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Abstract

In the past two decades, the design and implementation of living donor kidney exchange clear-
inghouses have been a major success story in market design. Instead of batching and optimizing
exchanges over a fixed pool of incompatible patient-donor pairs, the busiest programs now oper-
ate dynamically, matching pairs as they arrive. This feature has also sparked interest in dynamic
matching mechanisms. Yet for general matching problems with high-dimensional state spaces,
a full characterization of optimal dynamic mechanisms remains elusive, and only approximate
solutions are known.

We develop a new methodology to characterize and compute dynamically optimal mech-
anisms for bilateral matching over arbitrary state spaces, provided that compatibility between
agent types follows a linear spatial structure. This technique applies to optimal dynamic kidney
exchange and extends to other spatial matching problems. Our approach leverages second-order
properties of the value function, extending recent advances in Markov Decision Processes and
queueing systems, which traditionally focus only on substitutable components.
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1 Introduction

While significant progress has been made over the last 15 years in studying dynamic matching
markets—which evolve through the arrival of agents, a common theme in the literature is the
difficulty of conducting exact analysis due to the high number of agent types. As a result, most
of the literature involving high-dimensional state spaces focuses on approximate or asymptotic
analysis, regardless of the presence of other complicating factors such as asymmetric informa-

tion, so long as arrival uncertainty is present.

This difficulty arises because standard dynamic programming techniques typically become in-
tractable as the dimensionality of the state space increases. Although low-dimensional models
can sometimes offer useful economic intuition, most frameworks cannot accommodate more
than two types of agents on each side of the market without resorting to approximations or
heuristic rules, which are then justified by demonstrating bounded inefficiency—or, more opti-

mistically, asymptotically vanishing inefficiency as market size grows.

In this paper, we introduce a new technique for characterizing optimal mechanisms in dynamic
matching problems involving an arbitrary number of agent types, as long as mutually beneficial
trades or matches occur locally, akin to the differentiated linear city model of Hotelling (1929).
While an exact characterization remains elusive for arbitrary state spaces, our analysis identifies
second-order properties of the optimal value function that hold under such local compatibility

structures, which we then use to characterize optimal mechanisms.

We apply this framework to characterize optimal dynamic kidney exchange mechanisms un-
der certain assumptions. While we do not pursue directly, our methodology can also be applied
to study other problems such as public housing allocation in which houses and families form
two sides of a market and each family is deemed compatible with houses of their size or slightly
larger, but not any smaller house or any much larger house—due to waste concerns. Further-
more, our model potentially provides a stylized economic framework for studying spatial eco-
nomics problems, such as traditional geographically differentiated trade networks and modern

on-demand services involving ride-sharing and food delivery.

We start by describing the basics of our model. We assume that there is alinear structure of agent
types1,...,nsuchthatanagentoftypei =2,..., n—1canonly be matched with an agent of type
j =i-1,i+1inamatch denoted as ij to generate a matching surplus of a;;, while the type at
the ends of the linear order i = 1, n can either be matched by itself with matching surplus a; or

with an agent of its neighbor type j = 2 or j = n — 1 respectively, with matching surplus a;;.

We study the optimal matching mechanisms in a model that assumes Poisson arrivals of agents.

Agents incur waiting costs over time, and their preferences depend on the compatibility of their



match and these costs. In particular, we analyze the optimal control, aiming to maximize the

total discounted match surplus.

This framework essentially embeds the model introduced by Unver (2010) for dynamic kidney
exchange as a special case. Each patient-donor pair can be modeled as a single agent. If one
assumes the existence of a sufficiently large number of so-called underdemanded pairs—those
with less desirable blood type donors relative to their patients—an assumption motivated by the
mathematical structure of blood-type incompatibility and a sufficiently long time lapse since
the start of a relatively large kidney exchange clearinghouse, feasible kidney exchanges can be
modeled with only n = 4 types of agents that are scarce and arrive over time; larger size kidney
exchanges reduce to bilateral matching of consecutive types that are not abundant. However,
Unver (2010) only solves a constrained version of the optimal dynamic kidney exchange prob-
lem. Specifically, the second main result assumes that overdemanded pairs (the end agent types
in our model i = 1 and i = n = 4)—those with more desirable blood type donors relative to their
patients—are matched immediately upon arrival." While this assumption may be plausible in
some instances, it restricts the generality of the optimal mechanism considerably.

When the assumption ofimmediate matching for overdemanded pairs—i.e., agents of typei = 1
andi = n = 4isrelaxed, the full characterization of the optimal dynamic kidney exchange mech-
anism becomes more complex. The control state space of the model expands to four dimen-
sions, causing techniques used in Unver (2010), which analyzed the state space for two dimen-
sions, to be impractical. Via our new techniques and analytical results, we have overcome this
issue and do not need to make such assumptions. We discuss the details of the kidney exchange

application in our model and how it can be embedded in the next section.

Our methodological contribution. The primary methodological contribution of our paper is the
development of a new set of tools for dynamic matching frameworks that can handle opti-
mal matching control in models with multiple state variables.This methodology leverages the
second-order properties of the value function in dynamic programming by extending recent ad-
vances in queueing theory and Markov Decision Processes (MDPs) to the matching framework.
Unlike queueing models, where substitutability is the only decision feature, matching models
involve central authorities optimizing trade-offs between decisions that exhibit complementar-

ity and substitutability among different agents.

Our main result demonstrates that an optimal mechanism exhibiting a nuanced multi-
threshold structure exists. These thresholds govern the stockpiling of different agent types, al-

IWe also show in the Online Appendix that an auxiliary result, Proposition 3, used to determine a range of pair-type
arrival rates to support this assumption in Unver (2010), Assumption 2, has an error. Thus, it is not easy to pinpoint un-
derlying fundamentals to guarantee that overdemanded pairs will be immediately matched in an unconstrained optimal
mechanism.



lowing the clearinghouse to forgo immediate exchanges in anticipation of better future match-
ing opportunities. However, once the stock of a given agent type exceeds a certain threshold, fur-
ther stockpiling ceases, and these agents are matched immediately when an opportunity arises,
as long as their numbers remain above the threshold. These thresholds are, in general, a func-

tion of other current state variables.

We derive this multi-threshold structure by proving that the value function in the optimal con-
trol problem satisfies (discrete) concavity in the state variables, where each variable corresponds
to the number of agents of a specific type.” Concavity explains why it becomes optimal, at some
point, to prioritize immediate matches over continued waiting: the marginal value of waiting
falls below the immediate gain from conducting an exchange when sufficient stock of a certain
agent type exists.

A direct proof of the concavity of an implicitly defined optimal value function is elusive for dy-

namic matching problems. Instead, we develop a new technique.

The core of our argument uses the fundamental theorem of discounted dynamic programming,
which establishes that a unique optimal value function exists and can be computed via value
iteration using the optimal MDP operator, a contraction mapping, starting from an arbitrary

initial value function.

Our approach decomposes the optimal MDP operator into a sequence of operations involving
time discount, an arrival, the expected value (uniformization), and various matching decisions
among different agents, depending on the state of the exchange pool. More specifically, a match-
ing operator is defined as an optimal operator in deciding whether to conduct a particular ex-
change or not. For example, take one of the n + 1 possible basic matching decisions, matching
agent type i = 2,...n — 1 with an agent of its neighbor type j =i — 1 or j = i + 1. It may also let
agent of type i to wait and not be matched at all. Matching transitions the state to a lower one,
by decreasing one or more types of agents waiting but provides an immediate matching sur-
plus of a;;. Thus, a basic matching operator for each matching type ij finds the maximum value
of two decisions, waiting or immediate matching, incorporating the optimal decision needed.
To find the optimal matching decision, we use all basic matching operators in a sequence at a
given state, one at a time (we show the order in which we apply them does not matter, and the

decomposition is commutative).

We want to show that each event operator propagates the concavity of the value function. A

naive approach would involve showing that, starting from an arbitrary concave value function,

2A real-valued function f defined on the n-dimensional non-negative integer state space N” is concave in its i’th com-
ponent, if foreach x € N”, f(x +2¢;) — f(x+e;) < f(x+e;) — f(x), where e; € N" is zero in all its components except its i’th
component, which is 1. It is (componentwise) concave if it is concave in all its elements.



each value iteration results in a concave function and, thus, in the limit, converges to a concave
“optimal” value function. However, concavity alone is too weak a property to be propagated by
these event operators. Thus, one cannot simply start with an arbitrary concave value function
and propagate this property to the limiting optimal value function, as it does not follow from the

definition of our operators that concavity alone will propagate.

Instead, we demonstrate that a combination of multiple second-order properties of the value
function, including concavity, is propagated. This propagated property corresponds to an ab-
stract second-order characteristic of discrete functions known as multimodularity for a set of
vectors (cf. Hajek, 1985, Altman et al., 2003).3

The crux of our approach relies on constructing a minimal set of abstract state vectors, known as
a multimodular basis, which spans all states and through which multimodularity is propagated
by the event operators. As a result, the economically meaningful second-order properties of the

optimal value function, including concavity, are implied by this property.

Complementarity and substitutability. The decision structure also reveals an important under-
lying feature of our matching model. Given an agent of type i, agents of typesi — 1 and i + 1
are complements, as the agent can be matched with either of them—whenever these types are
well-defined. In contrast, agents of types i — 2 and i + 2 are substitutes for the agent, as the com-
plementary typesi—1 and i +1 can instead be matched with them, respectively. By iterating this
logic, we can say that agents of types i + k are complements to an agent of type i when k is odd,

and substitutes when k is even.

This structure causes the multimodular matching basis we introduce to differ fundamentally
from the queueingbasis of Koole (1998), which is almost universally adopted in the queueing lit-
erature. The queueing basis assumes only substitutable changes to the state variables, whereas
our matching basis incorporates both complements and substitutes, reflecting the richer struc-

ture of kidney exchange and matching problems more generally.*

One way to appreciate the complexity of such a matching problem is by imagining it as the out-
put of a production function (see, e.g., Agarwal et al., 2019 for this interpretation in kidney ex-

change). The inputs are agents, and not all agents can produce the output—a match.

In contrast, in the queueing theory literature that utilizes Koole’s methods, the analog of the

production function features only substitutable inputs.

It turns out that the n + 1 basic matching decisions, which we defined earlier as 1, 12,..., (i —
)i, i(i+1), ..., (n—1)n, n,form a multimodular matching basis. These decisions are denoted

3A real-valued function f defined on a discrete state space S is ©-multimodular for a set D c S if, for any s € S and
uveD, f(s+u)+f(s+v) < f(s)+ f(s+u+v) (assuming all arguments remain in S).
4In Figure 1 in Section 5.3, we illustrate this structure in the kidney exchange context.



as vectors that transition the state by subtracting them from the current state, and any »n of them
are linearly independent. Their signs are normalized so that they sum to zero, ensuring that the
(n + 1)t operator can be expressed as the negative of the sum of the first n. This matching basis
spans (via vector addition and subtraction) all possible state transitions and all states. The exis-
tence of such a zero-sum matching basis is central to proving that the second-order properties

of the value function are preserved under the event operators.

We then prove that if a function satisfies multimodularity for the matching basis, it continues
to satisfy this property after a matching operator is applied to the function. Since all states are
spanned by the basis matching vectors, then multimodularity is closed under any compounded
matching operations. Similarly, other event operators (discount, arrival, and uniformization)
also preserve multimodularity in this manner. Therefore, starting with a multimodular initial
function in the value iteration guarantees that the limiting value function, which is the unique
optimal value function, is also multimodular (Theorem 2). Then our next result, Theorem 3,
shows that multimodularity for the matching basis captures all economically relevant second-
order properties of the optimal value function, including concavity. This ensures the existence
of a nuanced multi-threshold mechanism that generates the optimal value.

The structure of the dynamically optimal mechanism. Concavity is not the only important
second-order property of the optimal value function implied by multimodularity. Thanks to
additional second-order properties, we can derive further insights into the structure of dynam-
ically optimal mechanisms. These properties allow us to characterize the trade-offs between

waiting and matching decisions with greater precision.

We also prove in Theorem 3 that the optimal value function is supermodular for complementary
types i and i + k where k is odd, and submodular for substitutable types i and i + k where k is
even. Furthermore, the optimal value function is superconcave, meaning that two agents of the

same type are (weakly) better substitutes than two agents where the second agent is of a different

=

type.’
The optimal mechanism, on the other hand, has an intuitive structure: when an agent of type
i arrives (assuming for ease of exposition thati € {2,...,n — 1}) at a reachable state s, at most
one exchange from each type 1,12,..., (n — 1)n, n is conducted. Moreover, the exchanges that
can be conducted involve type i or, in a particular way, the complements of this agent (Theorem
4). We also identify how the arrival of two agents of types i and j can trigger exchanges when j

alone would not lead to any exchange (Theorem 5). Then, we show that for each agent type i,

5A real-valued function f defined on N” is i j-supermodular for any two components i and j if, for each x € N, f(x +
e;j) — f(x) < f(x+e; +ej) - f(x+ej). Itis ij-submodular if the previous inequality is reversed. It is i j-superconcave if, for
eachx e N, f(x+2e;)— f(x+e;) < f(x+e;+ej) — f(x+e;j). Afunction is superconcave if it is i j-superconcave for all agents
of components i and j.



the optimal mechanism follows a threshold structure when the number of other agent types is
fixed (Theorem 6): if the number of type-i agents exceeds a threshold, then new exchanges are
conducted in the optimal mechanism.

Finally, we focus on the optimal mechanism in kidney exchange—with only four agent types. We
give a full characterization of the multi-threshold structure when the A blood-type patient and B
blood-type donor pair (A - B) arrival rate is substantially higher than the B — A arrival rate (Theo-
rem 7). These types constitute the middle two types—2 and 3—in the four-type state space. The
optimal mechanism under general arrival rates is based on a mere extension of this structure,

and for the purposes of brevity, we defer its analysis and discussion to the Online Appendix.

Related Literature. We have already mentioned the most relevant literature on queueing theory
and MDPs, and how they relate to our paper. Itis useful to highlight in more detail what our work
contributes to the dynamic matching literature, as this area has been the focus of several papers,
beginning with Unver (2010). Due to the complex nature of the arrival problem, all papers make

certain simplifications to achieve tractable results and balance trade-offs.

Unver (2010) and our paper both assume away tissue-type incompatibility of patients with other
donors, which effectively serves as a large-market and limit assumption. Undoubtedly, some pa-
tients with a high tissue-incompatibility probability 0.99—known as very highly sensitized pa-
tients—will accumulate in the pool. In our approach, these pairs are assumed to remain un-
matched and are excluded from the analysis. For all other patients, however, our analysis is a

useful approximation and a useful approximation in the limit in general.

In contrast, much of the other literature ignores blood types and instead focuses on an abstract
notion of “hard-to-match” patients, characterizing compatibility as a probabilistic event to cap-
ture highly sensitized patients. This approach significantly expands the dimensions of the ex-

post state space, forcing authors to rely on approximate analyses with error bounds.°

Our framework, however, allows us to fully characterize the optimal mechanisms, as compatibil-
ity in our setup is deterministic rather than probabilistic. Starting with Unver (2010), the recent
consensus in this literature has been that almost greedily maximizing exchanges, rather than
engaging in dynamic optimization, results in a minimal loss (for example, see Anderson et al.,
2017, Kerimov et al., 2025 and related works).

In contrast, our paper shows that under optimal mechanisms, overdemanded pairs—which al-
ways enable immediate matches—are not necessarily matched immediately, as dynamic opti-

mization may require waiting to execute more effective matches—departing from prior litera-

6An exception is Sonmez et al. (2020), which models both blood-type and tissue-type incompatibility but uses a high-
traffic fluid model (the dynamic analog of continuum models) for tractability that leads to a single steady state.



ture.’

A closely related paper to ours is Baccara et al. (2020), which examines a dynamic arrival set-
ting and, much like our work, identifies the best complementary matches, albeit in a two-sided
matching market inspired by child adoption. While their work and ours share the ability to de-
rive optimal mechanisms in dynamic settings, the underlying approaches differ substantially.
Due to the complexities of higher-dimensional state spaces, their analysis is limited to two types,
whereas our framework accommodates multiple state dimensions. Moreover, their focus is pri-

marily on incentive issues, distinguishing their contributions from ours.

