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1 Introduction

While significant progress has been made over the last 15 years in studying dynamic matching
markets—which evolve through the arrival of agents, a common theme in the literature is the
difficulty of conducting exact analysis due to the high number of agent types. As a result, most
of the literature involving high-dimensional state spaces focuses on approximate or asymptotic
analysis, regardless of the presence of other complicating factors such as asymmetric informa-
tion, so long as arrival uncertainty is present.

This difficulty arises because standard dynamic programming techniques typically become in-
tractable as the dimensionality of the state space increases. Although low-dimensional models
can sometimes offer useful economic intuition, most frameworks cannot accommodate more
than two types of agents on each side of the market without resorting to approximations or
heuristic rules, which are then justified by demonstrating bounded inefficiency—or,more opti-
mistically, asymptotically vanishing inefficiency as market size grows.

In this paper, we introduce a new technique for characterizing optimalmechanisms in dynamic
matching problems involving an arbitrary number of agent types, as long asmutually beneficial
trades or matches occur locally, akin to the differentiated linear city model of Hotelling (1929).
While an exact characterization remains elusive for arbitrary state spaces, our analysis identifies
second-order properties of the optimal value function that hold under such local compatibility
structures, which we then use to characterize optimal mechanisms.

We apply this framework to characterize optimal dynamic kidney exchange mechanisms un-
der certain assumptions. While we do not pursue directly, ourmethodology can also be applied
to study other problems such as public housing allocation in which houses and families form
two sides of amarket and each family is deemed compatible with houses of their size or slightly
larger, but not any smaller house or any much larger house—due to waste concerns. Further-
more, our model potentially provides a stylized economic framework for studying spatial eco-
nomics problems, such as traditional geographically differentiated trade networks andmodern
on-demand services involving ride-sharing and food delivery.

We start bydescribing thebasics of ourmodel. Weassume that there is a linear structureof agent
types 1, . . . , 𝑛 such that an agent of type 𝑖 = 2, . . . , 𝑛−1 canonly bematchedwith an agent of type
𝑗 = 𝑖 − 1, 𝑖 + 1 in a match denoted as 𝑖 𝑗 to generate a matching surplus of 𝑎𝑖 𝑗 , while the type at
the ends of the linear order 𝑖 = 1, 𝑛 can either be matched by itself with matching surplus 𝑎𝑖 or
with an agent of its neighbor type 𝑗 = 2 or 𝑗 = 𝑛 − 1 respectively, withmatching surplus 𝑎𝑖 𝑗 .

We study the optimalmatchingmechanisms in amodel that assumes Poisson arrivals of agents.
Agents incur waiting costs over time, and their preferences depend on the compatibility of their
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match and these costs. In particular, we analyze the optimal control, aiming to maximize the
total discountedmatch surplus.

This framework essentially embeds the model introduced by Ünver (2010) for dynamic kidney
exchange as a special case. Each patient-donor pair can be modeled as a single agent. If one
assumes the existence of a sufficiently large number of so-called underdemanded pairs—those
with less desirable blood typedonors relative to their patients—anassumptionmotivatedby the
mathematical structure of blood-type incompatibility and a sufficiently long time lapse since
the start of a relatively large kidney exchange clearinghouse, feasible kidney exchanges can be
modeled with only 𝑛 = 4 types of agents that are scarce and arrive over time; larger size kidney
exchanges reduce to bilateral matching of consecutive types that are not abundant. However,
Ünver (2010) only solves a constrained version of the optimal dynamic kidney exchange prob-
lem. Specifically, the secondmain result assumes that overdemandedpairs (the end agent types
in ourmodel 𝑖 = 1 and 𝑖 = 𝑛 = 4)—those withmore desirable blood type donors relative to their
patients—are matched immediately upon arrival.1 While this assumption may be plausible in
some instances, it restricts the generality of the optimal mechanism considerably.

