European Commission. (2024). ETS2: Buildings, road transport and additional sectors. 

Retrieved July 1, 2025, from https://climate.ec.europa.eu/eu-action/eu-emissions-

trading-system-eu-ets/ets2-buildings-road-transport-and-additional-sectors_en 

Evald, J., Sterner, T. & Sterner, E. (2022). Understanding the resistance to carbon taxes: 

Drivers and barriers among the general public and fuel-tax protesters. Resource and 

Energy Economics, 70. https://doi.org/10.1016/j.reseneeco.2022.101331. 

Feindt, S., Kornek, U., Labeaga, J. M., Sterner, T., & Ward, H. (2021). Understanding 

regressivity: Challenges and opportunities of European carbon pricing. Energy 

Economics, 103, 105550. 

Filippini, M., & Pachauri, S. (2004). Elasticities of electricity demand in urban Indian 

households. Energy Policy, 32(3), 429-436. 

Guan, Y., Yan, J., Shan, Y., Zhou, Y., Hang, Y., Li, R., ... & Hubacek, K. (2023). Burden 

of the global energy price crisis on households. Nature Energy, 8(3), 304-316. 

Hanemann, W. M. (1984). Discrete/continuous models of consumer demand. 

Econometrica, 52, 541-561. 

Hanemann, M., Labandeira, X., Labeaga, J. M., & Vásquez-Lavín, F. (2024). Discrete-

continuous models of residential energy demand: A comprehensive review. Resource and 

Energy Economics, 101426. 

Hoderlein, S., & Mihaleva, S. (2008). Increasing the price variation in a repeated cross 

section. Journal of Econometrics, 147(2), 316-325. 

International Energy Agency. (2022). Global energy crisis. IEA. Retrieved July 1, 2025, 

from https://www.iea.org/topics/global-energy-crisis 

Immervoll, H. et al. (2023), “Who pays for higher carbon prices?: Illustration for 

Lithuania and a research agenda”, OECD Social, Employment and Migration Working 

Papers, No. 283, OECD Publishing, Paris, https://doi.org/10.1787/8f16f3d8-en. 

INE (2023). Atmospheric emission accounts by economic sectors (CNAE 2009) and 

households as final consumers, environmental issues (GHG, GAC, PRO3) and period. 

Retrieved from: https://www.ine.es/jaxi/Tabla.htm?tpx=50184&L=0 

INE (2024). Annual National Accounts of Spain: Statistical Revision 2024. 

https://www.ine.es/dyngs/INEbase/operacion.htm?c=Estadistica_C&cid=125473617705

7&idp=1254735576581 

https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/ets2-buildings-road-transport-and-additional-sectors_en
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/ets2-buildings-road-transport-and-additional-sectors_en
https://doi.org/10.1016/j.reseneeco.2022.101331
https://www.iea.org/topics/global-energy-crisis
https://doi.org/10.1787/8f16f3d8-en
https://www.ine.es/jaxi/Tabla.htm?tpx=50184&L=0
https://www.ine.es/dyngs/INEbase/operacion.htm?c=Estadistica_C&cid=1254736177057&idp=1254735576581
https://www.ine.es/dyngs/INEbase/operacion.htm?c=Estadistica_C&cid=1254736177057&idp=1254735576581


22 

 

Jacksohn, A., Tovar-Reanos, M., Pothen, F., & Rehdanz, K. (2023). Trends in household 

demand and greenhouse gas footprints in Germany: Evidence from microdata of the last 

20 years. Ecological Economics, 208, 107757. 

King, M. A. (1983). Welfare analysis of tax reforms using household data. Journal of 

Public Economics, 21(2), 183-214. 

Köppl, A., & Schratzenstaller, M. (2023). Carbon taxation: A review of the empirical 

literature. Journal of Economic Surveys, 37(4), 1353-1388. 

Labandeira, X., Labeaga, J. M., & Rodríguez, M. (2006). A residential energy demand 

system for Spain. The Energy Journal, 27(2). 

Labandeira, X., Labeaga, J. M., & López-Otero, X. (2017). A meta-analysis on the price 

elasticity of energy demand. Energy Policy, 102, 549-568. 

Levell, P., O’Conell, M., & Smith, K. (2024). Distributional effects of the European 

energy crisis. Cowles Foundation for Research in Economics Discussion Paper. 

Lewbel, A. (1989). Household equivalence scales and welfare comparisons. Journal of 

Public Economics, 39(3), 377-391. 

Lewbel, A. and Pendakur, K. (2009). Tricks with Hicks: The EASI Demand System. 

American Economic Review 99(3),827-863. 

Maier, S., De Poli, S., & Amores, A. F. (2024). Carbon taxes on consumption: 

Distributional implications for a just transition in the EU (JRC Working Papers on 

Taxation & Structural Reforms No. 2024-09). Joint Research Centre. 

 

Ministerio para la Transición Ecológica y el Reto Demográfico (MITERD). (2023). La 

Energía en España 2020. Gobierno de España. 

https://www.miteco.gob.es/content/dam/miteco/es/energia/files-

1/balances/Balances/LibrosEnergia/Libro_Energia_Espana_2020.pdf 

Ramírez–Hassan, A., & López-Vera, A. (2024). Welfare implications of a tax on 

electricity: A semi-parametric specification of the incomplete EASI demand system. 

Energy Economics, 131, 107389. 

 

Sen, A. (1976). Real national income. The Review of Economic Studies, 43(1), 19–39. 

https://doi.org/10.2307/2296597 

 

Stiglitz, Joseph E., Nicholas Stern, Maosheng Duan, Ottmar Edenhofer, Gaël Giraud, 

Geoffrey M. Heal, Emilio Lèbre la Rovere, et al. 2017. Report of the High-Level 

Commission on Carbon Prices. Carbon Pricing Leadership Coalition. 

 

Tovar-Reaños, M. & Wölfing, N. M. (2018). Household energy prices and inequality: 

Evidence from German microdata based on the EASI demand system. Energy Economics, 

70, 84-97. 

Reaños, M. A. T., & Lynch, M. Á. (2022). Measuring carbon tax incidence using a fully 

flexible demand system. Vertical and horizontal effects using Irish data. Energy 

Policy, 160, 112682. 

https://www.miteco.gob.es/content/dam/miteco/es/energia/files-1/balances/Balances/LibrosEnergia/Libro_Energia_Espana_2020.pdf
https://www.miteco.gob.es/content/dam/miteco/es/energia/files-1/balances/Balances/LibrosEnergia/Libro_Energia_Espana_2020.pdf
https://doi.org/10.2307/2296597


23 

 

van der Ploeg, F., Rezai, A., & Tovar-Reaños, M. (2022). Gathering support for green tax 

reform: Evidence from German household surveys. European Economic Review 141, 

103966. 

Wang, C., Wang, R., Fei, X., & Li, L. (2024). Price effects of residents' consumption 

carbon emissions: Evidence from rural and urban China. Energy Economics, 107662. 

Reaños, M. A. T., & Lynch, M. Á. (2022). Measuring carbon tax incidence using a fully 

flexible demand system. Vertical and horizontal effects using Irish data. Energy 

Policy, 160, 112682. 

van der Ploeg, F., Rezai, A., & Tovar-Reaños, M. (2022). Gathering support for green tax 

reform: Evidence from German household surveys. European Economic Review 141, 

103966. 

Wang, C., Wang, R., Fei, X., & Li, L. (2024). Price effects of residents' consumption 

carbon emissions: Evidence from rural and urban China. Energy Economics, 107662. 