Several recent papers in economics have studied dynamic assignment problems with features
such as queueing and waiting lists. Bloch and Cantala (2017) analyzes the dynamic assignment
of objects to arriving agents, proposing approximately optimal policies based on waiting times.
Che and Tercieux (2021) examines how to optimally design queue structures to influence agent
behavior, with a focus on incentive alignment in queue selection. Leshno (2022) investigates
dynamic rules for overloaded waiting lists, particularly in organ allocation, and shows that dy-
namic rules outperform static ones under congestion. While these papers share a focus on dy-
namic assignment mechanisms, they consider the assignment of objects to agents with an em-
phasis on incentives. In contrast, our paper studies dynamic bilateral matching with spatially

structured complementarities, such as those arising in kidney exchange.

To date, no precedent to our methodology allows for modeling and solving optimal mechanisms
with multiple state dimensions in economics, except brute-force techniques, which are only
practical for state spaces with, at most, a couple of dimensions. Previous approaches that we
rely on in operations research primarily addressed substitutable decisions, such as in queueing
systems, as discussed earlier. However, matching inherently involves complementarities, mak-

ing our approach fundamentally distinct.

Finally, it is worth noting that our paper also contributes to the dynamic matching literature
more broadly, which includes works such as Kurino (2020) and Doval (2022) modeling dynamic
stability—an important tenet in two-sided matching markets. Doval (2025) provides an excel-

lent survey of the economics papers on dynamic matching.

2 Kidney Exchange: Motivating the Dynamic Matching Problem

In this section, we introduce the kidney exchange paradigm (Rapaport, 1986, Roth et al., 2004,
2005, 2007), which accounts for more than one-fifth of living-donor transplants in the U.S. as of
2024 (Sonmez and Unver, 2025). Kidney exchange serves as the main application of the more

general framework that we introduce in Section 3.

“If agents expire while waiting and these expiration times are relatively predictable, mechanisms that rely on “patience”
may mimic optimal mechanisms in the limit (Akbarpour et al., 2020).



We start by explaining the two medical compatibility requirements for kidney transplantation—

the preferred treatment for the most severe forms of kidney disease.

The firstrequirement is ABO blood-type compatibility. Blood type is determined by the presence
of A or B blood proteins (called antigens). A patient can receive a kidney from a donor if the
patient has all the ABO antigens present in the donor. Thus, an O blood type patient can receive
a kidney only from an O donor; an A patient can receive from an O or A donor; a B patient can
receive from an O or B donor; and an AB patient can receive from any blood type donor.

The second requirement is tissue-type compatibility. A patient cannot receive a transplant from

a donor if they have high levels of antibodies against the donor’s tissue types.®

A patient is compatible with her paired living donor—typically a blood relative or close loved
one—if they are both ABO- and tissue-type-compatible. In such cases, a direct transplant is pur-
sued, since the two alternatives have poorer outcomes: deceased donation requires long waiting
times—due to global shortages—for a typically lower-quality organ, and dialysis entails signifi-
cantly lower quality of life.”

On the other hand, a patient with an incompatible paired living donor becomes a candidate for
kidney exchange, in which her donor is swapped with a compatible donor from another pair.
We refer to the patient and her incompatible donor as a pair. The type of a pair is denoted by
X - Y, where X is the blood type of the patient and Y is the blood type of her donor.'’

An exchange is a set of (at least two) pairs such that the patient in each pair receives a kidney
from the donor of another pair. A matching is a collection of such exchanges, where each pair
participates in at most one exchange. A matching that includes the maximum possible number

of pairs is called maximal.

Let 7 denote the set of all pair types. We partition 7 into four subsets: underdemanded, overde-

8Zenios et al. (2001) report the probability of a patient being tissue-type incompatible with a random donor as 0.11,
while Sonmez et al. (2020) note that this rate has declined over time in the U.S. deceased-donor waitlist. However, recent
studies show that patients more likely to be tissue-incompatible with random donors tend to accumulate in the U.S. kidney
exchange pools (see Agarwal et al., 2019).

9Incompatible transplants are performed in some countries after removing the patient’s antibodies and administer-
ing other immunosuppressive therapies. These procedures carry a higher short-term risk of graft loss in blood-type-
incompatible (but tissue-type-compatible) transplants (Massie et al., 2020). Nonetheless, data suggest their long-term
survival rates are comparable to those of compatible transplants. In contrast, tissue-type-incompatible transplants do not
perform as well (Schinstock et al., 2019). These treatments are also expensive, time-consuming, and offered only at select
hospitals due to their complexity. In the U.S. and many other countries, incompatible transplantation is either disfavored
relative to kidney exchange or not practiced at all. In this paper, we follow most of the literature in assuming that all feasible
transplants must be fully compatible.

10Most kidney exchange systems match incompatible pairs only in “circular” exchanges, where each donor gives to the
next patient in the cycle. Because transplants must be done simultaneously to avoid failed future steps, these systems
face logistical limits. In contrast, chains initiated by altruistic donors (a practice used primarily in the U.S.) or deceased
donors (a practice used less frequently) can proceed sequentially and reach more patients (see Roth et al., 2006, Rees et al.,
2009, Agarwal et al., 2019, Furian et al., 2020). On non-simultaneous exchange proposals, see Ausubel and Morrill (2014),
Akbarpour et al. (2024).



manded, self-demanded, and reciprocally demanded pair types, denoted by PV, P9, S, and
PR, respectively:

PU ={0-A,0-B,0-AB,A—-AB,B - AB},
PO ={A-0,B-0,AB—-0,AB - A, AB — B},
PS={A-AB-B,0—-0,AB - AB},

PR - {A-B,B-A}.

The naming of these sets reflects the following characteristics:

* Underdemanded pairs require an overdemanded pair to be matched, as the donor’s blood
type is less desirable than the patient’s.

* Overdemanded pairs, conversely, can be matched with their own type or with other types
in various combinations, though some may be wasteful.

* Self-demanded pairs are naturally matched within their own type, as both the donor and
patient share the same blood type. Matching them with overdemanded pairs is also pos-
sible but may lead to inefficiency.

* Reciprocally demanded pairs (A — B and B — A) can be directly matched with each other in
a two-way exchange. Using an overdemanded type to facilitate such a match is typically

wasteful.

The following two assumptions are standard in the literature and are motivated by long-run
pool evolution under asymmetric arrival and matching rates. These are driven by the structure
of blood-type compatibility, particularly in the limit when tissue-type incompatibility becomes

negligible (see Roth et al., 2007 and Unver, 2010 for detailed discussion):

Assumption 1. (Limit Assumption) No patient is tissue-type incompatible with the donor of an-

other pair.

Assumption 2. (Long-Run Assumption) Under any dynamic matching mechanism, in the long
run, there is an arbitrarily large number of underdemanded pairs of each type in the pool at any
time.

We also make the following simplifying assumption with minimal loss of generality. When two or
more self-demanded pairs of the same type X — X exist, they can always be matched immediately
in a two-way exchange. Moreover, if only one such pair exists, it can be inserted at no cost into
an exchange of theform (..., V-W,Y - Z,...) between the V — W and Y — Z pairs, where W can
donate to X and X can donate to Y. Thus, self-demanded pairs are not needed for control. For

clarity, we assume that such pairs do not arrive (see also Unver, 2010).

Assumption 3. (No Self-Demanded Pairs) There are no self-demanded pair types available for

9



exchange.

We denote the set of overdemanded pairs that can participate in three-way or four-way ex-
changes involving an A — B pair by O4_g. When an A — B pair is not used, the maximum feasible
exchange size decreases by one, resulting in either two-way or three-way exchanges, respec-
tively. For clarity, we use the notation O4_p specifically for these overdemanded pairs, which
should not be confused with blood type O (the latter does not appear in the following sections).

Specifically, we define
Oa_p={B-0,AB-0,AB — A}.

Similarly, the set of overdemanded pairs associated with B — A is defined as
Op_s={A-0,AB-0,AB - B}.

Thereasoningis as follows. As shown by Roth et al. (2007), 04_5 pairs (excluding AB—0O) can form
three-way exchanges using an A- B pair and an underdemanded pair, such as (A-B, B—0,0—-A)
and (A - B, B—- AB, AB — A). Without an A — B pair, these exchanges reduce to (B — 0,0 — B) and
(AB — A, A — AB), respectively. Symmetrically, the corresponding three-way exchanges for Op_4

can be formed similarly.

The AB — O pair, however, behaves differently. It can generate a four-way exchange when com-
bined with an A— B or B—A pair, such as (AB-0,0-A, A-B,B—AB) or (AB-0,0-B,B—A,A-AB).
Alternatively, it can form a three-way exchange on its own, such as (AB - 0,0 — A, A — AB) or
(AB - 0,0 - B, B — AB), when paired with underdemanded pairs. Thus, the surplus from an
AB - O pair is 4 in a four-way exchange and 3 in a three-way exchange.

Since blood type ABisrare in most countries, controlling AB—O as a separate state is unnecessary
and does not affect the results. To simplify, we classify any arriving AB—O pair arbitrarily as either
a0,_p oraOp_4 pair to avoid confusion. Based on this, we make the following assumption:

Assumption 4. (Rare AB assumption) The maximum exchange size including an O,_p pair is 3
when also an A — B pair is used and 2 when it is not. Similarly, the maximum exchange size of

including an Og_, pair is 3 when also a B — A pair is used and 2 when it is not.

Trade-offs and decisions regarding optimal control. When a B — A pair exists in the pool and there
is no A — B pair, suppose a composite-type Op_4 pair such as of type A — O arrives: should we
match the A — O pair in a two-way exchange (e.g., (A — O, 0 — A) with an abundant O — A pair)
with an immediate surplus 2, and retain the B — A pair to save a future arriving A — B pair (with a
surplus of 2 in the future) or should we conduct the three-way exchange (B—A, A-O, O — B) now

10



with an immediate surplus of 3? Thus, if the waiting value is more than 1 at the current state of

the pool, we will retain the B — A pair and match it otherwise.

The decision can be much more complicated, as the same decision applies to also an O,_p pair
when it arrives: will we match it immediately in a two-way exchange or wait for a three-way
exchange, holding on to it with a future coming A — B pair (and an abundant underdemanded

pair).

If the optimal value function is monotonic and concave in the stock of each pair type then a
multi-threshold policy will exist: initially, we will hold on to O4_p or B— A pairs when their stocks
are small, and eventually, as their stocks grow, the value of waiting will fall below 1, and we will
need to conduct the immediate higher surplus match whenever feasible. The situation may be
even more complex if we have to do the symmetric control for A — B pairs depending on the

arrival rates of these types.

3 General Model

We next introduce our general dynamic exchange model, which covers kidney exchange as a

special case.

3.1 Dynamic matching as a Markov Decision Process

Let 7 = {1,2,...,n} be a set of agent types such that an agent of type i # 1, n can be matched
only with an agent of types j =i — 1 or j = i + 1, her immediate neighbors, and an agent of type
i = 1 ori = n can be matched by herself or type j = 2 or j = n — 1, respectively. We refer to such
an ij as an exchange such that when i = j we match an agent of type i by herself. We refer to

agents (or types) that can be matched with each other as compatible.

When compatible agents of types i and j are matched, a surplus of a;; € R,, is realized. When
an agent of type i = 1 or i = n is matched by herself a surplus of a; € R is realized.'' In this case,

we sometimes refer to a; as a;; when convenient.

For each agent type i, we denote the probability that an arriving agent is of type i by p;, and the
associated probability distribution by p = (p;)ic7.

We assume that agents arrive over time with a stochastic (discrete) Poisson arrival process in
continuous time. Let A; denote the arrival rate of agent type i € 7; that is the expected number
of agents of type i that arrive per unit time. We formulate the dynamic matching under this

arrival structure as a Markov Decision Process (MDP).

Let p denote the continuous discount rate. Thus, the surplus generated by realizing K exchanges
of types iiji, ..., ixjx attimet is 3y a;, .. Let M (¢) denote the surplus of agents matched at time

111f agents of types i = 1 or i = n can indeed be feasibly matched by themselves then a; > 0 while in some problems this
may not be feasible and in that case we allow a; < 0, without loss of generality.
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t. We assume that the number of exchanges that can be conducted at each time ¢ is bounded by
a capacity and hence, M (¢) is also uniformly bounded above (see also Footnote 14). The goal of
the central authority is to maximize the expected surplus, denoted by ES and defined as

ES=E.o ), M(t)e .
te(0,00)
Note that, although the index set ¢ € (0, o) is uncountable, since M (t) almost surely has count-

able support and is bounded, this value is finite.

Definition 1. A dynamic exchange mechanism is dynamically optimal if it maximizes the ex-
pected surplus.

The decision associated with this maximization problem is when to match arriving agents and
which agents to match. If an arriving agent is decided not to be matched, she joins the pool of
waiting agents. If an ij exchange is executed at time ¢, the total surplus increases by a;;e~*’, and
if i # j, then these two matched agents are removed, and if i = j, then the matched type i agent

is removed.

First, we observe that this is indeed a Markovian process: by the memorylessness property of
Poisson arrival, the process starting from any pool with a specified composition is the same re-
gardless of time it takes for the process to achieve this pool. Thus, our state space for this process
consists of all possible pools of agents. Therefore, a pool can be denoted by its state, defined as

follows:

Definition 2. The set of states is the set of non-negative valued integer n-tuples, S = {s =
(s1,82,...,8,): si € N} = N, where for each state s = (s1, $o,...,$,), the numbers s; , denote

the number of agents of type i.

We illustrate our definitions so far within the kidney exchange setting:

Example 1. In the kidney exchange setting, an agent is a patient-donor pair. Since we assume there
are no self-demanded pairs (Assumption 3) and that there are infinitely many underdemanded
pairs (Assumption 2), the only types that are relevant for the process are overdemanded pairs and
reciprocal pairs. Since we focus on exchanges of size at most 3, types of overdemanded pairs also
do not matter for the process, in so far as they can conduct a three-way exchange with a given re-
ciprocal pair. Thus, there are four types that matter for our formulation of the process: Reciprocal
pairs (pairs of type A — B and B — A), and overdemanded pairs that can be part of a three-way
exchange including a reciprocal pair of type A— B and B — A, namely Q,_g and Op_», respectively.
We refer to the following enumeration of pair types: The type space is given as T = {1,2,3,4} and

n = 4 is the number of pair types, so that for any state s = (s, 2, $3, S4),
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s1 is the number of O4_p overdemanded pairs,
sy is the number of A — B reciprocal pairs,

s3 is the number of B — A reciprocal pairs, and

Ao b o~

sy is the number of Op_, overdemanded pairs.

Since, whenever an overdemanded pair is to be matched, an underdemanded pair is always part

of the exchange,"”

we formulate exchanges as if Oa_p pairs match with themselves, or match
with A — B pairs, generating a surplus of 2 and 3, respectively (similarly, for the Og_4 pairs). Thus,
we integrate the existence of underdemanded pairs into the surplus values of exchanges and sup-
press them from the states and actions throughout. Thus, for each states, if s, s2 > 0 (s3, s4>0), we
can match QOy_p and A — B pairs (Og_, and B — A pairs) to generate a surplus of 3, if s2, s3 > 0, we
can match A — B and B — A pairs to generate a surplus of 2, if s; > 0 (s4 > 0), we can match Q4_p

(O©p-4) pairs with themselves to generate a surplus of 2. Therefore, the surplus a;; is defined as

L] if{i,j} ={1,2} or{i, j} ={3,4}
! 2 if{i,j}={2,3Yori=j=1lori=j=4
Thus, our goal is to maximize the discounted sum of the number of pairs matched."

The total arrival rate of agents is denoted by A := };.+ ;. Note that, p;, the probability that an
arriving agent is of type i, is equal to % By standard arguments, the expected discounting until

an agent arrives is E[e 7] = ﬁ, where 7 denotes the random variable of the first arrival. We
also denote this quantity by § := Af—p, whenever convenient.

The MDP starting from state s works as follows: A discount of § is incurred for the time passed
until an agent arrives. When an agent of type i arrives, the temporary state becomes s +e;. Then,
the central mechanism decides which subset of available exchanges to conduct, where the sur-
plus of each exchange is as described above. After conducting a (possibly empty) subset of (pos-
sibly empty) available exchanges, the state transitions to s’ < s + e;, at which the waiting for

another agent starts and the process continues. Here e; € {0, 1}" is the unit vector of agent type

i with 1 in component i and 0 in other components.

For two states s, s’ such that s’ < s, we write s — s’ if there is a feasible finite exchange sequence
(ixjx) such thatbeginning from s, conducting each exchange in order and removing the matched
agents transitions the state to s” and the sequence involves at most g exchanges of each type.'