When the assumptionof immediatematching for overdemandedpairs—i.e., agents of type 𝑖 = 1

and 𝑖 = 𝑛 = 4 is relaxed, the full characterizationof theoptimal dynamic kidney exchangemech-
anism becomes more complex. The control state space of the model expands to four dimen-
sions, causing techniques used in Ünver (2010), which analyzed the state space for two dimen-
sions, to be impractical. Via our new techniques and analytical results, we have overcome this
issue and do not need tomake such assumptions. We discuss the details of the kidney exchange
application in our model and how it can be embedded in the next section.

Ourmethodological contribution.The primarymethodological contribution of our paper is the
development of a new set of tools for dynamic matching frameworks that can handle opti-
mal matching control in models with multiple state variables.This methodology leverages the
second-order properties of the value function indynamicprogrammingby extending recent ad-
vances in queueing theory andMarkov Decision Processes (MDPs) to thematching framework.
Unlike queueing models, where substitutability is the only decision feature, matching models
involve central authorities optimizing trade-offs betweendecisions that exhibit complementar-
ity and substitutability among different agents.

Our main result demonstrates that an optimal mechanism exhibiting a nuanced multi-
threshold structure exists. These thresholds govern the stockpiling of different agent types, al-

1We also show in the Online Appendix that an auxiliary result, Proposition 3, used to determine a range of pair-type
arrival rates to support this assumption in Ünver (2010), Assumption 2, has an error. Thus, it is not easy to pinpoint un-
derlying fundamentals to guarantee that overdemanded pairs will be immediately matched in an unconstrained optimal
mechanism.
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lowing the clearinghouse to forgo immediate exchanges in anticipation of better future match-
ingopportunities. However, once the stockof a givenagent typeexceeds a certain threshold, fur-
ther stockpiling ceases, and these agents arematched immediately when an opportunity arises,
as long as their numbers remain above the threshold. These thresholds are, in general, a func-
tion of other current state variables.

We derive this multi-threshold structure by proving that the value function in the optimal con-
trolproblemsatisfies (discrete) concavity in the statevariables,whereeachvariable corresponds
to the number of agents of a specific type.2 Concavity explains why it becomes optimal, at some
point, to prioritize immediate matches over continued waiting: the marginal value of waiting
falls below the immediate gain from conducting an exchange when sufficient stock of a certain
agent type exists.

A direct proof of the concavity of an implicitly defined optimal value function is elusive for dy-
namicmatching problems. Instead, we develop a new technique.

The core of our argument uses the fundamental theoremof discounted dynamic programming,
which establishes that a unique optimal value function exists and can be computed via value
iteration using the optimal MDP operator, a contraction mapping, starting from an arbitrary
initial value function.

Our approach decomposes the optimal MDP operator into a sequence of operations involving
time discount, an arrival, the expected value (uniformization), and variousmatching decisions
amongdifferent agents, dependingon the stateof theexchangepool. More specifically, amatch-
ing operator is defined as an optimal operator in deciding whether to conduct a particular ex-
change or not. For example, take one of the 𝑛 + 1 possible basic matching decisions, matching
agent type 𝑖 = 2, . . . 𝑛 − 1 with an agent of its neighbor type 𝑗 = 𝑖 − 1 or 𝑗 = 𝑖 + 1. It may also let
agent of type 𝑖 to wait and not be matched at all. Matching transitions the state to a lower one,
by decreasing one or more types of agents waiting but provides an immediate matching sur-
plus of 𝑎𝑖 𝑗 . Thus, a basicmatching operator for eachmatching type 𝑖 𝑗 finds themaximumvalue
of two decisions, waiting or immediate matching, incorporating the optimal decision needed.
To find the optimal matching decision, we use all basic matching operators in a sequence at a
given state, one at a time (we show the order in which we apply them does not matter, and the
decomposition is commutative).

We want to show that each event operator propagates the concavity of the value function. A
naive approach would involve showing that, starting from an arbitrary concave value function,

2A real-valued function 𝑓 defined on the 𝑛-dimensional non-negative integer state space ℕ𝑛 is concave in its 𝑖 ’th com-
ponent, if for each 𝑥 ∈ ℕ𝑛 , 𝑓 (𝑥 + 2𝑒𝑖 ) − 𝑓 (𝑥 + 𝑒𝑖 ) ≤ 𝑓 (𝑥 + 𝑒𝑖 ) − 𝑓 (𝑥), where 𝑒𝑖 ∈ ℕ𝑛 is zero in all its components except its 𝑖 ’th
component, which is 1. It is (componentwise) concave if it is concave in all its elements.
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each value iteration results in a concave function and, thus, in the limit, converges to a concave
“optimal” value function. However, concavity alone is too weak a property to be propagated by
these event operators. Thus, one cannot simply start with an arbitrary concave value function
andpropagate this property to the limiting optimal value function, as it does not follow from the
definition of our operators that concavity alone will propagate.