 

 



   

Table 1. Aggregation of COICOP categories 

COICOP 

category Description Aggregate 

   

011 Food  Food and beverages  

012 Non-alcoholic beverages Food and beverages  

021 Alcoholic beverages  Food and beverages  

022 Tobaccco Food and beverages  

041 Actual rents for housing  Housing 

043 Maintenances and repair of the dwelling  Housing 

044 

Water supply and miscellaneous services related to the 

dwelling  Housing 

0451 Electricity  Electricity  

0452 Natural gas and town gas Heating 

0453 Liquefied hydrocarbons (butane, propane, etc) Heating 

0454 Lyquid fuels  Heating 

0455 Solid fuels  Heating 

07221 Diesel  Motor fuels  

07222 Petrol Motor fuels  

07211 Accesories and parts for personal transport equipment Transportation 

12541 Motor vehicle insurances Transportation 

07230 

Maintenance and repair of personal transport 

equipment Transportation 

07241 

Hire of garages, parking spaces and personal transport 

equipment  Transportation 

07242 Toll facilities and paarking meters Transportation 

07243 

Driving schools, tests, licenses and road worthiness 

tests (ITV) Transportation 

073 Transport services Transportation 

082 Telephone and telefax equipment Communication 

083 Telephone and fax services Communication 

091 

Audio-visual, photographic and information 

processing equipment Leisure 

093 

Other recreational items and equipment for gardens 

and pets Leisure 

094 Recreational and cultural services Leisure 

095 Newspapers, books and stationary Leisure 

096 Package holidays Leisure 

06 Health 

Other non durable 

goods 

10 Education 

Other non durable 

goods 

11 Restaurants and hotels  

Other non durable 

goods 

12 Other goods and services 

Other non durable 

goods 

   

      
 



   

Table 2. Descriptive statistics  

VARIABLES Mean SD 

   

Budget shares   

   

Budget share: Food and beverages 0.233 0.103 

Budget share: Housing 0.090 0.086 

Budget share: Electricity 0.030 0.016 

Budget share: Heating 0.027 0.021 

Budget share: Motor fuels 0.079 0.058 

Budget share: Transport 0.044 0.062 

Budget share: Communication 0.047 0.024 

Budget share: Leisure 0.080 0.068 

Budget share: Other non durable goods 0.369 0.121 

   

Log Prices   

   

Price: Food and beverages 4.450 0.264 

Price: Housing 4.093 0.268 

Price: Electricity 4.500 0.197 

Price: Heating 3.810 0.118 

Price: Motor fuels 4.105 0.314 

Price: Transport 3.964 0.359 

Price: Communication 4.505 0.276 

Price: Leisure 3.756 0.399 

Price: Other non durable goods 4.331 0.237 

   

Log Total Expenditure 10.144 0.434 

   

Household characteristics   

   

No. household members 2.991 1.166 

Single-family house 0.179 0.384 

Rural environment 0.046 0.209 

25 or more years ago 0.575 0.494 

Less than 25 years old 0.425 0.494 

Over 100k inhabitants 0.528 0.499 

100k - 20k inhabitants 0.266 0.442 

Below 20k  inhabitants 0.206 0.404 

   
 

 



   

 

Table 2. Descriptives (cont.)  

VARIABLES Mean SD 

   

Household head sociodemographics   

   

Household head: Age 51.944 12.614 

Elementary school or less 0.206 0.404 

High school 0.055 0.228 

Vocational 0.189 0.391 

Undergraduate 0.345 0.475 

Postgraduate 0.126 0.332 

Household Head: Male 0.285 0.451 

      

Household type   

   

Single adult household. One person aged 65 or over. 0.016 0.127 
Single adult household. A person under 30 to 64 years 

old. 0.067 0.250 
Single adult household. One adult with children under 

16 years old. 0.011 0.107 
Childless couple with at least one member aged 65 or 

older. 0.089 0.284 
Childless couple with both members under 65 years of 

age. 0.143 0.350 

Couple with children. 0.537 0.499 

Lone parent with at least one child aged 16 or over 0.069 0.253 

Other households 0.068 0.252 

   

Climatic variables   

   

Heating degree days 141.264 134.236 

Cooling degree days 22.997 45.419 

   

Years   

   

Year 2017 0.158 0.365 

Year 2018 0.202 0.401 

Year 2019 0.192 0.394 

Year 2020 0.145 0.352 

Year 2021 0.148 0.355 

Year 2022 0.156 0.363 

   
 



   

 

Table 2. Descriptives (cont.)  

VARIABLES Mean SD 

   

Regions   

   

Region: Andalucia 0.014 0.118 

Region: Aragon 0.046 0.208 

Region: Asturias 0.026 0.159 

Region: Islas Baleares 0.012 0.108 

Region: Canarias 0.000 0.000 

Region: Cantabria 0.019 0.138 

Region: Castilla y Leon 0.070 0.256 

Region: Castilla-La Mancha 0.040 0.195 

Region: Catalunya 0.194 0.396 

Region: Comunitat Valenciana 0.039 0.193 

Region: Extremadura 0.011 0.105 

Region: Galicia 0.036 0.187 

Region: Comunidad de Madrid 0.355 0.479 

Region: Region de Murcia 0.009 0.093 

Region: Comunidad Foral de Navarra 0.026 0.160 

Region: Pais Vasco 0.092 0.290 

Region: La Rioja 0.010 0.102 

Region: Ceuta 0.000 0.000 

Region: Melilla 0.000 0.000 

   

 

  



   

Figure 1. Non-parametric Engel curves 

   

   

   

Note: Nonparametric Engel curves for nine consumption categories estimated using kernel regressions of budget 

shares on log household income. The figures depict the relationship between income and expenditure shares for 

food, housing, electricity, heating, motor fuels, transport, communications, leisure, and other goods. Estimates are 

based on data from the Spanish Household Budget Survey (2017–2022)



   

 

Table 3. EASI implicit Marshallian demand system  

          
Variable  Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          

Log price food 0.025*** -0.015*** -0.003*** -0.003*** 0.006*** -0.003** -0.004*** -0.005*** 0.001 

 (0.003) (0.001) (0.000) (0.001) (0.002) (0.002) (0.001) (0.002) (0.003) 

Log price housing -0.015*** 0.046*** -0.001*** -0.003*** 0.005*** -0.001 -0.004*** -0.008*** -0.019*** 

 (0.001) (0.002) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Log price electricity -0.003*** -0.001*** 0.003*** 0.006*** 0.003*** 0.000 -0.001*** -0.001*** -0.005*** 

 (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 

Log price heating -0.003*** -0.003*** 0.006*** -0.003** 0.006*** 0.001* 0.001 -0.001*** -0.004*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) 

Log price motor fuels 0.006*** 0.005*** 0.003*** 0.006*** -0.028*** 0.006*** 0.003*** -0.013*** 0.012*** 

 (0.002) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) 

Log price transport -0.003** -0.001 0.000 0.001* 0.006*** -0.021*** -0.001*** 0.001 0.018*** 

 (0.002) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Log price communication -0.004*** -0.004*** -0.001*** 0.001 0.003*** -0.001*** 0.019*** -0.002*** -0.011*** 

 (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) 

Log price leisure -0.005*** -0.008*** -0.001*** -0.001*** -0.013*** 0.001 -0.002*** 0.025*** 0.004** 

 (0.002) (0.001) (0.000) (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) 

Log price other goods 0.001 -0.019*** -0.005*** -0.004*** 0.012*** 0.018*** -0.011*** 0.004** 0.004 

 (0.003) (0.002) (0.000) (0.001) (0.002) (0.002) (0.001) (0.002) (0.004) 

ln (y) 11.618* 1.364 -0.156 2.81* -8.999** -0.851 -1.208 -11.999** 7.42 

 (6.700) (4.639) (1.058) (1.527) (3.657) (3.515) (1.766) (4.685) (8.158) 

ln(y)² -2.668 -0.380 0.008 -0.713* 2.361** 0.160 0.308 3.089** -2.165 

 (1.716) (1.200) (0.27) (0.389) (0.939) (0.917) (0.449) (1.218) (2.12) 

ln(y)³ 0.270 0.044 0.001 0.079* -0.272** -0.011 -0.036 -0.352** 0.277 

 (0.195) (0.138) (0.03) (0.044) (0.107) (0.106) (0.051) (0.140) (0.244) 

ln(y)⁴ -0.010 -0.002 -0.000 -0.003* 0.012** 0.000 0.002 0.015** -0.013 

 (0.008) (0.006) (0.001) (0.002) (0.005) (0.005) (0.002) (0.006) (0.01) 



   

 

 

 

Table 4. Own price elasticities by quintile in EASI demand systems  

          