12Note that there are infinitely many underdemanded pairs in the pool, and an overdemanded pair is always necessary
to match them.

13The maximization of the discounted expected surplus is equivalent to the cost minimization problem here, where there
is unit time cost for waiting in the pool. We skip the derivation of this equivalence, which is already shown (see Unver, 2010).

14Here, q is an arbitrarily large integer quota denoting a finite capacity for each exchange type ij to be conducted per
period. It is only utilized for technical convenience to prevent an unbounded number of exchanges being feasible as the
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Let E(s,s’) be the set of exchange sequences that transitions state from s to s’. We define the
matching value of transition from s to s” as

M(s,s’) := max Zaikjk‘

(ikjk)€E(s,s") 7

We set s — s and M(s, s) :=0foranys € S."°

We denote the set of real-valued functions on the state space by V := {f|f: S — R}. Let v*(s)
denote the maximized expected discounted surplus of the process that starts at state s. Then,

we have the following recursive equation:

s’ s+e;j—s’

vi(s) = S(Zpi max (M(s+e;,s)+v'(s")) ] 1)

This formulation is compact and easy to understand, but, its structure is analytically difficult.
To achieve a more tractable formulation, we next define the event operators with which we can

construct the recursive equation given above.

3.2 Matching and other event operators

Our approach in this work is based on the concept of event-based dynamic programming (dp),
which is introduced by Koole (1998) for queueing models and widely studied in that literature.'°

We adopt event-based dp and generalize it to our context.

This methodology consists of (i) decomposing the value function (Equation (1) above) in smaller
parts, called (event) operators, each of which captures an event in the dynamic exchange, and
(ii) analyzing the desired properties of the value function through these operators such that we
can unravel the structure of the optimal mechanism. Here, we establish Part (i), and we return

to Part (ii) in Section 5.

An (event) operator is amapping T: V"™ — <V for any positive integer m. Thus, Equation (1) can

be written as a fixed point relation, T7*v* = v*, where the optimality operator T* : V — YV is

state goes to infinity.

15We demonstrate transitions within the kidney exchange setting via an example: The transition of (1, 1,0, 0) — (0, 0, 0, 0)
is obtained by matching O4_p and A — B pairs, and (1,1,1,1) — (1,0,0, 1) is obtained by matching A — B and B — A pairs.
Similarly, (3,2, 1,0) — (0,0, 0, 0) is obtained by four exchanges: first, matching an A — B with a B — A pair, second, an A - B
with an O4_p and third and fourth, two O 4_pg’s with themselves. We denote the situation where state s’ cannot be reached
from state s through exchanges with available pairs, by s /4 s’. For example, (1,1,1,0) 4 (1,0, 1,0) since A — B pairs cannot
match with themselves.

For any s — s’, regardless of which exchange sequence is chosen to realize the transition, we have

M(s,s") = 2(s1 + 54 — 5] — s4) + (52 + 53 — 85 — 55).

16This approach completely differs from the one used in Unver (2010) and our analysis is substantially different from
Koole’s as our matching operators do not have an antecedent in his work.
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defined for any f € V and s € S by

(T*F)(s) = 6(2;9,— max (M(s+e;,s)+f(s))] (2)

s’ stej—s’

Moreover, this operator can be written as a composition of smaller operators, reflecting events in
dynamic exchange. We start with the characteristic operators of the current context, the match-

ing operators.
Definition 3. Matching operators are defined as follows:

* Forany two compatible types i and j withi # j the matchingoperatorofi — jT;; : V — V
is defined for any f € V and s € S by

max{f(s),f(s—e —e)+a;;} ifs—e —e; >0
(T f)(s) = {r(s), f( )+ aij} —e
f(s) otherwise,
e For any type i € {1, n}, the matching operator of i 7; : V — <V is defined for any f € V
and s € S by

max{f(s), f(s—e;)+a;} ifs—e; >0

T ::{ ) f (s —e) +ai} 20
f(s) otherwise.

We call +(e; + e;) and +e; as the matching vectors of the operators 7;; and T;, respectively.
We also consider a generic version of matching operators:

e Foreachw € 7Z7 U 7" \ {0}, and a surplus a, € R,, the generalized (matching) operator
ofw T, :V — Visdefinedforany f : S - Rand s € S by

max{f(s), f(s — |w|) +ay} ifs—|w|>0
f(s) otherwise

(Twf)(s) = {

Note that for w = x(e; +¢j), T;j = T,y & a, = a;j, and forw = +e;, T; = T, & a, = a;. For other
w, this operator is more abstract. The generalized operator is utilized in Section 5.1 to motivate
our methodology and prove our results in Section 5.2, where it will also be clear why we consider

both positive and negative values for w and not fix its sign as a definition.
We next define other operators relevant to the dynamic aspects of the problem:
Definition 4. We define

¢ the discount operator T5:V — V asfollows: forany f € Vands € S, (Tsf)(s) := 6f(s),

* for each agent type i, the arrival operator of i T,,.; : V — <V as follows: for any f € V and
s €S, (Lur,if)(s) == f(s +e),and

¢ the uniformization operator T, : V" — <V asfollows: forany fi, f,..., fn € Vands € S,
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(Tp(fl’f% ce rfm))(s) = Zi sz;(s)

Typically, m < n, the number of agent types, p € R™, and T, is an implicit function of m.
We denote the composition of the operators T and T’ by T o T". Also, for the k consecutive com-
position of an operator T, we use the notation T*.
Observation 1. Matching operators T,, commute under composition, so that for any pair of

matching vectorsw,w’, T, o T,y = Ty o Tyy.

This follows simply by observing that both expressions evaluated by any f € V atany s € S are
equal to max{f(s), f(s — |w|) + aw, f(s — |W'|) + ay, f(s — |w| — |[W'|) + ay + ay }, where the terms

of the form f (s — |w|) or f(s — |w’|) disappearifs — |w| # O ors — |w’| # 0, respectively.
This observation allows us to conclude the following:

Lemma 1. For any states € S and f € V,

(T o T o...0 T(”;_l)n o T F)(s) = _max (M(s,s") + f(s)).

Proof of Lemma 1. Theleft-hand side consists of amax{-} expression with terms of the form f(s+
d) +ag where d iterates over all possible sums of matching vectors (namely, the vectors —e;, —e; —
e, ..., —ey_1 — ey, —e,) with each vector used at most g times, and a, is the sum of values a,, for
each matching vector w used. Letting s + d = s’, and observing a; = M(s, s + d) for some a4 (i.e.,
for the sequence of exchanges achieving the maximum surplus), we see that the left-hand side
iterates over all s’ such that s — s’. But this is the domain of the max{-} in the right-hand side.
So we have the equality. O

We define the composite matching operator as
Iy :=TioTiso...oTn_1)n© Ty

Finally, we obtain the following:

Observation 2. The optimal value function v* (Equation (1) in Section 3.1) is equivalent to for

anys € S,

v*(s) = (T5 o Tp(TAZ 0 Tour 1V, Ty © Toww oV, ..., Tyr o Tarr,nv*))(s). 3)

Thus, the optimality operator T* (Equation (2)) is a composition of matching operators, arrival
operators, discount operator, and uniformization operator.

We return to event-based dp and matching operators in Section 5 to analyze the desired proper-
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ties of the value function to solve the optimal control problem. But first, we argue that concavity

and certain second-order properties of v* are crucial for this solution.

4 Monotonicity of Optimal Control

The structure of the optimal mechanismiis, it turns out, closely related to the second-order prop-
erties of the value function v*. To see this, consider the simpler case of our model and focus on
the matching operator of the form (7; f) (x) = max{f(x), f(x — e;) + 1}. Then, the optimal mech-
anism chooses the first action if and only if f(x) — f(x — e;) > 1. Now, the intuition is simply the
following: The left-hand side of this inequality is the marginal value of an agent of type i, that is,
the opportunity cost of matching, and the right-hand side is the benefit of matching the agent
of type i. Now, if there are diminishing returns to pooling type i (concavity, see Definition 5),
then the left-hand side becomes lower as the pool gets larger. Then, there is a critical level, the
threshold, such that optimality implies pooling the agent below the level and matching above it.

Thus, the optimal mechanism is a threshold mechanism (see Koole, 1998 for this argument).

As we analyze later, the structure of the optimal mechanism for the current problem is also de-
termined by the second-order properties of the value function (see Section 6). Here, we focus

on these second-order properties and their economic intuitions.

Definition 5. A function f: N” — R satisfies concavity in component i if for each x € N”,

f(x)+ f(x+2e) <2f(x+ej). 4)
A function is componentwise concave if it is concave in each component i € {1,2,..., n}.

For each agent type i, Condition (4) is equivalent to

fx+2e) - fx+e) < f(x+e) - f(x),

which implies diminishing marginal return on i. As we explained above, this connects compo-

nentwise concavity to a threshold mechanism being optimal.

As we argue later in detail, in addition to concavity, substitutability and complementarity prop-
erties of agent types are essential in unraveling the structure of the optimal control (see Sec-
tion 6), and also for the consistency of our theoretical framework (see Section 5). The intuition
is clear: For example, in kidney exchange, certain types are complements (e.g. X—Y and Y — X pair
types) and certain others are substitutes (e.g. X — Y and Oy_yx type pairs), and these properties
clearly affect which pairs to keep and which others to match at a given state of the MDP.
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Definition 6. A function f: N” — R is i j-submodular if for each x € N”,

f(xX)+f(x+e+ej) < f(x+e)+ f(x+ej).

A function f: N” — R is ij-supermodular if for each x € N”,
f(x+e)+f(x+e) < f(x)+ f(x+e +ej).

The connection of these two properties to substitutability and complementarity is clear: The

condition for i j-submodularity is equivalent to

f(x+e+ej)—f(x+e) < f(x+e) - f(x),

which states that marginal value of an additional agent of type i decreases with each additional
agent of type j. Thus, ij-submodularity states that i and j agent types are substitutes. Simi-

larly, ij-supermodularity states that i and j agent types are complements.

Definition 7. A function f: N” — R is i j-superconcave if for each x € N”,
f(x+e)+f(x+e+ej) > f(x+e)+ f(x+2e).
A function is superconcave if for each i, j, it is i j-superconcave.

Superconcavity states that the marginal value of i is lower when we have an additional i instead
of an additional j. Economically, this states that no other type is a closer substitute to i than i
itself.

5 How to Solve the Optimal Control Problem

We have explained so far that the second-order properties of the value function are crucial in
understanding the structure of the optimal policy. In particular, we argued that concavity of the
value function implies monotonicity of the optimal control, i.e., existence of a threshold-type
dynamic mechanism. We now present our methodology for proving the second-order proper-
ties of the value function. We first state the existence of the optimal value function which follows
directly from the fundamental theorem of MDPs:!”

Theorem 1. The function v*: S — R defined by the fixed point relation

vi(s) = 5( Zpi , max (M(s+ei,s")+v(s)) )

17See Chapter 6 in Puterman (1994), for this result and the related discussion.
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exists and is unique. Moreover, for any vy: S — R, the sequence (vi) defined by the relation vy =

T*vi_1 converges uniformly to v*, where the operator T* is defined by the relation

(T*v)(s) = 6( Z pi max (M(s+e;,s)+v(s"))| (6)

s’ s+ej—s’

The second part is particularly important for the methodology of event-based dp. Notice that,
the choice of v, in the sequence (v ) is arbitrary, thus, we can start the sequence with a function
vy satisfying a given property, as long as the property is not logically inconsistent with itself.'?
This observation allows us to focus on the operator T* itself. We first define the following notion:

Definition 8. We say an operator T: V — <V propagates a property P, if for each function v € V
satisfying P, Tv € V also satisfies P.

We observe the following: if a property P is propagated by the operator T*, and P is preserved
under uniform convergence,' then, by the second part of Theorem 1, the fixed point of the op-
erator T also satisfies P. Thus, our proof strategy is to show that the operator T* propagates the
desired second-order properties of the value function.

The difficulty with this approach is that, as it could be that properties P and P’ are not, sepa-
rately and alone, propagated by some operator T, their intersection P N P’ is propagated by T.
Indeed, it is often the case that, desired properties are too weak to be propagated by T, and we
look for additional properties so that the intersection of these properties are propagated by the
operator as a stronger property. We next observe (in Section 5.1) that the current model of dy-
namic exchange suffers from this difficulty: The second-order properties defined in Section 4
are not propagated separately. Furthermore, if we consider all these properties together (in-
stead of considering whether they are propagated one-by-one), they are not propagated either.
This motivates the definition of multimodularity, which, it turns out, is just strong enough to be
propagated by the operator T*.

5.1 Motivation for multimodularity in exchange context

First, we utilize the generalized matching operator defined in Definition 3. Additionally, we for-

mulate a generic version for the second-order properties given in Section 4.

Definition 9. Let u, v € Z". A function f: N” — R satisfies property P (u, v) if for each x € N,

181 particular, since all of the properties we define have weak inequalities, the constant zero function vy (s) := 0 satisfies
every property we present in this paper.

19The definition of uniform convergence is standard: for any sequence (x;) that satisfy the property and converges uni-
formly to x, the limit x also satisfies the property.
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suchthatx+u,x+v,x+u+v € N?, we have
fx+uw)+fx+v) < f(X)+f(x+u+v). (7

Note that P(u, v) states that the vectors u and v are complements (that is, there is supermodu-
larity between u and v). Also, note that P(u, v) is defined such that u and v are not restricted
to be positive vectors and this provides a general formulation for the properties defined in Sec-
tion 4: For example, taking u = e; and v = —e;, P(u, v) is equivalent to componentwise concavity

in component i, or taking u = ¢; and v = —e;, it is equivalent to i j-submodularity.

Now, the problem of characterizing the set of second-order properties such that they are propa-
gated together (as explained above) can now be defined as exploring the set of these properties
in the form of P(u, v). As it will be clear in Section 5.4, the crux of the propagation problem is the
propagation by the matching operator (defined in Definition 3 in Section 3.2). Thus, a necessary
condition for the solution to this problem of characterizing the set of properties is the condition
on how P(u,v) is propagated by T,,. Now, by definition of the matching operator T,,, showing
that P(u, v) is propagated by T,, requires to show the following for any x € N":

max{f(x+u), f(x+u+w)+ay}+
max{f(x+v), f(x+v+w)+ay}
< max{f(x), f(x +w) + ay} +

max{f(x+u+v), f(x+u+v+w)+ay}.

Here we introduce two definitions that will be helpful throughout the paper. The left-hand side
of the inequality equals to one of the four expressions: (i) f(x + u) + f(x +v), (ii) f(x + u + w) +
ay + f(x+v+w)+ay, (i) f(x+u)+ f(x+v+w) +ay,and (iv) f(x+u+w) +ay, + f(x +v). We
call the first two cases the symmetric cases, as these cases occur when both max{-} expressions
are equal to their first (respectively second) argument. We call the next two possible expressions
as the first case of asymmetry and the second case of asymmetry respectively. In the first case of
asymmetry the first max{-} expression equals to its first argument and second expression equals

to its second argument, and in the second case of asymmetry it is vice versa.

Now, we can further observe that, in order to show the inequality, we can arbitrarily replace
max{-} expressions on the right-hand side of the inequality by one of their arguments. To see
this, note that showing that x < a or x < b suffices for showing x < max{a, b}. Thus, depending
on the cases on the left-hand side, we can pick the arguments on the right-hand side arbitrarily.

Using this observation, our inequality follows easily in the symmetric cases: We can pick the

arguments on the right-hand side so that they match the symmetry on the left-hand side. Then,
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theinequality will either become f (x+u)+f (x+v) < f(x)+f (x+u+v)or f (x+u+w)+f (x+v+w) <
f(x+w)+ f(x+u+v+w), both of which follows from the fact that f satisfies P(u, v). Thus, what

remains to show is the asymmetric cases.

Now suppose the left-hand side of the equation has first case of asymmetry, so that it is equal
to f(x +u) + f(x + v+ w) + a,. Then, it would suffice to show that this expression is less than
f(x)+ f(x+u+v+w)+a,, since the right-hand side of the inequality is greater than this. This is
equivalent to showing P (u, v + w). The same can be observed in the second case of asymmetry
as well. Thus, a sufficient condition for the propagation of a set of properties is the following: if
aset of properties in the form of P(u, v) is propagated, then P (u, v+ w) should also be in this set.

We refer to the set of properties satisfying this condition as closed.