Instead, we demonstrate that a combination of multiple second-order properties of the value
function, including concavity, is propagated. This propagated property corresponds to an ab-
stract second-order characteristic of discrete functions known asmultimodularity for a set of
vectors (cf. Hajek, 1985, Altman et al., 2003).3

The crux of our approach relies on constructing aminimal set of abstract state vectors, knownas
amultimodular basis, which spans all states and throughwhichmultimodularity is propagated
by the event operators. As a result, the economicallymeaningful second-order properties of the
optimal value function, including concavity, are implied by this property.

Complementarity and substitutability. The decision structure also reveals an important under-
lying feature of our matching model. Given an agent of type 𝑖 , agents of types 𝑖 − 1 and 𝑖 + 1

are complements, as the agent can be matched with either of them—whenever these types are
well-defined. In contrast, agents of types 𝑖 − 2 and 𝑖 + 2 are substitutes for the agent, as the com-
plementary types 𝑖 −1 and 𝑖 +1 can instead bematchedwith them, respectively. By iterating this
logic, we can say that agents of types 𝑖 ± 𝑘 are complements to an agent of type 𝑖 when 𝑘 is odd,
and substitutes when 𝑘 is even.

This structure causes the multimodular matching basis we introduce to differ fundamentally
from thequeueingbasis of Koole (1998), which is almost universally adopted in thequeueing lit-
erature. The queueing basis assumes only substitutable changes to the state variables, whereas
ourmatching basis incorporates both complements and substitutes, reflecting the richer struc-
ture of kidney exchange andmatching problemsmore generally.4

Oneway to appreciate the complexity of such amatching problem is by imagining it as the out-
put of a production function (see, e.g., Agarwal et al., 2019 for this interpretation in kidney ex-
change). The inputs are agents, and not all agents can produce the output—amatch.

In contrast, in the queueing theory literature that utilizes Koole’s methods, the analog of the
production function features only substitutable inputs.

It turns out that the 𝑛 + 1 basic matching decisions, which we defined earlier as 1, 12, . . . , (𝑖 −
1)𝑖 , 𝑖 (𝑖 +1), . . . , (𝑛 −1)𝑛, 𝑛, form amultimodularmatching basis. These decisions are denoted

3A real-valued function 𝑓 defined on a discrete state space S is D-multimodular for a set D ⊂ S if, for any 𝑠 ∈ S and
𝑢,𝑣 ∈ D, 𝑓 (𝑠 + 𝑢) + 𝑓 (𝑠 + 𝑣 ) ≤ 𝑓 (𝑠 ) + 𝑓 (𝑠 + 𝑢 + 𝑣 ) (assuming all arguments remain in S).

4In Figure 1 in Section 5.3, we illustrate this structure in the kidney exchange context.
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as vectors that transition the state by subtracting them from the current state, and any𝑛 of them
are linearly independent. Their signs are normalized so that they sum to zero, ensuring that the
(𝑛 + 1)st operator can be expressed as the negative of the sum of the first 𝑛. This matching basis
spans (via vector addition and subtraction) all possible state transitions and all states. The exis-
tence of such a zero-summatching basis is central to proving that the second-order properties
of the value function are preserved under the event operators.

We then prove that if a function satisfies multimodularity for the matching basis, it continues
to satisfy this property after a matching operator is applied to the function. Since all states are
spanned by the basismatching vectors, thenmultimodularity is closed under any compounded
matching operations. Similarly, other event operators (discount, arrival, and uniformization)
also preserve multimodularity in this manner. Therefore, starting with a multimodular initial
function in the value iteration guarantees that the limiting value function, which is the unique
optimal value function, is also multimodular (Theorem 2). Then our next result, Theorem 3,
shows that multimodularity for the matching basis captures all economically relevant second-
order properties of the optimal value function, including concavity. This ensures the existence
of a nuancedmulti-thresholdmechanism that generates the optimal value.