Quintiles  Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          

Quinitle 1 -0.898*** -0.480*** -0.896*** -1.052*** -1.343*** -1.770*** -0.652*** -0.609*** -1.063*** 

 (0.012) (0.018) (0.017) (0.031) (0.023) (0.058) (0.011) (0.026) (0.015) 

Quintile 2 -0.843*** -0.419*** -0.882*** -1.075*** -1.339*** -1.570*** -0.607*** -0.670*** -1.097*** 

 (0.011) (0.021) (0.022) (0.039) (0.023) (0.039) (0.013) (0.023) (0.013) 

Quintile 3 -0.822*** -0.386*** -0.866*** -1.092*** -1.331*** -1.527*** -0.556*** -0.719*** -1.112*** 

 (0.012) (0.022) (0.027) (0.044) (0.024) (0.035) (0.014) (0.020) (0.012) 

Quintile 4 -0.807*** -0.336*** -0.847*** -1.120*** -1.335*** -1.455*** -0.496*** -0.746*** -1.118*** 

 (0.013) (0.025) (0.032) (0.055) (0.025) (0.030) (0.016) (0.019) (0.011) 

Quintile 5 -0.793*** -0.341*** -0.824*** -1.153*** -1.374*** -1.405*** -0.407*** -0.788*** -1.103*** 

 (0.015) (0.027) (0.039) (0.066) (0.027) (0.025) (0.019) (0.018) (0.010) 

                    

          
 

 

 

  



   

 

Table 5. Expenditure elasticities by quintile. EASI demand system  

          

Quintiles Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Quintile 1 0.968*** 0.468*** 0.251*** 0.424*** 1.218*** 1.861*** 0.514*** 1.488*** 1.237*** 

 (0.024) (0.037) (0.021) (0.036) (0.045) (0.137) (0.025) (0.070) (0.025) 

Quintile 2 0.770*** 0.490*** 0.229*** 0.277*** 1.077*** 1.794*** 0.459*** 1.518*** 1.313*** 

 (0.019) (0.031) (0.022) (0.037) (0.034) (0.071) (0.023) (0.043) (0.016) 

Quintile 3 0.696*** 0.536*** 0.206*** 0.280*** 0.939*** 1.749*** 0.392*** 1.422*** 1.331*** 

 (0.016) (0.028) (0.019) (0.031) (0.027) (0.063) (0.019) (0.035) (0.013) 

Quintile 4 0.639*** 0.588*** 0.208*** 0.295*** 0.794*** 1.615*** 0.323*** 1.367*** 1.319*** 

 (0.021) (0.042) (0.027) (0.046) (0.034) (0.070) (0.026) (0.042) (0.015) 

Quintile 5 0.598*** 0.719*** 0.311*** 0.422*** 0.636*** 1.441*** 0.272*** 1.398*** 1.258*** 

 (0.031) (0.050) (0.040) (0.070) (0.046) (0.070) (0.037) (0.045) (0.017) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the mean budget shares for households at each 

expenditure quintile. 

 

 



   

 

Note: Equivalent variation (EV) is expressed as a percentage of total household expenditure and represents 

the welfare loss from a 20% price increase in electricity, heating fuels, or motor fuels. Estimates are based 

on simulations using the EASI demand system and reflect average losses by income quintile. Welfare 

measures are computed following the methodology of Tovar-Reaños & Wölfing (2018), with price scenarios 

applied separately for each energy good. 

Table 6. Equivalent variation as percentage of total expenditure 

    

Scenario 1: Increase in electricity price 

  
Equivalent variation: Policy 1 quintile 1 0.804 

Equivalent variation: Policy 1 quintile 2 0.615 

Equivalent variation: Policy 1 quintile 3 0.508 

Equivalent variation: Policy 1 quintile 4 0.423 

Equivalent variation: Policy 1 quintile 5 0.347 

  
Scenario 2: Increase in heating fuels price 

  
Equivalent variation: Policy 2 quintile 1 0.697 

Equivalent variation: Policy 2 quintile 2 0.394 

Equivalent variation: Policy 2 quintile 3 0.481 

Equivalent variation: Policy 2 quintile 4 0.389 

Equivalent variation: Policy 2 quintile 5 0.324 

  
Scenario 3: Increase in motor fuels price 

  
Equivalent variation: Policy 3 quintile 1 1.588 

Equivalent variation: Policy 3 quintile 2 1.087 

Equivalent variation: Policy 3 quintile 3 1.541 

Equivalent variation: Policy 3 quintile 4 1.467 

Equivalent variation: Policy 3 quintile 5 1.309 
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Equivalent variation: Policy 3 quintile 4 1.467 
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Table 7. Estimated Effects of Energy Price Increases on Household Emissions 

            
Aggregate 

Category 

Baseline 

Expenditure 

Share 

Electricity 

Shock 

Gas 

Shock 

Fuels 

Shock 

Δ % 

(Electricity

) 

Δ % 

(Gas) 

Δ % 

(Fuels) 

Emissions 

(tCO₂e) 

Δ Emissions 

(Electricity) 

Δ Emissions 

(Heating) 

Δ Emissions 

(Fuels) 

            
Food and 

Beverages 0.2339 0.2334 0.2334 0.2353 -0.22% 0.02% 0.80% 23903.2 -52.587 4.781 191.226 

Housing 0.0898 0.0895 0.0893 0.0906 -0.38% -0.19% 1.42% 6254.701 -23.768 -11.884 88.817 

Electricity 0.0301 0.0308 0.0311 0.0306 2.29% 0.88% -1.53% 13291.12 304.367 116.962 -203.354 

Heating 0.0271 0.0281 0.0268 0.0279 3.55% -4.63% 4.34% 11784.72 418.358 -545.633 511.457 

Motor Fuels 0.0792 0.0797 0.0800 0.0744 0.61% 0.43% -6.94% 4944.952 30.164 21.263 -343.180 

Transport 0.0438 0.0439 0.0440 0.0449 0.02% 0.42% 2.03% 12930.09 2.586 54.306 262.481 

Communication 0.0470 0.0469 0.0472 0.0476 -0.24% 0.50% 0.83% 82.19694 -0.197 0.411 0.682 

Leisure 0.0796 0.0793 0.0792 0.0772 -0.29% -0.12% -2.52% 1466.989 -4.254 -1.760 -36.968 

Other Non-

Durable Goods 0.3695 0.3686 0.3690 0.3715 -0.26% 0.13% 0.66% 11471.8 -29.827 14.913 75.714 

                        

Total               86129.769 644.841 -346.640 546.874 

            
Emission 

Variation                 0.749% -0.402% 0.635% 

            
Note: This table presents the estimated effects of a 20% price increase in electricity, heating (gas), and motor fuels on household expenditure shares and associated CO₂-

equivalent emissions. Budget shares are based on observed expenditure patterns and adjusted using a matrix of compensated price elasticities. Emissions are attributed to 

consumption categories using official production-based GHG inventories (INE, 2023), mapped to household consumption aggregates via the Spanish supply-use tables. The 

analysis assumes constant emission intensities and no substitution within aggregates. Emission variations are computed proportionally to changes in predicted expenditure 

shares. Results are reported in metric tons of CO₂ equivalent (tCO₂e).  



   

Table 8. Inequality and sen’s index for Social Welfare over different scenarios 

 

Note: The Gini index and Sen’s social welfare measure are computed using household-level equivalent incomes (adjusted by household size) and weighted by sampling 

factors. Welfare losses are calculated via equivalent variation (EV). Calculations follow the approach of Tovar-Reaños & Wölfing (2018). 

 

  

                        

  Gini   Mean equivalent income    Sen's index  (€) 

                  

            

Scenario   Level ∆ in %      Level  1st quintile / 5 quintile in %     SW ∆  SW 

            

Reference  0.2712    20162.24 47.416%   15223.54  

Electricity  0.2718 0.221%   20064.49 47.213%   15136.73 -86.81 

Heating  0.2717 0.184%   20072.63 47.248%   15145.98 -77.56 

Fuels  0.2711 -0.037%   19860.63 47.236%   15006.69 -216.85 

                        

            

            



   

Figure 2: Winners and Losers by Income Quintile Under Different Scenarios 

 

Note: Based on simulations using EASI model estimates and equivalent variation (EV) measures. Households are classified as winners if the flat 

compensation exceeds their welfare loss, and losers otherwise. The lump-sum transfer is financed by the additional tax revenue generated under 

each scenario and distributed equally across households. 