We illustrate the concept of closedness in propagation in a two-dimensional setting. Suppose
f : 7> — R is a concave function in each of the two components. Also, T; and T, are two
operators, defined by the equations (71 f)(x) = max{f(x),f(x — e;) + a;} and (Trf)(x) =
max{f(x), f(x — e3) + ay}, respectively. We show that, in this setting, even though concavity
does not propagate alone, it propagates together with superconcavity. Thus the set of properties
{concavity, superconcavity} is closed with respect to the set of operators {7, T} (for the proof,

see the Online Appendix).

Unfortunately, these results do not generalize to multiple dimensions, for the simple reason
that, when we have ij-superconcavity, and we have an operator T; defined similar to 7} above
for some k # i, j, the necessary second-order property we obtain does not follow from super-

concavity.”’ For this reason, the set of properties we have defined so far are also not closed.

To make this point precise in the kidney exchange domain, we note that, to show that concavity
in component i = 2 is propagated by the operator T_,, (which is the matching operator decid-
ing whether an overdemanded pair should be matched in a two-way exchange), we also need
to show that the function is ij-superconcave in components i = 2 and j = 1, thus, we need to
show P (ey, e1 —e2). But, to show that superconcavity is propagated by the matching operator 1_,,,
the required property is of the form P (e, — ey, e; — ), which is not implied by our existing prop-
erties. Moreover, to show submodularity and supermodularity properties, we need additional
properties of the form P (u, v), which are not implied by the set of our properties defined so far.
Thus, this set of four second-order properties { concavity, superconcavity, submodularity, super-

modularity} is not closed: they cannot be propagated by the matching operator.

The puzzle becomes the following: what is the set of restrictions on u and v such that the set
of properties of the form P(u, v) is closed, that is, when is it the case that whenever we have a

20Ease of two dimensions here comes from the fact that, when we have an operator for a component k and a property
for some components i, j, k must coincide with one of i or j, which makes the proofs trivial.
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matching operator T,,, P(u, v + w) is also contained in this set? It turns out that the concept of
D-multimodularity, introduced by Hajek (1985) (see also Altman et al., 2003), helps us develop
a methodology to solve the closedness puzzle and captures this general form.

5.2 D-Multimodularity

We have seen that all of the second-order properties we are interested in is of the form P(u, v),
and their difference lies in the domain from which vectors u and v are chosen. The approach
of D—-multimodularity is based on the idea of constructing a set of vectors D, such that for any

two vectors u, v € D, our set of properties includes P(u, v).

By choosing both vectors u, v arbitrarily from the same domain, the obtained set of properties is
strong enough to satisfy closedness property we discussed in Section 5.1 (see Lemma 2 below).

Definition 10. A set of integer-valued vectors D C Z" is called a multimodular basis of 7" if
i. Yyepv=0,and
ii. span(D) = z".%!
We are now ready to define D -multimodularity.
Definition 11. (Hajek, 1985) A function f : N* — R is D-multimodular if for each x € N”,

u,v e D,suchthatx+u,x+v,x+u+v e N”? wehave

fx+u)+f(x+v) < f(x)+f(x+u+v).>? (8)

Note that D -multimodularity is equivalent to property P(u, v) being satisfied for each u, v € D.
The usefulness of this definition lies in the following result:

Lemma 2. A function f : N" — R is D-multimodular if and only if for any two disjoint subsets
U,V c D we have

f(x+ZuEUu)+f(x+ZveVV) Sf(x)"'f(x"i‘ZueUu'l'ZveVU)-

See Appendix A for the proof of this result.

By Lemma 2, instead of taking two distinct vectors u, v € D and stating that they are comple-
ments, we can alternatively state that any two sums of distinct vectors in disjoint subsets of D

are complements. The proof of the statement is intuitive: If u and v are complements, and u

21Note that in our context span(D) = {z € Z" : z= Yyep v 3 (a)pep € ZIP1}.

221n Hajek (1985), as well as in other prominent works on multimodularity, this inequality is of reversed form. The reason
we define it differently here is that we focus on a reward-maximization problem, as opposed to a cost-minimization prob-
lem that is frequent in this literature. Thus, we search for concavity-related properties, as opposed to convexity-related
properties.
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and w are complements, then u and v + w should also be complements, since the marginal value
of u is increasing in both v and w. Thus, we can prove the statement by induction on the size
of the sets U, V. If the statement holds for sets of size at most k, by applying the definition of
D-multimodularity again we can see that the statement holds for sets of size k + 1 as well.

Lemma 2 explains the reason why the concept of D -multimodularity solves the closedness prob-
lem discussed in Section 5.1. Notice that as a special case of Lemma 2, we can take three vectors
u,v,w € D, and conclude that a D -multimodular function f also satisfies property P(u, v + w).
Thus, the closedness property defined in Section 5.1 is satisfied for each matching operator T,
such that w € D. Thus, as long as the matching operators are of the form T,, for some w € D,
sufficient propagation results are obtained. Although there are some minor nuances, this is es-
sentially the main idea behind the proof of the core result (Proposition 2) we utilize for our main
theorem (Theorem 3).

Another motivation revealed by Lemma 2 is the reason behind property (i) in Definition 10. No-
tice that, since } . » u = 0, we have that for u € D, the sum of elements excluding u is —u. Thus,
u and —u are always sums of distinct vectors in disjoint subsets of O, and by Lemma 2, property
P(u,—u) is satisfied. For example, when u = +e;, P(u, —u) is componentwise concave in i. This
is also true for all vectors u that can be written as sums of distinct vectors in disjoint subsets of
D. This observation will become useful in later sections when we discuss the implications of

D-multimodularity.

5.3 Multimodular basis of matching

We construct a multimodular basis, capturing both the decisions in dynamic exchange and the
necessary second-order properties.

Definition 12. The multimodular basis DM = {e;, —es—e1, e3+es,...,(=1)" e, +e,_1), (=1)"e,}

of 7" is called the matching basis.

It is straightforward to check the matching basis is indeed a multimodular basis. Also, this basis
contains matching vectors relevant for the exchange context: Our matching operators are of the
form (T, f) (x) = max{f (x), f(x—|w|)+ay} (see Definition 3), where w € {Fe|, F(es+e1), ..., F(e,+
en-1), ¥e,}. We separate these operators into two groups: We write (7, f)(x) = max{f(x), f(x +
w) + ay} forw € DM n 7" and (T, f)(x) = max{f(x), f(x — w) + ay, } forw € DM N 7. Thus, all
of our operators are of the form T.F for some w € DM, where the sign of T* depends on whether
w < 0orw > 0. Matching vectors being members of the matching basis will be crucial in our

main theorem below.

In Figure 1, we present the matching vectors and matching basis reflecting complementarity and

substitutability relations in the context of kidney exchange: There are two sides of the market,
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Sides A and B, for A and B type patients, respectively. Each side contains a reciprocal pair and
an overdemanded pair such that each reciprocal pair can be matched with pairs from the other
side, with the cross-type pair via a two-way exchange and with the overdemanded pair via a
three-way exchange (including an underdemanded pair). This representation provides a clear
view of complementarity and substitutability structure: pairs on the same side of the market are
substitutes of each other, and each reciprocal pair is a complement with the cross-type pair and
also with the overdemanded pair from the other side. This figure also depicts the insight for how
the matching basis is constructed.

Complements

Substitutes Substitutes

o an
nded pair)

Complements

Side B Side A

(‘B’ referring to B patients) (‘A’ referring to A patients)

: state variable index (see Definition 2)

Matching basis: DM = {e1, —ea — e1,e3 + ea, —e4 —€3,e4}
so that for each u € DM v or — u is a matching vector.

Figure 1: Matching vectors and multimodular basis in kidney exchange

5.4 Main result

As we have previously explained in Section 3.2, optimality operator T* itself can be written as
a composition of matching operators and other operators capturing discounting, arrival and
linear combination (see Observation 2 in Section 3.2 for this argument).

First, we state the following result on propagation:

Proposition 1. Letf, fi, f5, ..., fm be DM -multimodular functions fromN" toR withm < n. Then,

Tsf, for any agent typei, Toif , and T,(fi, fo, . .., fm) are also DM -multimodular.

Proof of Proposition 1. DM -multimodularity of the discount operator and uniformization oper-
ators follows from multiplying each inequality with the discount factor (respectively the weights
pi) and summing the resulting inequalities in the latter case. D™ -multimodularity of the arrival

operator follows from letting s’ = s + e;. O
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Since by Proposition 1, arrival, uniformization and discount operators propagate DM -
multimodularity, to prove that v* satisfies D™ -multimodularity, by Observation 2 (Section 3.2),

it is sufficient to prove that each matching operator propagates DM -multimodularity.

The result below states that DY -multimodularity is propagated by generalized matching oper-

ator T,, for each w € DM defined in Definition 3:

Proposition 2. Let f: N — R be a DM -multimodular function. Then, for each w € DM, the
function T, f is also DM -multimodular.

We only present the proof for w < 0 here. The proof for the case w > 0 as well as the rigor-
ous treatment of the boundary conditions (i.e., if one or more of the vectors that go into f(-) as

argument are not non-negative) are in Appendix B.

Proof of Proposition 2 forw < 0. Let u,v € DM. Fix x € N". Since w < 0, (T,f)(x) =
max{f(x), f(x + w) + a,}. In what follows, assume that all arguments of f are non-negative,

and thus, f(-) is well-defined. First, we assume w # u, v. We need to show the following:

max{f(x+u), f(x+u+w)+ay}+
max{f(x+v), f(x+v+w)+ay}
< max{f(x), f(x+w)+ay}+

max{f(x+u+v), f(x+u+v+w)+ay}.

If the maximizing actions are the same on the left-hand side,” the statement follows immedi-
ately from DM -multimodularity of f. Suppose they are different. Then, the left-hand side is
equal to either f(x +u) + f(x+v +w) + a, orto f(x +v) + f(x + u + w) + a,. Since u, v, w are
distinct and f is DM -multimodular, by Lemma 2, both of these expressions are smaller than

f(x) + f(x+u+v+w)+ay,, which is weakly smaller than the right-hand side of the inequality.**

Now, suppose u = w and a = a,, = a,. Then, we need to show

max{f(x+u), f(x+u+u)+a}+
max{f(x+v), f(x+v+u)+a}
< max{f(x), f(x+u)+a}+

max{f(x+u+v), f(x+u+v+u)+a}l.

23By maximizing action we mean which of its arguments equals to the value of max{-}.
Amax{f(x), f(x +w) +ap} +max{f(x +u+v), f(x+u+v+w)+ay} > f(x)+ f(X+Uu+v+Ww)+ay.
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Symmetric actions again follow easily. By D™ - multimodularity, we have

f(x)+ f(x+2u) <2f(x+u) (concavity), and
fx+u)+f(x+v) < f(X)+f(x+u+v).

Summing these inequalities, and rearranging it, we obtain
f(x+v)—f(x+u+v) < f(x+u)— f(x+2u).

Thus, if f(x + u) — f(x + 2u) < a, then we have f(x + v) — f(x + u + v) < a as well. Thus, if
max{f(x+u), f(x+u+u)+a} = f(x+2u)+a, thenmax{f(x+v), f(x+v+u)+a} = f(x+u+v)+a.
Thus, the only case we have to check for different actions is the case with the left-hand side being
equal to f(x +u) + f(x + u + v) + a. But, choosing the second and first arguments in the max{-}’s

respectively, this expression is less than the right-hand side. The case for v = w is symmetric. O

The next result is the core result for the rest of the paper.

Theorem 2. The optimal value function v* is DM -multimodular.

Proof of Theorem 2. The result follows immediately from Observation 2 in Section 3.2, and

Propositions 1 and 2 above. O

Using this result, we prove the crucial second-order properties of the value function of the dy-

namically optimal mechanism.

Theorem 3. The optimal value functionv* is componentwise concave, superconcave, and for each
pair of typesi, j where j and i are both even or both odd, i.e., have the same parity, i j -submodular

and for each pair of types i, j where i and j have different parities, i j-supermodular.

See Appendix C for the proof of this result.

Theorem 3 states that the optimal value function is concave in each component. Thus, the
marginal optimal value of stocking an additional agent of any given type is a monotonically
decreasing function of the stock of that type. Moreover, the optimal value function is super-
modular for types that can be utilized in exchange together, and thus these types are indeed
complements. In the kidney exchange setting, complementary pair types are 045 & A — B,

A-B&B-A, B-A&Op_4 and O4_p & Op_4. Additionally, it is submodular for types that can
be utilized instead of each other in an exchange, and thus these types are substitutes. The sub-
stitute types are O4_p & B—Aand A— B & Op_,4. The optimal value function is also superconcave,

which implies that two agents of the same type are better substitutes than two agents, one of a
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different type and one from the same type.

6 The Structure of the Optimal Mechanism

We have argued that the monotonicity properties of the value function are crucial for the struc-
ture of the optimal mechanism and explained the intuition behind it (see Section 4). In addition,
we have shown that the value function satisfies a certain set of these properties (Theorem 3).

Next, we characterize the optimal mechanism. We first define the following.

Definition 13. For a value function v*, a state s € S isreachable if for each s’ with s — s’ we have
vi(s) > M(s,s") +v*(s").
We denote the set of reachable states by R € S. We call a state unreachable if it is not reachable.

A reachable state is such that there is no sequence of exchanges (including only -some of- the
existing pairs) which increases the surplus. An unreachable state s, on the other hand, implies
the existence of another state s’ with s — s’ such that transitioning from s to s’ (by means of a
sequence of exchanges) is not only feasible but also increases surplus. The motivation is sim-
ple: since unreachable states imply transitions with additional surplus, the optimal mechanism

never reaches these states.

When the state is s, and the incoming pair is of type i, the state first transitions to s + e;, before
the relevant decision is made. Then, the optimal mechanism maximizes }; #ra,, + v(s + e; —
Yk #rlwk|) subjectto x +e; — X #i|lwi| > 0, where #( denotes the number of exchanges of type
wy used. Defining wy, = +ex forany k € {1, n+ 1} and wy = +(ex—1 +ex) forany k € {2, ..., n}, we

have
DM = {lwy], —|wal, lws], ..., (1) w41} 9)

Note that for each agent type i odd, e; is the sum of first i elements in this set, and for each agent
type i even, e; is the sum of last n + 1 — i elements in this set.

Now we define a special set of matching vector indices corresponding to each agent type i:
Definition 14. For each agent type (or state componentindex) i € 7 = {1, ..., n}, define an index

set of matching vectors in O™, K; c {1,...,n+1}, as

Ki={i,i—-2,i—-4,..}U{i+1,i+3,i+5,...}.
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Observe that for i odd, we have the following two equalities:

{Wk ke Kl} = {lwllr |LU3|, rlwll} U {_lwi+1|) _lwi+3|r---} and

the sum is —e;

Z)M = {lwllr_|w2|’ |LU3|, . --rlwilr_|wi+1|"--) (_1)n|wn+1|} (]-0)

the sum is e;

where (10) follows as explained in Section 5.3.

Moreover, for i even, we have

{Wk k€ Kl} = {—|LU2|,—|W4|,...,—|wl‘|} U {|wi+1|) |wi+3|)--'} and

the sum is e;

Z)M = {|W1|,—|LU2|, |LU3|, .. -r_|wl'|) |wi+1|!---) (_1)n|wn+1|} (11)

the sum is —e;

We refer to the first i vectors in (10) if i is odd, and the last n — i + 1 vectors in (11) if i is even,
as the set of matching vectors summing up to e;. This structure enables us to express the sets of

indices K; in a more compact way.

Observation 3. Foreachi, the setK; is characterized by the set of all indices ¢ for which ¢ is odd and
wy is included in the set of matching vectors summing up to e;, or £ is even and wy is not included

in the set of matching vectors summing up toe;.

We use the set K; and its complement Kf := {1,..., n+ 1} \ K; to classify how the marginal value
of each exchange of type k changes when an agent of type i arrives (i.e., A, v (s + e;) = v (s +
e;) — v¥*(s + e; — |wi|) provided that s + e; — |wi| > 0). First note that, by Lemma 2, if |wy| and e;
are sums of distinct vectors in disjoint subsets of D™, P(e;, |w|) holds. Then, by definition of K;,
for v*, for each k € K;, P(e;, —|wk|) holds and, for each index k € Kf, P(e;, |wi|) holds. Now, by
definition of Property P, for v*, the marginal value decreases whenever P (e;, —|wy|) holds, and it
increases whenever P(e;, |wi|) holds. Thus, when an agent of type i arrives, for each type k € K;,

the marginal value of |wi| decreases, and for each type K¢, the marginal value of |wy| increases.