The structure of the dynamically optimal mechanism. Concavity is not the only important
second-order property of the optimal value function implied by multimodularity. Thanks to
additional second-order properties, we can derive further insights into the structure of dynam-
ically optimal mechanisms. These properties allow us to characterize the trade-offs between
waiting andmatching decisions with greater precision.

Wealsoprove inTheorem3 that theoptimal value function is supermodular for complementary
types 𝑖 and 𝑖 ± 𝑘 where 𝑘 is odd, and submodular for substitutable types 𝑖 and 𝑖 ± 𝑘 where 𝑘 is
even. Furthermore, the optimal value function is superconcave, meaning that two agents of the
same typeare (weakly) better substitutes than twoagentswhere the secondagent is of adifferent
type.5

The optimal mechanism, on the other hand, has an intuitive structure: when an agent of type
𝑖 arrives (assuming for ease of exposition that 𝑖 ∈ {2, . . . , 𝑛 − 1}) at a reachable state 𝑠 , at most
one exchange from each type 1, 12, . . . , (𝑛 − 1)𝑛, 𝑛 is conducted. Moreover, the exchanges that
can be conducted involve type 𝑖 or, in a particularway, the complements of this agent (Theorem
4). We also identify how the arrival of two agents of types 𝑖 and 𝑗 can trigger exchanges when 𝑗
alone would not lead to any exchange (Theorem 5). Then, we show that for each agent type 𝑖 ,

5A real-valued function 𝑓 defined on ℕ𝑛 is 𝑖 𝑗 -supermodular for any two components 𝑖 and 𝑗 if, for each 𝑥 ∈ ℕ𝑛 , 𝑓 (𝑥 +
𝑒𝑖 ) − 𝑓 (𝑥) ≤ 𝑓 (𝑥 + 𝑒𝑖 + 𝑒 𝑗 ) − 𝑓 (𝑥 + 𝑒 𝑗 ). It is 𝑖 𝑗 -submodular if the previous inequality is reversed. It is 𝑖 𝑗 -superconcave if, for
each 𝑥 ∈ ℕ𝑛 , 𝑓 (𝑥 +2𝑒𝑖 ) − 𝑓 (𝑥 +𝑒𝑖 ) ≤ 𝑓 (𝑥 +𝑒𝑖 +𝑒 𝑗 ) − 𝑓 (𝑥 +𝑒 𝑗 ). A function is superconcave if it is 𝑖 𝑗 -superconcave for all agents
of components 𝑖 and 𝑗 .
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the optimal mechanism follows a threshold structure when the number of other agent types is
fixed (Theorem 6): if the number of type-𝑖 agents exceeds a threshold, then new exchanges are
conducted in the optimal mechanism.

Finally,we focuson theoptimalmechanism inkidneyexchange—withonly four agent types. We
give a full characterizationof themulti-threshold structurewhen the𝐴 blood-typepatient and𝐵
blood-type donor pair (𝐴−𝐵) arrival rate is substantially higher than the𝐵−𝐴 arrival rate (Theo-
rem 7). These types constitute themiddle two types—2 and 3—in the four-type state space. The
optimal mechanism under general arrival rates is based on a mere extension of this structure,
and for the purposes of brevity, we defer its analysis and discussion to the Online Appendix.

Related Literature.We have alreadymentioned themost relevant literature on queueing theory
andMDPs, andhow they relate to ourpaper. It is useful tohighlight inmoredetailwhat ourwork
contributes to thedynamicmatching literature, as this areahas been the focus of several papers,
beginningwithÜnver (2010). Due to the complex nature of the arrival problem, all papersmake
certain simplifications to achieve tractable results and balance trade-offs.