  



   

Table 9. Corrected National Aggregated Expenditure (thousand euros) 

Year Electricity expenditure Heating expenditure Fuels expenditure 
Energy 

expenditure 

Aggregate 

 household 

expenditure  

Correction 

factor 

Total 

electricity 

expenditure 

(Corrected) 

Total heating 

expenditure 

(Corrected) 

Total fuels 

expenditure 

(Corrected) 

          

2017 
1098054.915 984643.6157 3195359.043 5278057.574 23384000 4.430 4864841.992 4362382.56 14156775.45 

2018 
1442425.72 1384707.465 4448728.971 7275862.156 24755000 3.402 4907631.279 4711253.81 15136114.91 

2019 
1406355.5 1306655.668 4184668.495 6897679.664 24803000 3.596 5057039.059 4698533.725 15047427.22 

2020 
1030032.602 879099.6014 2517762.265 4426894.469 23998000 5.421 5583761.385 4765560.233 13648678.38 

2021 
1101227.824 992534.8564 2945686.393 5039449.074 27402000 5.437 5987925.346 5396907.427 16017167.23 

2022 
1353175.059 1179635.8 4233832.54 6766643.4 32773000 4.843 6553855.966 5713350.298 20505793.74 

 

         

Note: The national-level corrected expenditures for electricity, heating, and fuels were obtained by multiplying the expenditure estimates from the Household Budget Survey (EPF) 

by a correction factor, calculated as the ratio between the aggregate expenditure on electricity, gas, and other fuels reported in the National Accounts and the corresponding total 

observed in the EPF, thereby adjusting for coverage discrepancies such as the exclusion of institutional households. 

  



   

Table 10. Annual and average anually price and quantity variation according to observed, estimated and literature elasticities 

Years 
Price 

electricity  

Price 

heating  

Price 

fuels  
Electricity demand  

Estimated 

electricity 

demand  

Literature 

electricity 

demand   

Heating demand  

Estimated 

heating 

demand  

Literature 

heating 

demand   

Fuels demand 

Estimated 

fuels 

demand  

Literature 

fuels 

demand   

             

2017/2018 2.460% 2.504% 7.405% -1.542% -2.123% -1.734% 5.360% -3.794% -3.098% -0.454% -9.955% -6.068% 

             

2018/2019 -6.702% 0.521% 0.865% 10.447% 5.784% 4.725% -0.787% -0.789% -0.644% -1.439% -1.163% -0.709% 

             

2019/2020 -9.000% -3.064% -10.285% 21.336% 7.767% 6.345% 4.632% 4.642% 3.791% 1.102% 13.826% 8.428% 

             

2020/2021 35.589% 4.591% 16.286% -20.909% -30.713% -25.090% 8.277% -6.957% -5.681% 0.918% -21.895% -13.347% 

             

2021/2022 26.840% 127.779% 36.284% -13.709% -23.163% -18.922% -53.524% -193.619% -158.118% -6.061% -48.780% -29.734% 

             

Mean 9.837% 26.466% 10.111% -0.875% -8.489% -6.935% -7.208% -40.103% -32.750% -1.187% -13.593% -8.286% 

             

Note: This table presents the annual and average yearly variations in energy prices and household energy demand (electricity, heating, and fuels) for the period 2017–2022. It includes the observed 

demand changes and two sets of counterfactual estimates derived from applying observed and literature-based price elasticities. Estimated demand changes are calculated as the product of annual 

price variation and the corresponding elasticity. This allows a comparison between actual consumption behavior and expected reactions based on economic theory and previous empirical findings. 

 

 



   

 

Table 11: Inter-annual and average variations in prices and household demand for electricity, heating, and transport fuels 

Years 
Emissions 

electricity 

Estimated 

emissions 

elecricity 

Literature 

emissions 

electricity 

Emissions 

heating 

Estimated 

emissions 

heating 

Literature 

emissions 

heating 

Emissions 

fuels  

Estimated 

emissions 

fuels 

Literature 

emissions 

fuels 

Total 

emissions 

Estimated 

total 

variation 

Literature 

emission 

variation 

             

2017/2018 -3.858% -5.311% -4.338% 4.160% -0.074% -2.404% -0.036% -0.793% -0.483% -0.14% -2.552% -2.960% 

             

2018/2019 0.717% 0.397% 0.324% -0.211% -0.212% -0.173% 0.970% 0.784% 0.478% 0.39% 0.216% 0.150% 

             

2019/2020 3.717% 1.106% 1.106% -5.219% -5.230% -4.271% -0.949% -11.907% -7.258% -0.62% -3.577% -2.425% 

             

2020/2021 -1.341% -1.970% -1.609% 3.883% -3.264% -2.665% -0.461% 10.991% 6.700% 0.79% -0.324% -0.641% 

             

2021/2022 0.039% 0.066% 0.054% -0.509% -1.841% -1.504% 1.590% 12.799% 7.802% 0.08% 1.392% 0.705% 

             

Mean -0.145% -1.142% -0.893% 0.421% -2.124% -2.204% 0.223% 2.375% 1.448% 0.098% -0.969% -1.034% 

                          

Note: This table presents the annual variation in GHG emissions from household consumption of electricity, heating, and fuels, disaggregated by energy type. The first 

column for each energy source shows the observed emission change based on actual consumption variation; the second reflects the estimated variation using the price 

elasticities derived in this study; and the third column uses elasticity values drawn from a meta-analysis of existing literature. The last three columns aggregate these changes 

to reflect total annual household emissions variation under each of the three approaches. This comparison enables an assessment of how closely behavioral responses align 

with theoretical and empirical benchmarks. 

 

 

  



   

 

Table 12: Annual and Average Observed, Model-Estimated, and Literature-Based Price Elasticities of Energy Demand by Source 

Year  Electricity elasticity  Heating elasticity  Fuels elasticity  

    

2017 -2018 -0.627 2.141 -0.061 

    

2018 -2019 -1.559 -1.511 -1.663 

    

2019 - 2020  -2.371 -1.512 -0.107 

    

2020 - 2021 -0.588 1.803 0.056 

    

2021 -2022 -0.511 -0.419 -0.167 

    

Mean -1.131 0.100 -0.388 

    

Estimated -0.863 -1.098 -1.344 

    

Literature  -0.705 -0.897 -0.820 

        
Note: This table presents annual estimates of price elasticity of demand for electricity, heating, and fuels, calculated based on observed variations in expenditure, prices, and 

quantities. These observed elasticities are compared to elasticities estimated using our econometric model, as well as values drawn from a meta-analysis of the existing 

literature. Positive values may appear in heating elasticities due to specific external conditions (e.g. temperature anomalies or policy effects), and zero values reflect periods 

where no change in quantity was observed despite price changes. 