Our structural theorems and their proofs use this important conclusion of Lemma 2. Thus, we

have the following observation:

Observation 4. For each agent type i and matching vector index k € K;, P(e;, —|wk|) holds for v*,
thus, the the marginal value of lwi| decreases; moreover, for each index ¢ € K, P(e;, |we|) holds

forv*, thus, the marginal value of |wy| increases.

We now state our next theorem regarding the structure of exchanges used in the optimal mech-
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anism:

Theorem 4. When the state is reachable and the incoming agent is of type i, the optimal mecha-
nism conducts only exchanges of type wy. for k € K;. Moreover, it conducts each such exchange at
most once, so that all decisions can be identified with a set of indices A(s, i) C K; for each reach-
able state s and agent type i such that when the state is s and the incoming agent is of type i,

optimal mechanism transitions to s + e; — Y.xca(s,i) [Wk| in exchange for an immediate reward of

ZkeA(s,i) Ay, -

See Appendix D for the proof of this theorem.

By Theorem 4, the maximum number of exchanges of each type that can be conducted in a pe-
riod, quota g, in the problem definition is never binding, since regardless of how high the quota
is, starting from any reachable state, at the optimal mechanism, each exchange vector is used at

most once.

Theorem 4 shows that the only exchanges that can be conducted when a type i agent arrives ata
reachable state s are captured by indices in a subset A(s, i) of K;. This is because, when an agent
of type i arrives, K; is the set of matching vector indices whose marginal value decreases, and K

is the set of indices whose marginal value increases.

We next show that after a type i agent arrives, there is a particular structure in how conducted
exchanges change at two consecutively reachable states that only differ in whether there is an

additional type j agent or not.

Theorem 5. Let s be a reachable state such that s + e; is also reachable for some agent type j. Then,

we have for any agent typei,

A(s,i) NK; C A(s +ej, i) C A(s, i) UK.

See Appendix D for the proof of this theorem.

Theorem 5 states that the decision of the optimal mechanism after an type i agent arrives, i.e.,
the sets A(s, i) and A(s + e}, i) (recall that they are both subsets of K;), can only potentially add
vectors from K; and remove vectors from K when this arrival occurs at state s versus s + e;, re-
spectively. This is because the sets K; and Kf characterize the indices of matching vectors whose
marginal values respectively decrease and increase when an additional type j agent exists in the
pool. Thus, in the latter state, the optimal mechanism can only additionally conduct exchanges
whose marginal value decreases and only stop conducting exchanges whose marginal value in-

creases.

Moreover, we establish that marginal value changes are monotonic.
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Theorem 6. Let s be a reachable state such that s + e; is not reachable for some agent type j. Then,

s + ke; is not reachable for any positive integer k.

Proof of Theorem 6. Suppose s isreachable and s+e; isnot. Then, A(s, j) # 0. Let¢ € A(s, j) € K;.
Then, the property P(—|w|, e;) holds for v* by Observation 4. Thus, we also have the property
P(—|wel, (k — 1)e;) hold for v* by the claim in the proof of Lemma 2. Thus, setting s’ = s + ¢;,

u = —|wyl|, v = (k — 1)e; in the definition of property P we obtain,
Vi(s+kej)+vi(s+ei—|wel) < v (s+ej)+Vvi(s+kei —|wel).

Thus, by rearranging the terms, A, | v*(s + kej) < Apy V(s +ej) < ayy,. Since s + kej — |wy| >
s+ej—|we| > 0, itis feasible for the optimal mechanism to transition to state s +e; — |w|. Hence,
optimal mechanism would (at least) conduct the exchange of vector |w, | at state s+ke;, implying
that s + ke; is not reachable. O

In the following section, we utilize these insights to derive the optimal mechanism for the kidney
exchange application, i.e., when n = 4. In this case, depending on the arrival probabilities of

agent types, we can obtain more structured threshold mechanisms.

7 The Structure of the Optimal Kidney Exchange Mechanism

Recall that kidney exchange is a special case of the general problem with 4 state variables. When
the state is s = (s1, 52, 83, $4), 51 refers to the number of type O4_p pairs, s; is the number of type
A — B pairs, s3 is the number of type B — A pairs, and s, is the number of type Op_4 pairs. In this

case,

1. K5 ={1,2,4}, i.e., for 04_p type pairs, marginal value decreasing exchanges are a two-way
exchange of an 04_p pair with an underdemanded pair (represented by w,), a three-way
exchange of an 04_p with an A — B and an underdemanded pair (w-), and a three-way
exchange of an Op_,4 pair with a B — A and an underdemanded pair (wy).

2. Ky ={2,3,5},i.e., for A- B type pairs, marginal value decreasing exchanges are a three-way
exchange of an O4_p with an A — B and an underdemanded pair (w-), a two-way exchange
ofan A — B and a B — A pair (w3), and a two-way exchange of an Op_, pair with an under-
demanded pair (ws).

3. K3 ={1, 3,4}, 1i.e. for B— A type pairs, marginal value decreasing exchanges are a three-way
exchange of an Op_4 with a B — A and an underdemanded pair (w,), a two-way exchange
ofan A — B and a B — A pair (w3), and a two-way exchange of an O4_p pair with an under-

demanded pair (w,).
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4. Ky ={2,4,5},1i.e., for Op_, type pairs, marginal value decreasing exchanges are a three-way
exchange of an O,4_p with an A — B and underdemanded pair (w»), a three-way exchange
of an Op_4 pair with a B — A and an underdemanded pair (w,), and a two-way exchange of

an Op_4 pair with an underdemanded pair (ws).
We begin analyzing kidney exchange with a simple observation regarding reachable states:
Observation 5. For each s,

i. so>0ands;>0implys ¢ R,

ii. sy=s3=84=00rs; =5, =54=0impliess € R.

The first observation follows from the fact that, pair types excluding A — B and B — A pairs are
overdemanded, and thus can be matched in arbitrary times. Thus, matching existing A — B
and B — A pairs earlier implies no cost, but a benefit of earlier match. The second part follows
from the fact that these are the states without overdemanded pairs and with at most one type of

reciprocal pair, and they are always reachable since they do not admit any feasible exchange.

Given the state space is S = {s = (s1, 52, 53, 84) : s; € N} = N4, the set R lies, in general, in the four-
dimensional Euclidian space.”> We consider a special case of the problem where it is optimal
not to keep any pair of a certain overdemanded type in the pool. As we see next, this special case
corresponds essentially to an analysis in the usual two-dimensional space and is very useful in
understanding the structure of the optimal mechanism and the intuition behind it. The general

case is a mere extension of this structure and intuition.?°

7.1 Unbalanced dynamic exchange

We call the special case of the dynamic kidney exchange problem, where itis optimal not to keep
any pair of a certain overdemanded type in the pool, as unbalanced. The set of conditions for a
problem being unbalanced depends on the problem parameters and we cannot provide these
exact analytical conditions. But, numerically, a problem is unbalanced if the difference between
the arrival rates of the reciprocal pairs is above a certain threshold.?” We suppose, without loss
of generality, that A — B types arrive more frequently than B — A pairs by a sufficiently high mar-
gin. This is the case we consider in this section (and the other case is essentially the same and

symmetric to this case). The intuition for this problem being unbalanced is the following: It is

25Note that, Observation 5 implies a set of restrictions on the reachable states, but not on the set of dimensions.

26For the purposes of brevity, we defer the analysis of this general case to the Online Appendix on balanced dynamic
exchange.

271t is important to note here that it could be that the conditions for unbalancedness are very weak. In fact, using the
reported simulation values in Unver (2010), the problem turns out to be unbalanced for all values ps_g, pg_4 such that
pa-B # pp-4- Thus, even minor deviations from equal probabilities can imply unbalanced problem. Such different prob-
abilities that trigger the unbalanced case were also recorded in the field by Terasaki et al. (1998) in their exchange-pool

sample as pa_p/pp-a = 5/3.
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unlikely that, there will be many B — A pairs waiting in the pool for incoming A — B pairs. Thus,
keeping an Op_4 pair in the pool has low value, and it is optimal not to keep this pair in the pool.
Similarly, since A — B type arrive more frequently and thus, there will be more A — B pair arrivals
to the pool expectedly, it is optimal to match these pairs with O4_p pairs, which is implied by

their marginal value being smaller than one.

Definition 15. A problem (7, (1;);c7, p) with the value function v* is called unbalanced, if for
eachs e R,

e there are no Op_, pairs available in the pool at any reachable state,

e whenevers — e, > 0, v*(s) — v*(s —ey) < 1.8

Suppose there are A — B pairs in the pool. This is the trivial case since there is no decision to
make: An incoming O4_p pairs is matched with an existing A — B pair, an incoming Op_,4 pair is
matched with an underdemanded pair, an incoming B — A pair is matched with an existing A— B
pair, and an incoming A — B pair is pooled (since there are no exchanges available for them).
Thus, we focus on the nontrivial case of reachable states: when there are no A — B pairs in the
pool, which means, by Observation 5 (i), and Definition 15, that, at any reachable state, there are
(potentially) B — A and O4_p pairs in the pool.

7.1.1 Multi-dimensional threshold mechanism

We have shown that the set of reachable states is such that either there are only A—B pairs, or B—A
and O4_p pairs. Thus, for an unbalanced problem, we have R C {s: s, = s, =0} U {s: s; = 83 =
s4 = 0}. This facilitates the use of two-dimensional space such that we can visualize the structure
of the optimal mechanism. Since A — B and B — A pairs are never present together in the pool
at any time, we can label the x-axis as s; — s3 such that whenever it is positive, there are A — B
pairs (and no B — A pairs) in the pool, and otherwise, there are B — A pairs (and no A — B pairs).
Moreover, since, by definition of an unbalanced problem, there are no Op_4 pairs in the pool,
we refer the y-axis as s;, the number of Q,4_3 pairs in the pool. In Figure 2, we depict the set of
all potentially reachable states. As we argued above, the case s, > 0 is trivial and in this section,
we focus on the case s, = s, = 0, thus, the left-hand-side (LHS) quadrant in Figure 2.

Now, we analyze the optimal mechanism for the unbalanced problem. It turns out that the op-
timal mechanism is a generalized version of the simple threshold mechanism, where, for each
arriving pair, a threshold function determines whether to keep the pair in the pool or to match
it with an existing pair. These thresholds are utilized in the mechanism described in Table 1,
which we refer to as the multi-dimensional threshold mechanism. There are three threshold

functions: ! is utilized when the arriving pair is type 1 (04_3) or 3 (B— A), ¢ is utilized when the

28This means that that is, the marginal value of A — B pairs is always less than one.
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Oa-p s1
o RN {s: s3=s4=0} o RN{s: s =s3=54=0}

> 89 — S3

B—-A A-B
Figure 2: Depiction of the potentially reachable states

arriving pair is type 2 (A — B), and * is utilized when the arriving pair is type 4 (Op_,). All three
functions determine thresholds relating the number of O4_5 and B — A pairs with each other.
While 1! determines a threshold number of O4_p pairs as a function of s3 (the number of B — A
pairs), 2 and 3 determine a threshold number of B — A pairs as a function of s; (the number of
Op-4 pairs). The decision of which exchange to conduct at a state s after a new pair arrives de-
pends on whether the respective numbers s; and s; exceed the threshold. The left-hand column
of Table 1 corresponds to the non-trivial case s; = s, = 0 (also to the LHS of Figure 2), where
we explain how these thresholds are utilized. The right-hand column corresponds to the trivial
case s, = s3 = 54 = 0 (also to the RHS of Figure 2), and the optimal decision is trivial or there is no

decision to make.

The broad idea here is to prove the existence and the properties of these threshold functions by
exploiting DM -multimodularity (Theorem 2) and the resulting second-order properties (The-
orem 3) of the value function v*. Our next result characterizes a multi-dimensional threshold

mechanism and states its optimality.

Theorem 7. Let (7, (A;)ieT, p) be an unbalanced kidney exchange problem with the value func-
tion v*. Then, there exist three threshold functions t“3, t2, and t* such that the induced multi-
dimensional threshold mechanism is optimal. Moreover, these threshold functions satisfy the fol-

lowing properties:

i. t43:N — N is a non-increasing function of the number of type 3 (B — A) pairs such that
i.1. forastates withs; > 1,v*(s) —v*(s — e1) < 2 ifand only ifs; > t13(s3),
i.2. foreachk e N,t'3(k+1) > t3(k) — 1.
ii. 2:N — N isanon-decreasing function of the number of type 1 (04_p) pairs such that
ii.1. forastates withss > 1 ands; > 1,v*(s —e3) —v*(s —e1) < 1 ifand only ifs3 < t?(s1),
iii. t*:N — N is a non-increasing function of the number of type 1 (Q_p) pairs such that

iii.1. forastates withsz > 1,v*(s) — v*(s — e3) < 1 ifand only if s3 > t*(s1),
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MULTI-DIMENSIONAL THRESHOLD MECHANISM

Case 1: Arriving pair is type O4_p (type 1)

so =0 s9 > 0:
1.1 s; +1 < r3(s3): Keep in the pool. » Match with an existing A — B pair
1.2 s, +1 > t"3(s3): Match with an underdemanded pair. and an underdemanded pair.

Case 2: Arriving pair is type A — B (type 2)

s1 >0o0rs3 > 0: s1=53=0:
2.1 s; = 0: Match with an existing B — A pair. ¢ Keep in the pool.
2.2 s3 = 0: Match with an existing O,_p pair and an

underdemanded pair.

2.3 sy >0ands3 > 0:
2.3.1 s3 < r?(s;): Match with an existing O4_p pair and
underdemanded pair.
2.3.2 s3 > t%(s;): Match with an existing B — A pair.

Case 3: Arriving pair is type B — A (type 3)

s9 = 0: o> 0:
3.1 s; < t13(s3+ 1): Keep in the pool. * Match with an existing A — B pair.
3.2 s; > t13(s3 +1): Keep the B — A pair in the pool, match

an existing 0, _p pair with an underdemanded pair.

Case 4: Arriving pair is type Op_, (type 4)

s3> 0: s3=0:
4.1 s3 < r*(s1): Match with an underdemanded pair. ¢ Match with an underdemanded pair.
4.2 s3> t*(s;): Match with an existing B — A pair and an

underdemanded pair.

Table 1: The description of the multi-threshold mechanism with threshold functions 3, ¢2, ¢4,
iii.2. foreachk € N, t*(k+1) > t*(k) - 1.

See Appendix E for its proof.

The existence of the threshold function ¢! and the properties (i.1.), (i.2.) characterizes the op-

timal decision on the arriving pairs of types O,_p and B — A.

Property (i.1.) states that the marginal value of keeping a pair of type O,_5 in the pool is greater
than 2 whenever the number of O4_p pairs in the pool is less than a certain threshold that de-
pends on the number of available B — A pairs, and it is less than 2 after this threshold. The

intuition simply follows from the componentwise concavity of v* (see Theorem 3).

We next explain the intuition for non-increasingness of the threshold function, r'3: First, note
that, B — A pairs and O4_p pairs are substitutes since both can be used for matching future ex-
cess A — B pairs in the pool (this is by ij-submodularity for i = 1 and j = 3 of the value function,
which follows from D -multimodularity (Theorem 2). Thus, as the number of B— A pairs in the

poolincreases, the marginal value of keeping an arriving pair of type O,_5 in the pool decreases,
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and thus, incentives to pool these pairs weaken.

Property (i.2.) states that this threshold is not only non-increasing but also does not decrease
faster than the rate of a linear function with slope one. The intuition is superconcavity: Even
though B — A pairs are substitutes for O,4_p pairs, they are not as close of a substitute as O4_p
pairs themselves. Thus, when we have an additional O,4_5 pair but one less B — A pair, the effect
of the additional O,_p pair dominates, and marginal value of O4_p pairs decreases. Thus, when
we have an additional B — A pair, the number of O4_p pairs to be removed from the pool (for an

immediate exchange surplus of 2) can not exceed 1.

These results regarding the threshold functions 72 and r* and their interpretation are analytically
symmetric (and the intuition is similar) to properties (i.1.) and (i.2.). We skip the explanation of

the intuition for brevity purposes.

We next depict the dynamically optimal mechanism on a graph. The set of reachable states R is
defined by the function ¢!3, since it determines whether the existing 0,_5 pair has a marginal
value greater than 2. The other two functions #* and ¢? define two new regions that correspond
to two different decisions. We next explain that these three regions interact in a way that allows

us to obtain a simple illustration of the optimal mechanism.
To see this, we use the following observation.