Ünver (2010) andourpaperbothassumeaway tissue-type incompatibility ofpatientswithother
donors,whicheffectively servesasa large-market and limit assumption. Undoubtedly, somepa-
tients with a high tissue-incompatibility probability 0.99—known as very highly sensitized pa-
tients—will accumulate in the pool. In our approach, these pairs are assumed to remain un-
matched and are excluded from the analysis. For all other patients, however, our analysis is a
useful approximation and a useful approximation in the limit in general.

In contrast, much of the other literature ignores blood types and instead focuses on an abstract
notionof “hard-to-match” patients, characterizing compatibility as a probabilistic event to cap-
ture highly sensitized patients. This approach significantly expands the dimensions of the ex-
post state space, forcing authors to rely on approximate analyses with error bounds.6

Our framework, however, allowsus to fully characterize theoptimalmechanisms, as compatibil-
ity in our setup is deterministic rather than probabilistic. Starting with Ünver (2010), the recent
consensus in this literature has been that almost greedily maximizing exchanges, rather than
engaging in dynamic optimization, results in a minimal loss (for example, see Anderson et al.,
2017, Kerimov et al., 2025 and related works).

In contrast, our paper shows that under optimal mechanisms, overdemanded pairs—which al-
ways enable immediate matches—are not necessarily matched immediately, as dynamic opti-
mization may require waiting to execute more effective matches—departing from prior litera-

6An exception is Sönmez et al. (2020), which models both blood-type and tissue-type incompatibility but uses a high-
traffic fluidmodel (the dynamic analog of continuummodels) for tractability that leads to a single steady state.
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ture.7

A closely related paper to ours is Baccara et al. (2020), which examines a dynamic arrival set-
ting and, much like our work, identifies the best complementarymatches, albeit in a two-sided
matching market inspired by child adoption. While their work and ours share the ability to de-
rive optimal mechanisms in dynamic settings, the underlying approaches differ substantially.
Due to thecomplexitiesofhigher-dimensional state spaces, their analysis is limited to two types,
whereas our framework accommodatesmultiple state dimensions. Moreover, their focus is pri-
marily on incentive issues, distinguishing their contributions from ours.

Several recent papers in economics have studied dynamic assignment problems with features
such as queueing and waiting lists. Bloch and Cantala (2017) analyzes the dynamic assignment
of objects to arriving agents, proposing approximately optimal policies based onwaiting times.
Che and Tercieux (2021) examines how to optimally design queue structures to influence agent
behavior, with a focus on incentive alignment in queue selection. Leshno (2022) investigates
dynamic rules for overloaded waiting lists, particularly in organ allocation, and shows that dy-
namic rules outperform static ones under congestion. While these papers share a focus on dy-
namic assignmentmechanisms, they consider the assignment of objects to agents with an em-
phasis on incentives. In contrast, our paper studies dynamic bilateral matching with spatially
structured complementarities, such as those arising in kidney exchange.

Todate, noprecedent to ourmethodology allows formodeling and solvingoptimalmechanisms
with multiple state dimensions in economics, except brute-force techniques, which are only
practical for state spaces with, at most, a couple of dimensions. Previous approaches that we
rely on in operations research primarily addressed substitutable decisions, such as in queueing
systems, as discussed earlier. However, matching inherently involves complementarities, mak-
ing our approach fundamentally distinct.

Finally, it is worth noting that our paper also contributes to the dynamic matching literature
more broadly, which includes works such as Kurino (2020) andDoval (2022)modeling dynamic
stability—an important tenet in two-sided matching markets. Doval (2025) provides an excel-
lent survey of the economics papers on dynamicmatching.

2 Kidney Exchange: Motivating the DynamicMatching Problem
In this section, we introduce the kidney exchange paradigm (Rapaport, 1986, Roth et al., 2004,
2005, 2007), which accounts formore than one-fifth of living-donor transplants in theU.S. as of
2024 (Sönmez and Ünver, 2025). Kidney exchange serves as the main application of the more
general framework that we introduce in Section 3.

7If agents expirewhilewaiting and these expiration times are relatively predictable,mechanisms that rely on “patience”
maymimic optimal mechanisms in the limit (Akbarpour et al., 2020).
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Westart by explaining the twomedical compatibility requirements for kidney transplantation—
the preferred treatment for themost severe forms of kidney disease.