 

 



   

 

Appendix A. Uncompensated cross-price elasticities 

Table A1. Uncompensated price elasticities for quintile 1. EASI demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.898*** -0.006 0.138*** 0.085*** 0.013 -0.342*** 0.063*** -0.208*** -0.063*** 

 (0.012) (0.018) (0.011) (0.017) (0.021) (0.066) (0.012) (0.032) (0.011) 

Housing -0.051*** -0.480*** 0.041*** -0.018 0.032** -0.115*** -0.010 -0.187*** -0.084*** 

 (0.006) (0.018) (0.009) (0.016) (0.015) (0.043) (0.010) (0.018) (0.006) 

Electricity -0.009*** 0.009** -0.896*** 0.176*** 0.020*** -0.032** 0.005 -0.045*** -0.027*** 

 (0.002) (0.004) (0.017) (0.018) (0.006) (0.013) (0.006) (0.006) (0.002) 

Heating -0.009*** -0.009 0.162*** -1.052*** 0.059*** 0.002 0.028*** -0.040*** -0.021*** 

 (0.002) (0.006) (0.016) (0.031) (0.008) (0.020) (0.009) (0.008) (0.003) 

Motor fuels 0.026*** 0.095*** 0.125*** 0.202*** -1.343*** 0.143*** 0.096*** -0.253*** 0.018*** 

 (0.006) (0.014) (0.010) (0.018) (0.023) (0.046) (0.010) (0.020) (0.006) 

Transport -0.010* 0.006 0.024*** 0.041*** 0.063*** -1.770*** -0.008 -0.005 0.052*** 

 (0.006) (0.011) (0.007) (0.014) (0.014) (0.058) (0.008) (0.019) (0.005) 

Communication -0.013*** -0.004 0.023*** 0.049*** 0.023*** -0.099*** -0.652*** -0.061*** -0.050*** 

 (0.003) (0.007) (0.008) (0.014) (0.008) (0.021) (0.011) (0.009) (0.003) 

Leisure -0.015** -0.053*** 0.013* 0.003 -0.156*** -0.033 -0.002 -0.609*** -0.001 

 (0.006) (0.011) (0.007) (0.012) (0.014) (0.043) (0.008) (0.026) (0.006) 

Other goods 0.012 -0.026 0.119*** 0.090*** 0.071*** 0.387*** -0.034** -0.081** -1.063*** 

 (0.012) (0.021) (0.013) (0.022) (0.025) (0.071) (0.015) (0.035) (0.015) 

                    
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the mean budget 

shares for households at the first total expenditure quintile. 



   

 

 

Table A2. Uncompensated price elasticities for quintile 2. EASI demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.843*** -0.040** 0.117*** 0.096*** 0.054*** -0.286*** 0.063*** -0.201*** -0.080*** 

 (0.011) (0.018) (0.013) (0.020) (0.020) (0.042) (0.013) (0.025) (0.008) 

Housing -0.037*** -0.419*** 0.024** -0.035* 0.049*** -0.090*** -0.020* -0.165*** -0.082*** 

 (0.006) (0.021) (0.011) (0.020) (0.015) (0.030) (0.011) (0.015) (0.005) 

Electricity -0.003* 0.001 -0.882*** 0.219*** 0.028*** -0.023*** 0.000 -0.038*** -0.025*** 

 (0.002) (0.005) (0.022) (0.023) (0.005) (0.009) (0.007) (0.005) (0.002) 

Heating -0.004 -0.019*** 0.196*** -1.075*** 0.067*** 0.002 0.027*** -0.033*** -0.020*** 

 (0.002) (0.007) (0.021) (0.039) (0.008) (0.014) (0.010) (0.006) (0.002) 

Motor fuels 0.044*** 0.099*** 0.142*** 0.258*** -1.339*** 0.090*** 0.107*** -0.227*** 0.009 

 (0.006) (0.015) (0.014) (0.023) (0.023) (0.032) (0.012) (0.017) (0.005) 

Transport -0.003 0.010 0.034*** 0.060*** 0.067*** -1.570*** -0.004 -0.012 0.041*** 

 (0.006) (0.013) (0.010) (0.018) (0.014) (0.039) (0.009) (0.017) (0.005) 

Communication -0.004 -0.014** 0.012 0.056*** 0.033*** -0.076*** -0.607*** -0.055*** -0.049*** 

 (0.003) (0.007) (0.011) (0.018) (0.008) (0.014) (0.013) (0.007) (0.002) 

Leisure -0.002 -0.062*** 0.011 0.009 -0.152*** -0.041 0.002 -0.670*** -0.009* 

 (0.006) (0.012) (0.009) (0.015) (0.014) (0.031) (0.009) (0.023) (0.005) 

Other goods 0.081*** -0.045** 0.117*** 0.133*** 0.117*** 0.201*** -0.025 -0.116*** -1.097*** 

 (0.012) (0.021) (0.016) (0.027) (0.024) (0.048) (0.016) (0.028) (0.013) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 



   

 

Table A3. Uncompensated price elasticities for quintile 3. EASI demand system 

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.822*** -0.071*** 0.094*** 0.072*** 0.090*** -0.257*** 0.061*** -0.161*** -0.080*** 

 (0.012) (0.019) (0.016) (0.023) (0.020) (0.039) (0.015) (0.021) (0.008) 

Housing -0.036*** -0.386*** 0.012 -0.054** 0.061*** -0.080*** -0.028** -0.138*** -0.078*** 

 (0.006) (0.022) (0.014) (0.023) (0.015) (0.027) (0.013) (0.013) (0.005) 

Electricity -0.003* -0.005 -0.866*** 0.244*** 0.032*** -0.017** -0.004 -0.030*** -0.023*** 

 (0.002) (0.005) (0.027) (0.027) (0.005) (0.008) (0.008) (0.004) (0.001) 

Heating -0.003 -0.024*** 0.231*** -1.092*** 0.072*** 0.004 0.028** -0.026*** -0.018*** 

 (0.002) (0.008) (0.025) (0.044) (0.008) (0.013) (0.012) (0.006) (0.002) 

Motor fuels 0.051*** 0.099*** 0.160*** 0.286*** -1.331*** 0.082*** 0.121*** -0.193*** 0.005 

 (0.007) (0.016) (0.016) (0.026) (0.024) (0.030) (0.014) (0.015) (0.005) 

Transport 0.000 0.009 0.039*** 0.068*** 0.074*** -1.527*** -0.003 -0.011 0.036*** 

 (0.006) (0.014) (0.012) (0.020) (0.015) (0.035) (0.011) (0.015) (0.004) 

Communication -0.003 -0.023*** 0.002 0.054*** 0.041*** -0.066*** -0.556*** -0.043*** -0.046*** 

 (0.003) (0.007) (0.013) (0.020) (0.007) (0.012) (0.014) (0.006) (0.002) 

Leisure 0.006 -0.068*** 0.012 0.011 -0.144*** -0.048* 0.008 -0.719*** -0.015*** 

 (0.007) (0.013) (0.011) (0.018) (0.014) (0.028) (0.011) (0.020) (0.005) 

Other goods 0.114*** -0.067*** 0.111*** 0.131*** 0.167*** 0.160*** -0.019 -0.101*** -1.112*** 

 (0.012) (0.022) (0.018) (0.030) (0.023) (0.044) (0.017) (0.024) (0.012) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 
 



   

 

Table A4. Uncompensated price elasticities for quintile 4. EASI demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.807*** -0.110*** 0.056*** 0.031 0.124*** -0.201*** 0.051*** -0.134*** -0.071*** 

 (0.013) (0.021) (0.019) (0.030) (0.021) (0.035) (0.017) (0.020) (0.007) 

Housing -0.039*** -0.336*** -0.005 -0.084*** 0.073*** -0.062*** -0.038*** -0.121*** -0.070*** 

 (0.007) (0.025) (0.016) (0.029) (0.016) (0.024) (0.014) (0.012) (0.004) 

Electricity -0.004** -0.010** -0.847*** 0.288*** 0.037*** -0.011 -0.008 -0.025*** -0.020*** 

 (0.002) (0.005) (0.032) (0.034) (0.006) (0.007) (0.009) (0.004) (0.001) 

Heating -0.004* -0.031*** 0.271*** -1.120*** 0.078*** 0.007 0.028** -0.022*** -0.016*** 

 (0.003) (0.008) (0.030) (0.055) (0.009) (0.011) (0.013) (0.005) (0.002) 

Motor fuels 0.057*** 0.099*** 0.176*** 0.331*** -1.335*** 0.075*** 0.134*** -0.172*** 0.005 

 (0.007) (0.017) (0.020) (0.032) (0.025) (0.027) (0.016) (0.014) (0.005) 

Transport 0.004 0.008 0.045*** 0.080*** 0.084*** -1.455*** 0.001 -0.012 0.030*** 

 (0.007) (0.015) (0.014) (0.025) (0.015) (0.030) (0.012) (0.014) (0.004) 

Communication -0.004 -0.032*** -0.010 0.054** 0.048*** -0.052*** -0.496*** -0.036*** -0.041*** 

 (0.003) (0.008) (0.016) (0.025) (0.008) (0.011) (0.016) (0.006) (0.002) 