Observation 6. For a state s with s;,s3 > 0, if v'(s) —v*(s—ey) < 2andv*(s) —v'(s—e3) > 1
then v*(s —e3) —vi(s —e)) < 1; if vi(s) = v*(s —e1) > 2and v*(s) — v'(s —e3) < 1 then

vi(s—e3) —v'(s—ep) > 1.

First, we depict the regions induced by threshold functions in Figure 3.

Oa-B R

’ v*(s) —v*(s—e3) > 1

v¥(s) —v*(s—e1) >2

S2 — S3

B-A A-B
Figure 3: Regions induced by t'® and ¢*

Now, by Observation 6, in the red region in Figure 3, we have v*(s —e3) — v*(s —e;) < 1 and in the
blue region we have v*(s — e3) — v*(s — e;) > 1. Thus, s3 < t%(s;) in the red region and s3 > #2(s)

in the blue region. This means that the function 72, as depicted in Figure 4, should pass through
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the intersection point of blue, red and dark green regions in Figure 3.

Oa-B P

4 A-B 52— 53
Figure 4: Regions induced by ¢>

w A

Moreover, the red region in Figure 3 is not reachable, and thus, irrelevant for the optimal mecha-
nism. This leaves us with the regions in Figure 5 below, that together describe the optimal mech-
anism:

Oa-B 51

The arriving pair:

Op_4 |- B

DNM Match with QO 4_p

DNM Match with B — A

B-A A-B
Figure 5: The multi-dimensional threshold mechanism

The three regions together with the x-axis characterize the set of reachable states. The decision
of whether to keep or match an arriving O,_p pair, as well as the decision to match an existing
O4-p pair in a two-way exchange when a B — A pair arrives, is determined by the set of reachable
states R. Other decisions, namely, decision of Match (Decision 4.2) vs Do-Not-Match (DN M)
(Decision 4.1) and decision of Match with O4_g (Decision 2.3.1) vs Match with B — A (Decision

2.3.2) are determined by these regions.? *°

29Note that we do not color the axis, since they correspond to trivial decisions. When there is no B — A pair, Match and
Match with B — A decisions are irrelevant. Similarly, when there is no O 4_p pair, Match with O4_p is irrelevant.

30Moreover, although the structure depicted above is a theoretical necessity, what we observe numerically is much sim-
pler. Numerically, the blue and gray regions in Figure 5 are empty, and set of reachable states constitute the light blue re-
gion: Whenever there exists an O4_p pair, incoming A — B pairs are matched with these overdemanded pairs in three-way
exchanges. Moreover, the DN M region contains all reachable states with some O4_ g pairs in the pool. Thus, the numerical
results imply that the optimal mechanism is described (i) by the triangular region of reachable states R, and (i) a number
5 denoting the threshold for the M or DN M decision. But, we are unable to show that this special case we observe numeri-
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8 Conclusion

Our contributions in this paper are twofold: one pertains to the methodology of dynamic match-
ing theory, and the other concerns the practice of market design for kidney exchange.

First, through our methodological contribution, we introduce novel tools for analyzing dynamic
matching frameworks in which substitutes and complements in matching are well defined—as
on a spatial linear mutual compatibility graph over types. We extend tools recently developed
in queueing theory—specifically, within event-based dynamic programming using Markov De-
cision Processes—to dynamic matching. Standard techniques in queueing rely almost entirely
on substitutable inputs. Our methodology provides an elegant and tractable framework for op-
timally controlling multi-dimensional state spaces by characterizing the second-order proper-
ties of the optimal value function. The optimal mechanism is a complex multi-threshold policy
that prescribes conducting a certain set of exchanges when the number of agents of a given type
exceeds a threshold, and otherwise taking no action, as a function of the other state variables.
We also characterize the structure of these optimal exchanges. This technique is applicable to
a range of practical problems and high-level models, from on-demand ride-sharing to spatial

bilateral trade economies.

As our second contribution, we use this methodology to characterize the optimal dynamic kid-
ney exchange mechanisms under certain large market assumptions, extending the work of Un-
ver (2010) by removing the assumption that overdemanded types are matched immediately and
pointing out an erroneous interim result motivating this assumption. This application reduces
to a four-state-variable case of our more general model with specific exchange surpluses. As a
result, we demonstrate that a multi-threshold mechanism is optimal, controlling at most three
types of pairs simultaneously: overdemanded pairs complementing A — B, overdemanded pairs
complementing B — A, and either A — B or B — A (but not both).

When the arrival rates of patient-donor pair types A — B and B — A—the two central adja-
cent types—are balanced, our general characterization applies; however, near-greedy optimiza-
tion performs well in such cases (as explained in the Online Appendix). Greedy optimization
matches each pair in the largest feasible exchange immediately upon arrival. This intuition

aligns with several findings in the literature such as Anderson et al. (2017) and

In contrast, when arrival rates are unbalanced—e.g., when A — B arrives significantly more fre-
quently than B— A, as observed in past data—retaining both B— A pairs and overdemanded pairs
complementing A — B (such as B — O) may be optimal. Interestingly, this policy is anti-greedy:
while a B — O pair can be immediately matched with an underdemanded pair (e.g., O — B), it

cally is also a theoretical necessity. Thus, whenever we mention the optimal unbalanced mechanism, we refer to the three
regions depicted above. We provide a numerical example in the Online Appendix for the unbalanced case.
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is optimal to retain B — O pairs until their stock reaches a threshold. Such policies are dynamic
and underscore the importance of explicitly modeling blood types, a practice often overlooked
in more recent dynamic matching literature. Indeed, under realistic arrival rates where A — B
arrives more frequently than B — A, the thresholds can exceed 30 pairs for both B — A and the

overdemanded pairs that complement A — B.
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Appendix A Proof of Lemma 2

Claim 1. If the properties P(u, v) and P(u, w) hold for some function f, then P(u, v + w) also holds.
Proof. We first rewrite the definitions of P(u, v) and P(u, w): for each x, and x’,

fx+w)+f(x+v) < f(x)+f(x+u+v),

fEX+uw)+f(x +w) < f(X)+ (X +u+w).
Substituting x” = x + v into the second inequality, we obtain
fx+u+v)+f(x+w+v) < f(x+v)+ f(x+u+v+w).
Lastly, summing the last and first inequalities, we obtain for each x,
fx+w)+fx+v+w) < f()+f(x+u+v+w),
which is equivalent to P(u, v + w). |

LetU = {uy, us, ...ux} andV = {v1, v»..., v;}. Since each of these vectors is a distinct member of DM, we
have the property P(u;, vj) for any two indices i, j. Then, using Claim 1, we have P(u,v; + v2), and
repeatedly using the claim we have P(uy, ), v). Again, using the same argument for u, we have
P(ug, Y ey V), and combining with the previous conclusion we have P(u; + ug, Y,y v). We iterate
using the claim—this time on u;’s—to obtain P (Y, 4, X, ey V), completing the proof.

Appendix B Complete Proof of Proposition 2

To complete the proof of Proposition 2, we first present the following lemma, which deals with the
boundary cases in the proof.

Lemma 3. Letx € N*, and letu,v,w € DM be three distinct vectors in D™ such thatx +u,x +v > 0. If
w<0andx+u+w >0orx+v+w >0, thenx+u+v+w > 0. Ifw > 0andx+u—-w > 0orx+v—-w > 0,
thenx —w >0

Proof of Lemma 3. First, supposew < 0, x+u+w > 0orx+v+w > 0. Now, suppose x; +u; +v; +w; <0
for some i. Since x; > 0, we must have u; + v; + w; < 0. By construction of D™, exactly one of this
numbers is —1 whereas the other two are zero.

Suppose w; = -1 and u; = v; = 0. Then, we must have x; = 0 as well, since if x; > 0, we would have
x; +u; +v; + w; = 0. Then, we have x; + u; + w; = x; + v; + w; = —1. Thismeans x + u + w # 0 and
x +v+w # 0and contradicts our assumption.

Now suppose w; = 0, then, x; + u; + v; + w; = x; + u; Or x; + u; + v; + w; = X; + v;, since one of u; and
v; equals to zero by the above observation. But by assumption, we have x; + v; > 0 and x; + u; > 0,
contradicting x; + u; + v; + w; <0
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Now we consider with the symmetric case of w > 0. Suppose x; — w; < 0. Then, we must have w; = 1
and x; = 0. Then, by the observation above, exactly one of u; and v; equals to zero while the other
equals to —1. Thus, u;, v; < 0,and x; + u; —w; < x; —w; < 0and x; + v; —w; < x; — w; < 0, contradicting
our assumption. O

Finally, we present the proof for the case w > 0, in which case the matching operator takes the form
Tf = max{f (x), f (x - ) + ay}.

We have to show

max{f(x+u), f(x+u—-w)+ay} + max{f(x+v), f(x+v—-w) +a,}

< max{f(x), f(x —w) +ay,} + max{f(x+u+v), f(x+u+v-w)+ay}.

First suppose u, v, w are distinct elements from DM.

Again, symmetric actions are trivial. If the actions are different, then by Lemma 3, we have x —w > 0,
thus, the right-hand side of the inequality is weakly greater than f (x—w)+ f (x+u+v)+a,. In different
action cases, the left-hand side is equal to either f(x+u)+f (x+v—w)+ay, or f(x+v)+f(x+u—w)+ay.
Since x — w > 0, we can let x’” = x — w > 0 to write the left-hand side as f (x" + u + w) + f(x’ + v) + ay,
or f(x' +u) + f(x +v+w) + ay,. By multimodularity, both of these expressions are weakly less then
f(x)+ f(x"+u+v+w)+ ay, which by substituting x’ = x — w equals to f(x — w) + f(x + u + v) + ay.
We showed this expression is weakly less than the right-hand side, so the proof ends here.

Now suppose wlog that w = u. Then, the expression becomes

max{f(x +u), f(x) +a,} + max{f(x+v), f(x+v—u)+a,}

< max{f(x), f(x —u)+ay,} + max{f(x+u+v), f(x+v)+ay}.

After noting that symmetric actions are trivial and x + u, x +v > 0, we show that the left-hand side can
only be equal to f(x) + f(x + v) + a,, if the actions are different. First, note thatif x + v — u # 0, then
this is trivial. Then, assuming x+v —u > 0, we canlet x’ = x — u > 0, and by combining concavity and
multimodularity as above, we can write

fx'+v)—f(xX +u+v) < f(x" +u) - f(x' +2u)
and substituting again we have

fx+v—u)—f(x+v) < f(x) - f(x+u).

Thus,if f(x+u) > f(x)+a,then f(x+v—-u) - f(x+v) < f(x)—f(x+u) < -ay,so f(x+v—-u)+a, <
f(x +v). This shows the only possible case for actions being different is if the left-hand side is equal
to f(x) + f(x + v) + a,. Finally, we see that picking the first argument in the first max and the second
argument in the second max on the right-hand side, the right-hand side becomes f(x) + f (x +v) + ay,
completing the proof.
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Appendix C Proof of Theorem 3

As we mentioned earlier, all the properties of the theorem are of the form P(u, v) for some vectors
u,v € Z". By Theorem 2, the value function v* is DM -multimodular. Thus, by Lemma 2, P(u, v)
holds for any u, v such thatu = 3, .y u’, v = 3,y v’ and U,V are disjoint subsets of D¥. It suffices
to show that each of the properties is equivalent to P(u, v) for some u, v that are sums of distinct
vectors in disjoint subsets of DM,

First, we make the simple observation that the first i terms in O™ sum up to e; if i is odd and —e; if i
is even. Similarly, since elements of D sum to 0, the remaining n + 1 — i elements sum up to —e; and
e; if i is odd or even, respectively.

From this observation, it follows that e; and —e; are always sums of distinct vectors in disjoint subsets
of DM, Since concavity in component i is equivalent to P (e;, —e;), componentwise concavity follows.

Suppose i, j € 7 are distinct types with the same parity, i.e., both are odd or both are even, and sup-
pose without loss of generality that i < j. First, suppose i and j are odd. Then, the first i terms sum
up to e; and last n + 1 — j terms sum up to —e;, and since i < j, these sums are disjoint. If i and j are
even, the first i terms sum up to —e;, and the last n + 1 — j terms sum up to e;. Since i < j, these sums
are disjoint. Thus in either case, P(e;, —e;) and P(—e;, e;) hold, respectively. They are both equivalent
to each other and to i j -submodularity.®'

Next, suppose i, j € T have different parities. By the same argument as before, we can take the first i
termsandlastn+1 - j termsfori < j to obtain conclude P(e;, ej) or P(—e;, —e;) holds. These are both
equivalent to ij-supermodularity.

For superconcavity, take any two distinct i, j € 1. First, we observe that if i and j have different pari-
ties, so that i j-supermodularity is satisfied, i j-superconcavity is trivial. We can see this by writing

vix+e)+vi(x+e+e) > vi(x+e)+vi(x+e)+vi(x+e)—vi(x) = vi(x+e)+vi(x+2e),

where the first inequality follows from ij-supermodularity and the second inequality follows from
concavity in componenti.

Suppose i and j have the same parity. Then, superconcavity in these components is equivalent to
P(e;, ej — e;), which is equivalent to P(—e;, e; — e;). Assume i and j are odd. If i < j, then the first i
terms sum up to e; and the first j terms sum up to e;. Thus, terms from i + 1 to j sum up to e; — e;.
Thus, ¢; and e; — e; are sums of distinct vectors in disjoint subsets of D™, which proves P(e;, e — e;).
Ifi > j, thelast n + 1 — i terms sum to —e;, and the first j terms sum to e;. Thus, terms from j + 1 to i
sum to e; — ej, and —e; and e; — e; are sums of distinct vectors in disjoint subsets of D, which proves
P(—e;, e; — ej). In either case, we have ij-superconcavity. When i and j are even the symmeric proof
holds. We showed that v* is superconcave.

31p(u,v) is equivalent to P(—u, —v). This can be observed by the simple change of variables x’ = x —u — v.
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wy € {wg : £ € Ki} = {lwn], lws], ..., [wil} U A{=|wi1], —lwiss], .. .}
ifk>i:
DM = {|wyl, ~|wal, lwsl, ..., [wil, =|wisl, ... =|wil ..., (=1)" w41
—_—
ei=Yi_y we =Wk
e — lwk| = Z we is asum of distinct vectors in DM
0e{1,2,.,i}u{k}
ifk<i:
—wg
M
DY = {|lurl, —|wa|..., lwkl,..., lwil, —|wisl, ..., (=1)"|wp41]
e,-:Z‘[',:1 we
e; — |w| = 2 we is a sum of distinct vectors in D
0e{1,2,i}\{k}

Figure 6: lustration of Observation 7 when i is odd and B = {k} C K;.

Appendix D Proofs of Theorems 4 and 5

Before proving Theorem 4, we will make a couple of observations.

First, note that if the optimal mechanism transitions to s + e; — X ;. #«|wk/| after a type i agent arrives
at state s, then for each ¢ such that #, > 0, we must have that A, |v*(s + e; — 2 #rlwk| + [we|) =
vi(s+ei — X #rlwe| +we|) — v (s+ei — X #rlwk|) < aw,, since otherwise optimal mechanism would
have kept an additional vector w, as the marginal value of the vector would be greater than a,,.

Second, if s is reachable, and s — |w,| > 0, we must have that Aj,,|v*(s) > au,, since otherwise s
would not be reachable. Thus, we can further conclude that A, | v* (s + e; — 2 #klwi| + lwel) < aw, <
A V¥ (). Thus, if we show that v* satisfies property P (|we|, e; — X #rlwi|+|we|) and that s —|w,| > 0,
we will arrive at a contradiction, since P (|we|, e; — 2 #i|wi|+|we|) implies Aj,, v (s +e; — Xp Filwi|+
[wel) > Ajy v (S).

Third, e; is the sum of the first i or last n + 1 — i vectors in DM, depending on whether i is odd or even.
Moreover, if wy is a vector not included in this sum for any k € K; then k is even and, hence, as wy; < 0
and |wy| = —wi, we obtain e; — |wi| = e; + wy is also a sum of distinct vectors in DM (i.e., the sum of
matching vectors included in the sum equating e; and wy). Similarly, if wy is a vector included in this
sum for any k € K;, then k is odd, and hence, as wy > 0 and wy = |wy|, we obtain e; — |wi| = e; — wy is
also a sum of distinct vectors in DM (i.e., the sum of matching vectors included in the sum equating
e; except wy). Therefore, e; — |wi| for any k € K; is a sum of distinct vectors in DM (e.g., see Figure 6
when i is odd). We observe that this argument can be iterated, and thus, we obtain the following:

Observation 7. Forany B C K;, e; — Y cp |wk| is a sum of distinct vectors in DM . This sum includes all
vectors wy that are included in the sum of matching vectors in D™ equatinge; (firsti or lastn +1 — i
vectors depending on the parity of i) except those whose indices are included in B, and also includes all
vectors wy. for k € B such that wy. is not included in the sum of matching vectors in D™ equatinge;.