Thefirst requirement isABOblood-typecompatibility. Blood type isdeterminedby thepresence
of 𝐴 or 𝐵 blood proteins (called antigens). A patient can receive a kidney from a donor if the
patient has all the ABO antigens present in the donor. Thus, an𝑂 blood type patient can receive
a kidney only from an𝑂 donor; an 𝐴 patient can receive from an𝑂 or 𝐴 donor; a 𝐵 patient can
receive from an𝑂 or 𝐵 donor; and an 𝐴𝐵 patient can receive from any blood type donor.

The second requirement is tissue-type compatibility. A patient cannot receive a transplant from
a donor if they have high levels of antibodies against the donor’s tissue types.8

A patient is compatible with her paired living donor—typically a blood relative or close loved
one—if they are bothABO- and tissue-type-compatible. In such cases, a direct transplant is pur-
sued, since the twoalternativeshavepooreroutcomes: deceaseddonation requires longwaiting
times—due to global shortages—for a typically lower-quality organ, and dialysis entails signifi-
cantly lower quality of life.9

On the other hand, a patient with an incompatible paired living donor becomes a candidate for
kidney exchange, in which her donor is swapped with a compatible donor from another pair.
We refer to the patient and her incompatible donor as a pair. The type of a pair is denoted by
𝑋 −𝑌 , where 𝑋 is the blood type of the patient and𝑌 is the blood type of her donor.10

An exchange is a set of (at least two) pairs such that the patient in each pair receives a kidney
from the donor of another pair. Amatching is a collection of such exchanges, where each pair
participates in atmost one exchange. Amatching that includes themaximumpossible number
of pairs is calledmaximal.

LetT denote the set of all pair types. WepartitionT into four subsets: underdemanded,overde-
8Zenios et al. (2001) report the probability of a patient being tissue-type incompatible with a random donor as 0.11,

while Sönmez et al. (2020) note that this rate has declined over time in the U.S. deceased-donor waitlist. However, recent
studies show thatpatientsmore likely tobe tissue-incompatiblewith randomdonors tend to accumulate in theU.S. kidney
exchange pools (see Agarwal et al., 2019).

9Incompatible transplants are performed in some countries after removing the patient’s antibodies and administer-
ing other immunosuppressive therapies. These procedures carry a higher short-term risk of graft loss in blood-type-
incompatible (but tissue-type-compatible) transplants (Massie et al., 2020). Nonetheless, data suggest their long-term
survival rates are comparable to those of compatible transplants. In contrast, tissue-type-incompatible transplants do not
perform as well (Schinstock et al., 2019). These treatments are also expensive, time-consuming, and offered only at select
hospitals due to their complexity. In the U.S. andmany other countries, incompatible transplantation is either disfavored
relative to kidney exchangeor not practiced at all. In this paper, we followmost of the literature in assuming that all feasible
transplants must be fully compatible.
10Most kidney exchange systems match incompatible pairs only in “circular” exchanges, where each donor gives to the

next patient in the cycle. Because transplants must be done simultaneously to avoid failed future steps, these systems
face logistical limits. In contrast, chains initiated by altruistic donors (a practice used primarily in the U.S.) or deceased
donors (a practice used less frequently) can proceed sequentially and reachmore patients (see Roth et al., 2006, Rees et al.,
2009, Agarwal et al., 2019, Furian et al., 2020). On non-simultaneous exchange proposals, see Ausubel andMorrill (2014),
Akbarpour et al. (2024).
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manded, self-demanded, and reciprocally demanded pair types, denoted by P𝑈 , P𝑂 , P𝑆 , and
P𝑅 , respectively:

P𝑈 = {𝑂 − 𝐴,𝑂 − 𝐵,𝑂 − 𝐴𝐵, 𝐴 − 𝐴𝐵,𝐵 − 𝐴𝐵},
P𝑂 = {𝐴 −𝑂,𝐵 −𝑂, 𝐴𝐵 −𝑂, 𝐴𝐵 − 𝐴, 𝐴𝐵 − 𝐵},

P𝑆 = {𝐴 − 𝐴, 𝐵 − 𝐵,𝑂 −𝑂, 𝐴𝐵 − 𝐴𝐵},
P𝑅 = {𝐴 − 𝐵,𝐵 − 𝐴}.