Leisure 0.012 -0.078*** 0.008 0.006 -0.137*** -0.044* 0.013 -0.746*** -0.017*** 

 (0.007) (0.014) (0.013) (0.021) (0.015) (0.025) (0.012) (0.019) (0.005) 

Other goods 0.146*** -0.096*** 0.097*** 0.119*** 0.233*** 0.128*** -0.008 -0.098*** -1.118*** 

 (0.014) (0.026) (0.022) (0.039) (0.026) (0.044) (0.021) (0.024) (0.011) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 



   

 

Table A5. Uncompensated price elasticities for quintile 5. EASI demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.793*** -0.149*** -0.010 -0.039 0.161*** -0.144*** 0.024 -0.125*** -0.051*** 

 (0.015) (0.021) (0.023) (0.037) (0.024) (0.031) (0.020) (0.018) (0.007) 

Housing -0.045*** -0.341*** -0.025 -0.121*** 0.093*** -0.047** -0.051*** -0.112*** -0.062*** 

 (0.007) (0.027) (0.020) (0.035) (0.018) (0.020) (0.017) (0.011) (0.004) 

Electricity -0.007*** -0.015*** -0.824*** 0.340*** 0.043*** -0.006 -0.015 -0.022*** -0.017*** 

 (0.002) (0.005) (0.039) (0.040) (0.006) (0.006) (0.011) (0.003) (0.001) 

Heating -0.007** -0.036*** 0.318*** -1.153*** 0.090*** 0.010 0.029* -0.019*** -0.013*** 

 (0.003) (0.009) (0.037) (0.066) (0.010) (0.010) (0.016) (0.005) (0.002) 

Motor fuels 0.060*** 0.086*** 0.184*** 0.372*** -1.374*** 0.080*** 0.146*** -0.154*** 0.010** 

 (0.008) (0.018) (0.024) (0.039) (0.027) (0.024) (0.019) (0.012) (0.005) 

Transport 0.007 0.003 0.046*** 0.087*** 0.104*** -1.405*** 0.001 -0.016 0.028*** 

 (0.008) (0.015) (0.017) (0.029) (0.017) (0.025) (0.015) (0.012) (0.004) 

Communication -0.007** -0.039*** -0.027 0.050* 0.057*** -0.039*** -0.407*** -0.032*** -0.035*** 

 (0.003) (0.008) (0.019) (0.030) (0.009) (0.009) (0.019) (0.005) (0.002) 

Leisure 0.018** -0.088*** -0.006 -0.010 -0.140*** -0.035 0.017 -0.788*** -0.016*** 

 (0.008) (0.015) (0.016) (0.026) (0.016) (0.022) (0.015) (0.018) (0.004) 

Other goods 0.176*** -0.141*** 0.034 0.053 0.329*** 0.145*** -0.017 -0.129*** -1.103*** 

 (0.017) (0.029) (0.028) (0.047) (0.031) (0.044) (0.024) (0.025) (0.010) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 



   

Appendix B. QUAIDS results 

Table B1. QUAIDS demand system  

          
Variable  Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          

Log price food 0.028*** -0.015*** -0.003*** -0.003*** 0.008*** -0.000 -0.004*** -0.006*** -0.005* 

 (0.003) (0.001) (0.000) (0.001) (0.002) (0.002) (0.001) (0.002) (0.003) 

Log price housing -0.015*** 0.046*** -0.002*** -0.003*** 0.004*** -0.002 -0.003*** -0.007*** -0.019*** 

 (0.001) (0.002) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Log price electricity -0.003*** -0.002*** 0.004*** 0.005*** 0.003*** 0.000 -0.001* -0.001*** -0.005*** 

 (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 

Log price heating -0.003*** -0.003*** 0.005*** -0.002 0.005*** 0.001* 0.001 -0.002*** -0.003*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) 

Log price motor fuels 0.008*** 0.004*** 0.003*** 0.005*** -0.026*** 0.006*** 0.003*** -0.013*** 0.011*** 

 (0.002) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) 

Log price transport -0.000 -0.002 0.000 0.001* 0.006*** -0.02*** -0.001*** 0.001 0.016*** 

 (0.002) (0.001) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.002) 

Log price communication -0.004*** -0.003*** -0.001* 0.001 0.003*** -0.001*** 0.02*** -0.002*** -0.012*** 

 (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001) (0.000) (0.001) 

Log price leisure -0.006*** -0.007*** -0.001*** -0.002*** -0.013*** 0.001 -0.002*** 0.025*** 0.006*** 

 (0.002) (0.001) (0.000) (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) 

Log price other goods -0.005* -0.019*** -0.005*** -0.003*** 0.011*** 0.016*** -0.012*** 0.006*** 0.011*** 

 (0.003) (0.002) (0.000) (0.001) (0.002) (0.002) (0.001) (0.002) (0.004) 

ln (y) 0.353*** -0.156*** -0.112*** -0.065*** 0.207*** 0.003 -0.065*** -0.018 -0.148*** 

 (0.045) (0.026) (0.007) (0.01) (0.025) (0.026) (0.011) (0.031) (0.053) 

Ln (y)² -0.035*** 0.010*** 0.008*** 0.004*** -0.018*** 0.002 0.003*** 0.004 0.021*** 

 (0.004) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001) (0.003) (0.005) 

                    



   

Table B2. Own price elasticities by quintile in QUAIDS demand systems  

          

Quintiles  Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          

Quinitle 1 -0.878*** -0.468*** -0.883*** -1.023*** -1.311*** -1.763*** -0.651*** -0.629*** -1.047*** 

 (0.011) (0.018) (0.017) (0.031) (0.023) (0.058) (0.010) (0.026) (0.014) 

Quintile 2 -0.849*** -0.419*** -0.863*** -1.038*** -1.302*** -1.555*** -0.600*** -0.675*** -1.066*** 

 (0.011) (0.020) (0.022) (0.038) (0.023) (0.039) (0.013) (0.023) (0.012) 

Quintile 3 -0.826*** -0.390*** -0.842*** -1.049*** -1.299*** -1.510*** -0.548*** -0.721*** -1.078*** 

 (0.012) (0.022) (0.027) (0.044) (0.023) (0.035) (0.014) (0.020) (0.011) 

Quintile 4 -0.801*** -0.355*** -0.819*** -1.066*** -1.307*** -1.457*** -0.490*** -0.746*** -1.089*** 

 (0.012) (0.025) (0.032) (0.055) (0.025) (0.030) (0.016) (0.019) (0.010) 

Quintile 5 -0.764*** -0.334*** -0.788*** -1.086*** -1.334*** -1.393*** -0.402*** -0.779*** -1.106*** 

 (0.014) (0.027) (0.039) (0.066) (0.027) (0.025) (0.019) (0.018) (0.010) 

                    

          
 

  



   

Table B3. Uncompensated price elasticities for quintile 1. QUAIDS demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.878*** -0.024 0.129*** 0.090*** 0.035* -0.265*** 0.076*** -0.211*** -0.086*** 

 (0.011) (0.017) (0.010) (0.016) (0.020) (0.063) (0.012) (0.029) (0.009) 

Housing -0.048*** -0.468*** 0.025*** -0.018 0.028* -0.149*** -0.005 -0.156*** -0.085*** 

 (0.006) (0.018) (0.009) (0.016) (0.015) (0.043) (0.010) (0.018) (0.005) 

Electricity -0.007*** 0.002 -0.883*** 0.163*** 0.021*** -0.041*** 0.013** -0.039*** -0.028*** 

 (0.002) (0.004) (0.017) (0.018) (0.005) (0.013) (0.006) (0.005) (0.002) 

Heating -0.007*** -0.011* 0.146*** -1.023*** 0.044*** 0.001 0.031*** -0.045*** -0.018*** 

 (0.002) (0.006) (0.016) (0.031) (0.008) (0.020) (0.009) (0.007) (0.002) 

Motor fuels 0.035*** 0.087*** 0.123*** 0.169*** -1.311*** 0.133*** 0.092*** -0.237*** 0.011* 

 (0.006) (0.013) (0.010) (0.018) (0.023) (0.045) (0.010) (0.020) (0.006) 