Similarly, forany A C Ky, ei+2kealwi| isasum of distinct vectors in DM . This sum includes all vectors
wy that are included in the sum of matching vectors in DM equating e; (firsti or last n + 1 — i vectors
depending on the parity of i) except those whose indices are included in A, and also includes all vectors
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wy. for k € A such that wy. is not included in the sum of matching vectors in DM equatinge;.

Moreover, if we have A C K] ¢ and B C K;, we can merge the two cases, and conclude thate; + 3 j.c 4 |wi| -
Y ken lwi| is a sum of distinct set of vectors in DM

We are ready to state the proof of the theorem:

Proof of Theorem 4. Suppose s is a reachable state and the optimal mechanism uses #, > 0 ex-
changes of each exchange type w; after an agent of type i arrives. We will show that #, < 1 for each

H#e—1 ifeeA
¢ and that #, = Oforany ¢ ¢ K;. Let A = K; N {€: #, > 0}, and #, = . Then,
0 ifegA

ei — 2 #Helwe| = ei = Ygen lwe| — X¢ #,lwe|. By Observation 7, e; — 3¢ 4 lwe| is a sum of distinct vectors
in DM . We will show that #/, = 0 for any ¢. We will start with showing that if #| > 0, then v* satisfies

P(lwel, e = Xy lwil).
Suppose #; > 0. First, assume ¢ ¢ K;: two cases exist depending on whether € is odd or even.

If ¢ is odd: Then wy = |wy|, and by definition of K;, as ¢ ¢ K;, w, is notincluded in the sum of matching
vectors in DM equating e;. Moreover, itis not included in the sum of matching vectors in O™ equating
e; — Xkea |Wk|, since we only potentially add or remove elements inside A € K; when we add the term
— Y kealwe]. Thus, wy = |we| and e; — Y, 4 |we| are sums of distinct vectors in disjoint subsets of D,
which means P(|w¢|, e; — X pc4 lwe|) holds for v*.

If ¢ is even: Then wy = —|wy|, and since ¢ ¢ K;, wy = —|wy| is included in the sum of matching vectors
in DM equating e;. Moreover, it is also included in the sum of matching vectors in D™ equating e; —
Yieea lwel, since we can only add or remove elementsin A € K; when we add the term — }; 4 |wi|, and
¢ ¢ K;. Thus, wy is included in the sum e; — } ;.4 [wk|. Therefore, it is not included in the sum —(e; —
Y kea lwi]), which consists of the sum of the remaining vectors in O™ . Hence w, and —(e; — Y pca |wi|)
are sums of distinct vectors in disjoint subsets of D, and thus we have P (w, —(e; — Y54 |wk|)) holds
for v*. Since —w,; = |wy|, equivalently we have P(|wg|, e; — X rca |wk|) holds for v*, which is what we
wanted to show.

Now assume that ¢ € K;. By definition of #;, we have that #, > 1 and € € A. Thus, either ¢ is odd and
wy = |we| is included in the sum of matching vectors in D™ equating e; but it is not included in the
sum of matching vectors in D™ equating e; — 3.4 |wi| since it is removed with the term — ¥ ;. 4 |wk|.
This case yields P(|wy|, e; — X kea |wk|) holds for v*. Or, € is even and wy = —|w,|, and thus, it is not
included in the sum of matching vectors in D™ equating e; but is included in e; — 3,4 |wg| since
it is added with the term — Y}y 4 [we|. This yields P(we, —(e; — Y¢ca lwel)) holds for v* which means
equivalently P(|we|, e; — X.pca |we|) holds for v*.

We thus showed that for each #/ > 0, we have P (|wg|, e; — Y.< 4 lw¢|) holds for v*. Summingall of these
inequalities, we conclude that P(X, #}|we|, e; — X ¢ca [we]) holds for v*.

We will now show thatif s + e; — X4 [we| — X¢ #;lwe| > 0, then we have s — 3, #; |we| > 0 as well. To
see this, note that each entryin - },. 4 |w¢| is non-positive, thus, only positive contribution to s + e; —
Yeea lwel = X¢ #;|lwe| comes from e;. This means that only index of s — 3, #/|w| that can be negative
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is the i*" index. But only two vectors w, that has a non-zero entry in the i’* index are w; and w;, 1, both
of which are included in K;. Thus, if i’ index of s — 3, #,|we| is negative, it must be due to some k € K;
(more specifically, some k € {i, i + 1}), such that # > 0. By definition of #/, we have that k € A, and
thus, |wi|is alsoincluded in the sum - 3, 4 [we|. Butsince s+e;—Y e s lwe|— 2, #;lwe| = 0, and the +e;
term can only compensate for one term of the form —|wy |, we must also have that s — 3, #{|we| > 0.

Finally, using our observations, we can see that property P (Y, #;|wel, ei — X¢ea lwe|) for v* together
withs -3, #;|we| > 0 and the fact that optimal mechanism transitions to s +e; — 3.4 lwe|—X¢ #;lwel,
contradicts with the state s being reachable, since the optimal mechanism would instead transition
to s — 3¢ #;|we|. Thus, we must have that #; = 0 for all ¢, which is what we wanted to show. |

We will now make a generalization to Observation 7, which will allow us to prove Theorem 5.

Lemma 4. Let A,A’, B,B’ C {1, ..., n + 1} be pairwise disjoint sets of indices such that A, A’ C KJ.C and
B, B’ C K;. Then, P(Yiea lwk| — Xiep |wkl, € + Zgea |Wkl = Xiep lwkl) holds for v*.

Proof of Lemma 4. By Observation 7, ej + Y jca |[wk| — Xrep lwi| is a sum of distinct vectors in DM,
moreover, since AN A’ = 0, for any k € A, |wi| is not part of this sum of distinct vectors. Thus,
we have that for any k € A, property P(|wi|,ej + Xea lwel — X¢ep lwel) holds for v* by Lemma 2.
Similarly, since BN B’ = 0, for any k € B, —|wi| is not part of this sum of distinct vectors ,thus we have
P(—|wil, ej + Ypen lwel = Xgep lwel) holding for v*. Summing the relevant inequalities, we observe
that property P(Xcp [Wk| = 2Zkea lWils €j + Ziea [Wi| = Xxep lwi]) holds for v* by Claim in the proof
of Lemma 2. |

We also use the following simple property of the optimal mechanism in proving Theorem 5.

Lemma 5. Let s be a reachable state such that optimal mechanism transitions to s + e; — Y xea(s,i) |Wk|
after an agent of type i arrives. Letu = Yca lwil = Sep lwil # 0 where A € {1,...,n +1}, B C A(s, i),
ands + e; — Yea(s,i) [Wkl — u 2 0. Then,

Auvi (s +ei — Deacs,iy [Wkl) = v (s +ei = Zgeacs,iy [Wkl) = v (s +ei = Zieacs,i) 1wkl —u) > ay

where a, is the sum of rewards of the matching vectors with indices included in A minus the sum of
rewards of the matching vectors with indices included in B.

Proofof Lemma 5. Since B C A(s, i) and s + e; — Yiea(s,i) lwk| — u > 0, it is feasible for the optimal
mechanism to transition to state s + e; — Yxea(s,i) |Wk| — u, by using vectors from A and abstain from
using vectors from B. In doing so, the mechanism would get the additional rewards of vectors from
A and lose rewards of vectors from B, thus having the additional reward of a,,. However, this would
result in transitioning to the state s + e; — Yxca(s,i) lWk| — u instead of s + e; — Yica(s,i) |wkl, which
means losing the value A, v*(s+e; — Y ea(s,i) [wkl). Since optimal mechanism decides to not use these
additional sum of vectors u (even though it is feasible to do so), it must be the case that A, v*(s + e; —

2keA(s,i) 1Wkl) > ay. O
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Proof of Theorem 5. For simplicity, given a set of indices A of matching vectors in D, as denoted in
Equation (9), we will write s — 2[A] instead of s — } ;.4 |wk|.

Suppose s is areachable state and that j is an agent type such that s +e; is also reachable. Then, when
the arriving pair is of some type i, the mechanism transitions to s + e; — 2[A(s, i)] from state s and to
s+ej+e —X[A(s +ej,i)] froms +e;.

Next, by rearranging the termsin s+e;+e;—X[A(s+ej, i)], we can obtain the following decomposition:

s+ej+e —Z[A(s+ej,i)]
—steitej— Z[A(s, i)] - z[(A(s +ej, i)\ As, i))] + z[(A(s, i)\ A(s +ej, i))]
= ste- z[A(s, z')] tej - Z[(A(s +e; )\ A(s, 1)) N K,-] - Z[(A(s +e; )\ A(s, i) N K;]

+ z[(A(s, D\ A(s +ej, i) N Kj] + z[(A(s, D\ A(s +ej, 1)) N K;]

Define v:=

—s+e —z[A(s, i)] +ej—2[(A(s+ej,i) \A(s, 7)) mK,-] +Z[(A(s, i)\ A(s +ej, 1)) nK;]

CK; CKf
Define u:=
- (2] (G +epinac, i) n K | - 2| (A, i\ A+ e, i) n K ). (12)
cK? cK;

J

Our proof strategy here is to show that vector u defined in (12) satisfies # = 0, and in particular, each
of the sums in the last line of (12) are taken over empty sets of vectors, i.e., both sets (A(s + e}, i) \
A(s, D)) N Kf and (A(s, i) \ A(s +ej, i)) N K; are empty. This will imply that A(s +ej, i) € A(s, i) UK; and
A(s, i) NK; C A(s + e}, i), respectively, completing the proof of the theorem.

Suppose u # 0. We will first use Lemma 5, with s” := s + ¢; and u’ := —u.

Using the above decomposition, the vector u’ = —u is of the form Z[A] — X[B] where B = (A(s +e;, 1) \
A(s, i) N KJ.C C A(s + ej,i). We will show that s + e; — Z[A(s,i)] + v > 0. Suppose the ¢'" index of
s+e; —Z[A(s, i)] + v is negative. Since s + e; — Z[A(s, i)] +v — u > 0, it must be the case that ¢/" index of
Z[(A(s, i) \ A(s+ej, i)) N K]] is positive, since the other non-negative summation term in u enters (12)
with a minus sign and is overall non-positive. Moreover, since s + e; — Z[A(s, )] is also a reachable
state by definition, s + e; — Z[A(s,i)] > 0. Hence, ¢/" index of v must be negative, and since other
terms in v are non-negative, £/ index of ~X[(A(s + ej, i) \ A(s,1)) N K;] must be negative.

Notice that each expression of the form X[-] is a sum of absolute values of distinct vectors in D™, and
for each index ¢ there are exactly two vectors in D™ that have non-zero entries in their £/" index, wy
and wy,,. However, the sets (A(s, i) \ A(s + ¢j,1)) N K; and (A(s + e}, i) \ A(s, i)) N K] are disjoint, thus,
it cannot be the case that w, or w¢,; belong to both of them.

Thus, it must be the case that one of these sets contain ¢ whereas the other contains ¢ + 1. However,
both of these sets are subsets of K;, which does not contain any consecutive elements except for j and
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j+1. Thus, we must have that £ = j. However, since there is an e; term in v, this term can compensate
for the —1 in the —X[(A(s + ¢j,7) \ A(s, i)) N K;], which means s + e; — Z[A(s, i)] + v > 0. Thus, using
Lemma 5, we conclude that

Ay v (s’ +e; = Z[A(S",D)]) = vi(s" +e; —Z[A(s",0)]) = v (s" +e; = Z[A(s", )] —u') > ay.
Substituting s’ and u’,
vi(is+ej+e —Z[A(s+ej,i)]) - Vvi(s+ej+e —Z[A(s+ej,i)] +u) > —ay.
Further substituting v, this can be written as
vi(s+e —Z[A(s,D)] +v—u)—v'(s+e —Z[A(s,i)] +v) > —ay,
and finally multiplying both sides by —1, we have
AV (s +e —Z[A(s,D)] +v) < ay. (13)

We will now use Lemma 5 with s and u. Notice that u is of the form Z[A] -Z[B] where B = (A(s, i)\ A(s+
ej, 1))NK; C A(s, i). Wewill show that s+e;—X[A(s, i)]-u > 0. Using the same reasoning as before, ifoth
indexof s+e; —Z[A(s, i)] —u is negative, it must be the case that ¢/ index of Z[(A(s+ej, i)\ A(s, i))ijC]
and X[(A(s,i) \ A(s + ej, 1)) N K;] are both non-zero. Again with the same reasoning, this can only
happen when both ¢ and ¢ + 1 belong to these sets. However, both of these sets are subsets of K] ‘
which does not contain any two consecutive elements. Thus, we have that s + e; — Z[A(s,i)] —u > 0
and we can use Lemma 5 to conclude

Ayvi (s +e; — Z[A(s,D)]) > ay.
Combining this with inequality (13) we obtain
Ayvi(s+e; —A(s, i) > ay > Ayv'(s+e; —A(s, i) +v).

Finally, we will use Lemma 4. Let A = (A(s + e, i) \ A(s,i)) N Kf, A= (A(s, i) \ A(s + ¢j,0)) N K?,
B = (A(s,i) \ A(s +ej,i)) NK;, and B’ = (A(s +ej, i) \ A(s,i)) N Kj, and using Lemma 4 we arrive at
property P(Syea |wil~Siep |wil, e+ Sxen [wel-Siep lwil) for v, where A = (A(s+ej, 1)\A(s, 1)) NKF,
A = (A(s, i) \A(s +ej,i)) N Kf, B= (A(s,i) \ A(s +¢j,i)) NKj, and B’ = (A(s + e}, i) \ A(s, 1)) N K.
Substituting the definitions of u and v, this property is equivalent to P(u, v).

However, this property is equivalent to the inequality A, v*(s) < A,v*(s +v) for any s. Letting s’ =
s +e; — A(s, i), this implies A, v*(s + e; — A(s,i)) < Ayv*(s + e; — A(s, i) + v) which contradicts the
inequality we obtained above. Thus, we must have that u = 0, which proves the desired inclusion
relations. i
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Appendix E Proof of Theorem 7
We first state and prove the following result:
Lemma 6. Let v* be the optimal value function, and s be a state. Then:

i. Ifs;>0:
- Ifv*(s) —v*(s —e1) <2, thenv*(s+e1) —v'(s) < 2.
- Ifv*(s)—v*(s—e1) <2,thenv*(s+e3) —v'(s+e3—e1) < 2.
- Ifvi(s+e3) —v'(s+e3—ey) <2,thenv*(s+e) —v'(s) < 2.
ii. Ifs3>0:
- Ifvi(s)—v*(s—e3) < 1,thenv*(s+e3) —v'(s) < 1.
- Ifv*(s)—v*(s—e3) < 1,thenv*(s+e;) —v'(s+ey —e3) < 1.
- Ifvi(s+e)—v'(s+e  —ey) <1,thenv*(s+e3) —v'(s) < 1.
iti. Ifsy >0andss > 0:
- Ifvi(s—e3) —v*(s—e1) > 1, thenv*(s) —v*(s+e3—e1) > 1.

- Ifvi(s+e —e3) —v'(s) > 1,thenv*(s —e3) — v (s —ep) > 1.

Proof of Lemma 6. All of these second-order properties are implied by Theorem 3: By concavity,
v¥(s+e1)—v(s) < v*(s)—v*(s—ey) < 2,and by superconcavity, v*(s+e;—e3)—v*(s—e3) < v*(s)—-v*(s—
e1) < 2, and by submodularity in components 1 and 3, v*(s+e3) —v*(s+es—e1) < v*(s)—v*(s—ey) < 2.
This concludes Lemma 6(i). The proof of Lemma 6(ii) follows by the symmetric argument. The same
argument using superconcavity in components 1 and 3 proves Lemma 6(iii). o

Proof of Theorem 7. By Lemma 6(i), we canlet ¢(s) to be the supremum of s’ such that v*((s’, 0, s,0)) -
v*((s’-1,0,s,0)) > 2. Such asupremum is finite since if we have infinitely many overdemanded pairs,
an additional overdemanded pair has no future value and must be immediately used, and thus has a
marginal value of is at most 2. By concavity, this function satisfies property (i.1.) and by superconcav-
ity it satisfies property (i.2.) in Theorem 7. By a symmetric argument, properties (ii.1.), and (iii.1.),
(iii.2.) in Theorem 7 follow from Lemma 6(ii) and 6(iii).

To show the optimality of the multi-dimensional threshold mechanism, we consider each case (we
skip all the trivial decisions in all cases).

Case 1: The arriving pair is O4_p type. In this case, the mechanism can decide to switch to state s + ey,
or stay in state s for an immediate surplus of 2. The former is chosen if and only if v*(s+e1) > v*(s)+2.
By property (i.1.), this is equivalent to s; +e; > t1'3.

Case 2: The arriving pair is A — B type. In this case, the mechanism can decide to match this A — B
pair with an existing O4_p pair, gain a surplus of 3 and transition to state s — e;. Alternatively, it can
decide to match this A — B pair with an existing B — A pair, gain a surplus of 2 and transition to state
s — e3. Thus, the decision depends on whether v*(s — e3) + 2 < v*(s — e1) + 1. By property (ii.1.), this is
equivalent to determining whether s3 < t2(s1).

Case 3: The arriving pair is B—A type. Again, the mechanism can transition to states s+es or s+es—e; to
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gain a surplus of 2. This means we check whether v*(s+e3;)—v*(s+e3—e;) < 2 ornot. By property (i.1.),
this is equivalent to whether s; < t13(s3 + 1) or not.

Case 4: The arriving pair is Oz_4. The mechanism can transition to state s — e; and obtain a surplus
of 3 or stay at state s to obtain a surplus of 3. Thus, we check whether v*(s) — v*(s — e3), which, by
property (iii.1.), is equivalent to checking the threshold ¢*. o
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Online Appendix Not Intended for Print

I. About Proposition 3 in Unver (2010)

Assumption 2 in Unver (2010) regarding "overdemanded pairs are matched as soon as they arrive" is
motivated by the following proposition.

Proposition 3 (Unver, 2010). If arrival probabilities pa_p and ps_ 4 are sufficiently close to each other,
then under any dynamically efficient multi-way matching mechanism, overdemanded type pairs are
matched as soon as they arrive at the exchange pool.

There is an analytical flaw in the proof. The proof of Proposition 3 works as follows: We consider two
cases, the first where an overdemanded pair is pooled for at least one period, and the second where
an overdemanded pair is matched immediately as they arrive. Then, we calculate the upper bound
for the surplus of the first case, and the lower bound for the surplus of the second case. Then, we show
that when |pa_p — pp-a| is small enough, the lower bound is greater than the upper bound, thus, it is
never optimal to accumulate overdemanded pairs.

The upper bound for the first case is calculated as

AMpa-B + PB-a) 34 A(pa-B + pB-a)

(14)
AMpa-B +pp-a) +p Y

The coefficient on the left is the expected discounting until a reciprocal pair arrives; this is when a
three-way exchange is conducted (thus, the term 3 inside the parenthesis). The second expression
the parenthesis is the upper bound for the surplus of reciprocal pairs. It is an upper bound because
it is argued that it assumes all incoming reciprocal pairs are matched as soon as they arrive.

The lower bound for the second case is calculated as

. 2/1(min{pB—A, pPA-B}) .
0

2

(15)

The first item represents the surplus obtained by matching the overdemanded pair immediately with
an underdemanded pair (thus, 2). The second term is argued to be a lower bound for the future sur-
plus of all reciprocal pairs. The reasoning is as follows: If reciprocal pairs are matched exclusively
with each other, the amount of exchanges would be bounded by the less frequently arriving type,
and thus, this lower bound would be equal to ¥, 2(6 min{pa_z, ps_a})*.

We argue and claim that both of these bounds are not proper.

Expression (14) is not an upper bound. If there are sufficiently many B — A pairs in the pool, then
the upper bound for the future surplus would be W, which is bigger than M. Thus,
Expression (14) is an upper bound only if we assume that there are no pairs in the pool as the next
reciprocal pair arrives.

Expression (15) is not a lower bound. Suppose, without loss of generality, that B — A pairs arrive less
frequently then A — B pairs. Then, this approach assumes that whenever a B — A pair arrives, there is
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an A- B pair in the pool. But, this would be equivalent to the future surplus in the extreme case where
there are infinitely many A — B pairs at the beginning, which is not a lower bound assumption.*”

To argue further, suppose pa-p = ps-a. Then, the upper bound for the future surplus (Apacpipa-a)y

0
Amin{ps_apa-s}y This means that if arrival

2Apa-s
p

would be equal to the lower bound for the future surplus (2
probabilities are equal to each other, then the future surplus is (exactly) equal to and it is inde-
pendent from the state of the Markov decision process (MDP). But, this is impossible, since the future

surplus certainly depends on the state.

Remark 1. We have argued so far that the proof of Proposition 3 is incorrect. But, this does not actually
prove that Proposition 3 is incorrect. To prove that it is incorrect, we have to show that there exists some
A, p and arrival probabilities (that satisfy the other assumptions in Unver, 2010) with pa_p = pp-a,
such that in the optimal mechanism, it is optimal to accumulate at least one overdemanded pair type
for at least one period. The numerical example in Figure 8 in Section 1V of this Online Appendix proves
this.

IL. llustration of propagation and closedness: A two-dimensional example.

We illustrate the concept of closedness in propagationin a two-dimensional setting. Suppose we have
a function f : Z?> — R that is concave in each of the two components. Suppose we have two opera-
tors, T; defined by the equation (7; f)(x) = max{f(x), f(x — e1) + a1} and T, defined by the equation
(Iof)(x) = max{f(x), f(x — e2) + a2}. Suppose we want to show that concavity is propagated by the
operators so that 71 f and T f are also concave in each component. Take the concavity in e; property
and the operator T; f. We need to show for any x € N”,

max{f(x), f(x —e1) + al} +
max{f(x +2e3), f(x +2e3—e1) +a}

<2max{f(x+e), f(x+ex—e1)+ai}

Applying the argument we developed above, symmetric cases easily follow, and the first case of asym-
metry requires showing that for any x € N,

fx)+f(x+2e3—e1) < f(x+ex)+f(x+ex—e1)

which does not generally hold, unless f is also superconcave. Thus, we are not able to propagate
concavity alone, and the set of properties that consists of concavity in the two components are not
closed for the operators 7} and T».

Now suppose that, in addition to being directionally concave, f is also superconcave, and we want
to show that 73 f and T>f are also superconcave, in addition to being concave. Then, by the above

32This calculated bound would be closer to the lower bound if | pa-B — PB-4| is large enough. In this case, it would be
more likely that there are A — B pairs in the pool whenever a B — A pair arrives. But, the proof is only for the cases where
|pa—-B — pB-al is small enough.

51



argument, we are able to propagate concavity.*> What remains to show is that T; f and T f are also
superconcave. By symmetry, it suffices to show that i j-superconcavity for componentsi = 1 and j = 2
is propagated by the two operators. T; propagating i j-superconcavity for componentsi = 1and j = 2
is equivalent to for any x € N”

max{f(x+e), f(x+ex—e1) +ai} +

max{f(x +2e1), f(x +e1) +ai}.
< max{f(x+ey), f(x)+a}+

max{f(x+e1 +e2), f(x+e)+ai}

Again, the symmetric cases easily follow. The first case of asymmetry also easily follows since by
choosing the first and second arguments on the right-hand side, the two sides of the inequality
become equal. Suppose we have the second case of asymmetry so that the left-hand side equals
f(x+e2—e1)+ar + f(x+2e). Again choosing the first and second arguments respectively on the
right-hand side, it suffices to show that f(x +2e;) — f(x+e1) < f(x+e2) — f(x +e2 — e1). By concavity,
f(x+2e1)—f(x+ey) < f(x+e1)— f(x) and by superconcavity f (x+e1) — f(x) < f(x+e2)— f(x+e2—e1).
By combining the two expressions, inequality follows.

To show Tx f is superconcave, we need to show for any x € N”,

max{f (x +ez), f(x) + az} +
max{f(x +2e1), f(x +2e; — e3) + as}.
< max{f(x+ey), f(x+e —e)+as}+

max{f(x +e +e2), f(x+e)+as}

Noting that symmetric cases follow, we first look at the first case of asymmetry, where the left-hand
side equals f(x +e2) + f(x +2e; — e2) + a2. Choosing the first and second arguments on the right-hand
side and letting x” = x +e1, it suffices to show f(x"+ex—e1) + f (X" +e1 —e2) < 2f(x’). By superconcavity,
wehave f(x'+e1)—f(x') < f(x'+e2)—f(x'+e2—ey),and f(x" +e3) — f(x') < f(x'+e1)— f(x'+e1—e2).
Multiplying the first inequality by —1 and summing the inequalities, we obtain f (x’ +es —e1) — f(x) <
f(x) = f(x’ +e; —e2), from which the desired inequality follows. In the second case of asymmetry, we
can choose the first and second arguments to obtain the definition of concavity in e;. This finishes
the proof of our desired propagation results.

Notice that, even though we could not prove T; f and T, f are concave by just assuming that f is con-
cave, we are able to prove T; f is concave and superconcave by assuming f is concave and supercon-
cave. Thus, even though concavity did not propagate alone, it propagates together with supercon-
cavity. This makes the set of properties {concavity, superconcavity} closed with respect to the set of
operators {71, I }. With the same methodology, we can further show that an operator of the form
(Ti2f)(x) = max{f(x), f(x — e; — e2) + a12} will also propagate the desired properties, if we further

335econd case of asymmetry similarly follows from superconcavity.
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restrict the set of properties by including supermodularity. o
II1. Numerical example for the unbalanced dynamic exchange

We provide a numerical example in Figure 7 for the unbalanced case. The figure depicts the set of
reachable states for a unbalanced problem for p4_p = 0.0635, pg-a = 0.0381, pg,_, = 0.00626, po,_, =
0.021, 6 = 0.999. The horizontal axis is sy — s3 and the vertical axis is s;. Note that s, = 0 for all reachable
states.
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Figure 7: A numerical example

IV. Balanced dynamic exchange

We have described a special case of the optimal mechanism, the unbalanced dynamic exchange, in
the main text. Here, we refer to the other case as a balanced dynamic exchange. Numerically, a prob-
lem is a balanced dynamic exchange when the arrival probabilities p,_p and pp_, are sufficiently
close to each other. In a balanced dynamic exchange problem, the only restriction on the set of reach-
able states is given by Observation 5 (i) and Theorem 6. This latter theorem implies that the set of
reachable states is connected in each dimension, inducing an interval structure.

However, intuitively, one would expect the set of reachable states to not contain a state s with s; > 0
and sy > 0, or s3 > 0 and s4 > 0, since existing A — B and O4_p pairs can make a three-way exchange.
Moreover, if the mechanism implements a policy such that the A — B pair is reserved for future in-
coming B — A pair, then it is also expected intuitively that the O,_p pair is not reserved, and matched
immediately in a fwo-way exchange.

But, it turns out that this intuition is incorrect. In fact, numerically, we observe reachable states s
with sp, s2, 54 > 0 at the same time. We explore the intuition behind reserving A — B pairs together
with O4_p pairs for future exchanges. First, we analyze the optimal mechanism for this most general
case. The state space is in general four dimensional. But, by Observation 5 (i) and letting s’ = s, — s3
to denote the x-axis as in Section 7.1, we obtain a three dimensional set of reachable states. We first
illustrate the numerically calculated set of reachable states for certain parameter values (see Figure
g).34

34As always, any state s with s; = s4 = 0 is reachable, so we have the linear set of points at the bottom.
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Figure 8: The set of reachable states for a balanced problem for ps_p = pp-a = 0.0508, po, , =
po,s_, = 0.001346, 6 = 0.999. Note that the set of reachable states is symmetric with respect to the
plane sy — s3 = 0.

This graph points to the similarity between unbalanced and balanced problems. Recall that the set
of reachable states in an unbalanced problem is a triangular region (Figure 5). Here, this is instead a
polyhedral shape. The intuition for this shape is the same as before: The DM -multimodularity of the
value function (Theorem 2) implies substitutability and complementarity relation between different
types, which in turn implies trade-offs generating triangular regions of reachable states.

Another complication with the balanced problem is that the number of decisions is much bigger. For
example, suppose that a B — A pair arrives. Then, the mechanism can: (i) match the incoming pair
with an existing A — B pair, (ii) match the incoming pair with an Op_4 pair, (iii) match the incoming
pair with an existing A — B pair and match an existing O,4_p pair with an underdemanded pair, (iv)
match the incoming pair with an existing A— B pair and match an existing Op_ 4 pair with an underde-
manded pair. Although we can eliminate some of these actions depending on the state, at least three
actions remain for each state. This implies that the threshold mechanism for the balanced problem
is a multiple thresholds mechanism, such that for #;, t, with #; < 1, the actions depend on whether
s <t,l1 <s < tort <s. Moreover, thresholds themselves are multidimensional functions of
the form 7: N? — N, and their properties as functions are again determined by D™ -multimodularity
and Theorems 4-6.

We now explain the only counter-intuitive result which the balanced problem entails, the fact that
there are reachable states s with s; > 0 and s, > 0, i.e. it is possible for optimal mechanism to hold
O4-p pairs together with A — B pairs. The reason this result is counter-intuitive is because, in Sec-
tion 7.1, the optimal mechanism pools O,_p to save future incoming A — B pairs, as they will likely
be excessive. Thus, why would the optimal mechanism keep reserving O4_p pairs when an A — B pair
arrives? We illustrate the answer with an example.

Example 2. Suppose that each arriving pair is an A — B pair with 1/2 probability and a B — A pair
with 1/2 probability. Thus, we assume that no underdemanded or overdemanded pair arrives after the
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process starts. Further assume that we have an O4_g pair at the start of the process (but no such pair
will arrive later). Thus, we can (i) match the existing O,_p pair with an underdemanded pair to gain
a surplus of 2 at time 0, (ii) wait for an A — B pair to arrive and match the existing O,_p in a three-way
exchange. Suppose we opted for the first option and gained a surplus of 2. Now suppose that next three
arriving pairs are all A — B. Since the probabilities are equal, it would be expected that this excess of
A — B pairs persists for some time. Thus, if we waited for a couple of periods, and matched the O4_g

pair in a three-way exchange when the excess occurs, we could have saved an A — B pair for waiting an

excessive period of time. Now suppose that we decided to wait for an incoming A— B pair, and matched
the O4_p pair with the first A — B pair. Now suppose that after we do this, three B — A pairs arrived in a
row. Same as before, this imbalance will imply a loss of surplus, since excess B — A pairs will likely wait
for long. But if we did not match the O,_p pair with an A — B pair, we could have used this A — B pair
to match one of the excess B — A pairs, and matched the O4_g pair with an underdemanded pair, and
used one excess pair without losing any surplus.

We see that, both strategies fail to achieve the maximum surplus for some sequence of incoming pairs.
Now consider the following strategy: We set some threshold for the imbalance, say, three excess pairs
of A — B and two excess pairs of B — A, and the O,_p pairs are reserved, until one of these forms of
imbalances occur. If the first case of imbalance occurs, the O4_p pair is matched with one of the A — B
pairs. If the second case of imbalance occurs, the O,_gp pair is matched in a two-way exchange. This
strategy is not dominated by either of the strategies we have discussed above, it is better than at least
one of these strategies for some sequence of incoming pairs. This is precisely the strategy we numerically
observe (although the exact numbers for thresholds depend on the problem).

Optimal mechanism uses overdemanded pairs as a buffer for future imbalances. It pools the overde-
manded pairs of both types up to certain numbers,** until the reciprocal pairs reach a state of im-
balance, in which case, it uses one of the overdemanded pairs it has been reserving in the pool to
mitigate this imbalance. Thus, we call the set of reachable states we observe in the numerically cal-
culated figure above as the buffer zone.

Although the optimal mechanism for a balanced problem has a more complicated set of decisions
and states, it is closer to being a greedy algorithm (that always conducts the exchange of maximum
size) than the one for an unbalanced problem. This is because, when arrival probabilities are close
to each other, the case of future imbalance of reciprocal pairs is less likely. Thus, the incentives to not
conduct the maximal exchange diminish. For this reason, for a balanced problem, always conducting
the maximal exchange provides a good approximation to the optimal mechanism.

35However, it does so in a much smaller scale than an unbalanced mechanism.
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