Transport 0.001 -0.003 0.020*** 0.042*** 0.062*** -1.763*** -0.009 -0.003 0.043*** 

 (0.006) (0.011) (0.007) (0.014) (0.014) (0.058) (0.008) (0.019) (0.005) 

Communication -0.010*** -0.006 0.030*** 0.054*** 0.020*** -0.112*** -0.651*** -0.053*** -0.054*** 

 (0.003) (0.006) (0.008) (0.014) (0.008) (0.020) (0.010) (0.008) (0.003) 

Leisure -0.019*** -0.047*** 0.016** -0.011 -0.157*** -0.041 0.005 -0.629*** 0.001 

 (0.006) (0.011) (0.007) (0.012) (0.014) (0.043) (0.008) (0.026) (0.006) 

Other goods 0.005 -0.043** 0.105*** 0.115*** 0.060** 0.281*** -0.028* -0.043 -1.047*** 

 (0.012) (0.020) (0.012) (0.021) (0.023) (0.065) (0.015) (0.032) (0.014) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 

  



   

Table B4. Uncompensated price elasticities for quintile 2. QUAIDS demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.849*** -0.054*** 0.118*** 0.082*** 0.077*** -0.195*** 0.073*** -0.196*** -0.089*** 

 (0.011) (0.017) (0.013) (0.020) (0.019) (0.041) (0.013) (0.023) (0.008) 

Housing -0.042*** -0.419*** 0.010 -0.039* 0.044*** -0.103*** -0.016 -0.139*** -0.079*** 

 (0.006) (0.020) (0.011) (0.020) (0.015) (0.029) (0.011) (0.015) (0.005) 

Electricity -0.005*** -0.007 -0.863*** 0.195*** 0.029*** -0.024*** 0.008 -0.032*** -0.025*** 

 (0.002) (0.004) (0.022) (0.023) (0.005) (0.009) (0.007) (0.004) (0.002) 

Heating -0.004* -0.019*** 0.179*** -1.038*** 0.051*** 0.005 0.031*** -0.038*** -0.016*** 

 (0.002) (0.007) (0.021) (0.038) (0.008) (0.014) (0.010) (0.006) (0.002) 

Motor fuels 0.045*** 0.088*** 0.145*** 0.204*** -1.302*** 0.092*** 0.103*** -0.215*** 0.006 

 (0.006) (0.015) (0.013) (0.023) (0.023) (0.032) (0.012) (0.017) (0.005) 

Transport 0.006 -0.001 0.030*** 0.058*** 0.066*** -1.555*** -0.006 -0.008 0.035*** 

 (0.006) (0.013) (0.010) (0.017) (0.014) (0.039) (0.009) (0.017) (0.005) 

Communication -0.006** -0.016** 0.022** 0.056*** 0.030*** -0.076*** -0.600*** -0.046*** -0.050*** 

 (0.003) (0.007) (0.011) (0.018) (0.007) (0.013) (0.013) (0.007) (0.002) 

Leisure -0.012* -0.054*** 0.016* -0.015 -0.150*** -0.038 0.008 -0.675*** -0.004 

 (0.006) (0.012) (0.009) (0.015) (0.013) (0.031) (0.009) (0.023) (0.005) 

Other goods 0.041*** -0.063*** 0.108*** 0.133*** 0.107*** 0.167*** -0.029** -0.064** -1.066*** 

 (0.011) (0.020) (0.015) (0.025) (0.022) (0.044) (0.015) (0.026) (0.012) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 

  



   

Table B5. Uncompensated price elasticities for quintile 3. QUAIDS demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.826*** -0.079*** 0.098*** 0.066*** 0.101*** -0.172*** 0.066*** -0.171*** -0.084*** 

 (0.012) (0.018) (0.015) (0.022) (0.019) (0.037) (0.014) (0.020) (0.007) 

Housing -0.040*** -0.390*** -0.003 -0.053** 0.052*** -0.093*** -0.024* -0.122*** -0.074*** 

 (0.006) (0.022) (0.014) (0.023) (0.015) (0.027) (0.013) (0.013) (0.005) 

Electricity -0.004** -0.012** -0.842*** 0.218*** 0.032*** -0.018** 0.004 -0.027*** -0.022*** 

 (0.002) (0.005) (0.027) (0.027) (0.005) (0.008) (0.008) (0.004) (0.001) 

Heating -0.004 -0.024*** 0.210*** -1.049*** 0.054*** 0.006 0.032*** -0.033*** -0.015*** 

 (0.002) (0.008) (0.025) (0.044) (0.008) (0.013) (0.012) (0.006) (0.002) 

Motor fuels 0.053*** 0.088*** 0.164*** 0.228*** -1.299*** 0.083*** 0.115*** -0.190*** 0.004 

 (0.007) (0.016) (0.016) (0.026) (0.023) (0.029) (0.014) (0.015) (0.005) 

Transport 0.009 -0.002 0.035*** 0.066*** 0.071*** -1.510*** -0.005 -0.010 0.031*** 

 (0.006) (0.014) (0.012) (0.020) (0.015) (0.035) (0.011) (0.014) (0.004) 

Communication -0.005* -0.023*** 0.015 0.057*** 0.035*** -0.066*** -0.548*** -0.039*** -0.046*** 

 (0.003) (0.007) (0.013) (0.020) (0.007) (0.012) (0.014) (0.006) (0.002) 

Leisure -0.006 -0.057*** 0.020* -0.015 -0.145*** -0.043 0.013 -0.721*** -0.009* 

 (0.007) (0.013) (0.011) (0.017) (0.014) (0.028) (0.011) (0.020) (0.005) 

Other goods 0.072*** -0.076*** 0.110*** 0.146*** 0.141*** 0.127*** -0.028* -0.074*** -1.078*** 

 (0.011) (0.021) (0.017) (0.028) (0.022) (0.041) (0.016) (0.022) (0.011) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 
 

  



   

Table B6. Uncompensated price elasticities for quintile 4. QUAIDS demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.801*** -0.107*** 0.067*** 0.048* 0.128*** -0.147*** 0.055*** -0.157*** -0.078*** 

 (0.012) (0.020) (0.018) (0.028) (0.020) (0.033) (0.016) (0.019) (0.007) 

Housing -0.040*** -0.355*** -0.019 -0.077*** 0.062*** -0.081*** -0.033** -0.112*** -0.069*** 

 (0.006) (0.025) (0.016) (0.028) (0.016) (0.023) (0.014) (0.012) (0.004) 

Electricity -0.004** -0.016*** -0.819*** 0.263*** 0.036*** -0.014** 0.000 -0.023*** -0.020*** 

 (0.002) (0.005) (0.032) (0.033) (0.006) (0.007) (0.009) (0.003) (0.001) 

Heating -0.004 -0.029*** 0.244*** -1.066*** 0.059*** 0.008 0.032** -0.029*** -0.013*** 

 (0.003) (0.008) (0.030) (0.055) (0.009) (0.011) (0.013) (0.005) (0.002) 

Motor fuels 0.062*** 0.087*** 0.182*** 0.271*** -1.307*** 0.075*** 0.125*** -0.176*** 0.003 

 (0.007) (0.017) (0.020) (0.032) (0.025) (0.026) (0.016) (0.014) (0.005) 

Transport 0.015** -0.002 0.041*** 0.082*** 0.080*** -1.457*** -0.004 -0.012 0.026*** 

 (0.007) (0.014) (0.014) (0.025) (0.015) (0.030) (0.012) (0.014) (0.004) 

Communication -0.004 -0.029*** 0.007 0.062** 0.041*** -0.056*** -0.490*** -0.035*** -0.042*** 

 (0.003) (0.008) (0.016) (0.025) (0.008) (0.011) (0.016) (0.006) (0.002) 

Leisure 0.002 -0.064*** 0.017 -0.021 -0.144*** -0.044* 0.016 -0.746*** -0.012*** 

 (0.007) (0.014) (0.013) (0.021) (0.014) (0.025) (0.012) (0.019) (0.005) 

Other goods 0.114*** -0.091*** 0.103*** 0.172*** 0.189*** 0.086** -0.023 -0.087*** -1.089*** 

 (0.012) (0.022) (0.020) (0.034) (0.023) (0.038) (0.018) (0.021) (0.010) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 

  



   

Table B7. Uncompensated price elasticities for quintile 5. QUAIDS demand system  

          
Aggregates Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Food -0.764*** -0.141*** 0.003 0.005 0.173*** -0.117*** 0.033* -0.138*** -0.073*** 

 (0.014) (0.021) (0.023) (0.035) (0.024) (0.029) (0.020) (0.017) (0.007) 

Housing -0.037*** -0.334*** -0.046** -0.106*** 0.081*** -0.069*** -0.047*** -0.102*** -0.065*** 

 (0.007) (0.027) (0.020) (0.035) (0.018) (0.020) (0.017) (0.011) (0.004) 

Electricity -0.004** -0.020*** -0.788*** 0.310*** 0.043*** -0.010* -0.004 -0.020*** -0.018*** 

 (0.002) (0.005) (0.039) (0.040) (0.006) (0.006) (0.011) (0.003) (0.001) 

Heating -0.004 -0.034*** 0.290*** -1.086*** 0.068*** 0.008 0.034** -0.025*** -0.011*** 

 (0.003) (0.009) (0.037) (0.066) (0.010) (0.010) (0.016) (0.005) (0.002) 

Motor fuels 0.074*** 0.081*** 0.193*** 0.307*** -1.334*** 0.066*** 0.137*** -0.156*** 0.003 

 (0.008) (0.018) (0.024) (0.039) (0.027) (0.023) (0.019) (0.012) (0.004) 

Transport 0.026*** -0.005 0.043** 0.098*** 0.100*** -1.393*** -0.001 -0.015 0.020*** 

 (0.008) (0.015) (0.017) (0.030) (0.017) (0.025) (0.015) (0.012) (0.004) 

Communication -0.003 -0.037*** -0.008 0.064** 0.050*** -0.045*** -0.402*** -0.030*** -0.038*** 

 (0.003) (0.008) (0.019) (0.030) (0.009) (0.009) (0.019) (0.005) (0.002) 

Leisure 0.017** -0.072*** 0.004 -0.031 -0.144*** -0.045** 0.022 -0.779*** -0.017*** 

 (0.008) (0.015) (0.016) (0.026) (0.016) (0.021) (0.014) (0.018) (0.004) 

Other goods 0.189*** -0.125*** 0.040 0.168*** 0.289*** 0.045 -0.030 -0.101*** -1.106*** 

 (0.016) (0.026) (0.027) (0.043) (0.029) (0.039) (0.022) (0.022) (0.010) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the 

mean budget shares for households at the first total expenditure quintile. 

 

  



   

Table B8. Expenditure elasticities by quintile. QUAIDS demand system  

          

Quintiles Food Housing Electricity Heating Motor fuels Transport Communication Leisure Other goods 

          
Quintile 1 0.927*** 0.513*** 0.289*** 0.418*** 1.198*** 1.958*** 0.475*** 1.416*** 1.262*** 

 (0.019) (0.027) (0.016) (0.027) (0.035) (0.113) (0.020) (0.055) (0.019) 

Quintile 2 0.825*** 0.545*** 0.234*** 0.363*** 1.049*** 1.727*** 0.429*** 1.414*** 1.287*** 

 (0.012) (0.021) (0.015) (0.024) (0.020) (0.045) (0.015) (0.027) (0.009) 

Quintile 3 0.750*** 0.574*** 0.193*** 0.336*** 0.958*** 1.687*** 0.376*** 1.385*** 1.292*** 

 (0.010) (0.018) (0.013) (0.022) (0.016) (0.040) (0.013) (0.022) (0.008) 

Quintile 4 0.661*** 0.606*** 0.177*** 0.264*** 0.857*** 1.630*** 0.322*** 1.377*** 1.294*** 

 (0.013) (0.023) (0.016) (0.027) (0.019) (0.044) (0.015) (0.026) (0.009) 

Quintile 5 0.504*** 0.687*** 0.269*** 0.271*** 0.672*** 1.558*** 0.260*** 1.365*** 1.306*** 

 (0.026) (0.042) (0.033) (0.053) (0.037) (0.051) (0.031) (0.035) (0.013) 

          
Note: Key: Significance levels *(p < 0.10), **(p < 0.05), ***(p < 0.01). Bootstrap standard errors in brackets. Elasticities are evaluated at the mean budget shares for households at each 

expenditure quintile. 

 

 



   

Appendix C. 

C1. Stone-Lewbel prices  

The main challenge in working with survey data and estimating demand systems comes 

from the lack of observability of prices. In other words, prices are not observable in 

household budget surveys. An alternative would be to introduce changes in the consumer 

price indexes of each aggregate to incorporate these prices, at the cost of not having 

enough variation. To increase the variability of prices we construct the Stone-Lewbel 

indices (see Lewbel, 1989). This index uses the consumption system generated in our 

model to obtain personalised prices per household. For each household, and for each good 

it consumes, we match the prevailing monthly price index of the Spanish statistical 

institute (INE) according to the period of the survey. The price indices are national. For a 

household i consumed by household h, the Stone-Lewbel price index is written:  

ln(𝑝𝑖ℎ) ⁡= ⁡∑
𝑤𝑙ℎ

𝑤𝑖ℎ
ln(𝑝𝑙ℎ)

𝑁𝑖

𝑙=1

 

Where 𝑤𝑙ℎ is the budget share on good l belonging to aggregate i for household h, 𝑤𝑖ℎ is 

the budget share on aggregate i to total consumption in household h, plℎ and p𝑖ℎ  are the 

respective national monthly price indices. We do not impose any additional assumptions 

on the between aggregates utility function, this method constructs the indices according 

to the heterogeneity in consumer preferences within aggregates. Such heterogeneity 

serves to increase the variability in prices. This method has been widely used in the 

demand systems literature, where its usefulness in producing better empirical results has 

been proved (Hoderlein and Mihaleva, 2008). However, we should mention the potential 

endogeneity problems that this type of indices may suffer from. If the between aggregates 

utility functions are of Cobb-Douglas type, the budget shares used in the price index 

correspond to the parameters of the household's exogenous preferences. However, if this 

assumption is not met, as expenditure is used in the construction of the indices, this may 

lead to an error in the identification of the consumption ration prices in basket i for total 

consumption in household h, 𝑝𝑙ℎ and 𝑝𝑖ℎ are the respective price indices.  

 

  



   

C2 Heating degree days and cooling degree days indexes 

Heating degree day (HDD) index is a weather-based technical index designed to describe 

the need for the heating energy requirements of buildings. Cooling degree day (CDD) 

index is a weather-based technical index designed to describe the need for the cooling 

(air-conditioning) requirements of buildings.  

The Heating Degree Days (HDD) index measures the severity of cold during a specific 

period, considering both outdoor temperature and the average indoor temperature, which 

reflects the need for heating. The calculation of HDD relies on a base temperature, which 

is defined as the lowest daily mean air temperature that does not result in indoor heating. 

This base temperature can be influenced by various factors related to the building and its 

surroundings. In a general climatological approach, however, the base temperature is 

commonly set at 15°C to calculate HDD. 

The formula for calculating HDD is as follows:  

If Tm ≤ 15°C, then:  

𝐻𝐷𝐷 = ⁡∑ 18°C⁡ − ⁡Tim𝑖 , Else [HDD = 0], where Tim is the mean air temperature on day 

i. 

The Cooling Degree Days (CDD) index, on the other hand, measures the severity of heat 

during a specific period, considering both outdoor temperature and the average indoor 

temperature, which reflects the need for cooling. Like HDD, CDD is calculated based on 

a base temperature, but in this case, it represents the highest daily mean air temperature 

that does not lead to indoor cooling. This base temperature is also influenced by several 

factors associated with the building and its environment, but in a general climatological 

approach, the base temperature is set at 24°C for the calculation of CDD. 

The formula for calculating CDD is:  

If Tm ≥ 24°C, then  

𝐶𝐷𝐷 =⁡∑ Tim − ⁡21°C⁡𝑖 , Else [CDD = 0], where Tim is the mean air temperature on day 

i. 

 

 