The naming of these sets reflects the following characteristics:

• Underdemanded pairs require an overdemanded pair to bematched, as the donor’s blood
type is less desirable than the patient’s.

• Overdemanded pairs, conversely, can bematched with their own type or with other types
in various combinations, though somemay be wasteful.

• Self-demanded pairs are naturally matched within their own type, as both the donor and
patient share the same blood type. Matching them with overdemanded pairs is also pos-
sible but may lead to inefficiency.

• Reciprocally demanded pairs (𝐴 −𝐵 and 𝐵 − 𝐴) can be directlymatchedwith each other in
a two-way exchange. Using an overdemanded type to facilitate such a match is typically
wasteful.

The following two assumptions are standard in the literature and are motivated by long-run
pool evolution under asymmetric arrival andmatching rates. These are driven by the structure
of blood-type compatibility, particularly in the limit when tissue-type incompatibility becomes
negligible (see Roth et al., 2007 and Ünver, 2010 for detailed discussion):

Assumption 1. (Limit Assumption)No patient is tissue-type incompatible with the donor of an-
other pair.

Assumption 2. (Long-Run Assumption) Under any dynamic matching mechanism, in the long
run, there is an arbitrarily large number of underdemanded pairs of each type in the pool at any
time.

Wealsomake the following simplifyingassumptionwithminimal lossof generality. When twoor
more self-demandedpairs of the same type𝑋 −𝑋 exist, they canalwaysbematched immediately
in a two-way exchange. Moreover, if only one such pair exists, it can be inserted at no cost into
an exchange of the form (. . . ,𝑉 −𝑊 ,𝑌 − 𝑍 , . . .) between the𝑉 −𝑊 and𝑌 − 𝑍 pairs, where𝑊 can
donate to 𝑋 and 𝑋 can donate to𝑌 . Thus, self-demanded pairs are not needed for control. For
clarity, we assume that such pairs do not arrive (see also Ünver, 2010).

Assumption 3. (No Self-Demanded Pairs) There are no self-demanded pair types available for
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exchange.

We denote the set of overdemanded pairs that can participate in three-way or four-way ex-
changes involving an 𝐴 − 𝐵 pair by𝕆𝐴−𝐵 . When an 𝐴 − 𝐵 pair is not used, themaximum feasible
exchange size decreases by one, resulting in either two-way or three-way exchanges, respec-
tively. For clarity, we use the notation 𝕆𝐴−𝐵 specifically for these overdemanded pairs, which
should not be confused with blood type𝑂 (the latter does not appear in the following sections).
Specifically, we define

𝕆𝐴−𝐵 = {𝐵 −𝑂, 𝐴𝐵 −𝑂, 𝐴𝐵 − 𝐴}.

Similarly, the set of overdemanded pairs associated with 𝐵 − 𝐴 is defined as

𝕆𝐵−𝐴 = {𝐴 −𝑂, 𝐴𝐵 −𝑂, 𝐴𝐵 − 𝐵}.

The reasoning is as follows. As shownbyRothet al. (2007),𝕆𝐴−𝐵 pairs (excluding𝐴𝐵−𝑂) can form
three-way exchanges using an𝐴−𝐵 pair and anunderdemandedpair, such as (𝐴−𝐵,𝐵−𝑂,𝑂−𝐴)
and (𝐴 − 𝐵,𝐵 − 𝐴𝐵, 𝐴𝐵 − 𝐴). Without an 𝐴 − 𝐵 pair, these exchanges reduce to (𝐵 −𝑂,𝑂 − 𝐵) and
(𝐴𝐵 − 𝐴, 𝐴 − 𝐴𝐵), respectively. Symmetrically, the corresponding three-way exchanges for𝕆𝐵−𝐴

can be formed similarly.

The 𝐴𝐵 −𝑂 pair, however, behaves differently. It can generate a four-way exchange when com-
binedwith an𝐴−𝐵 or𝐵−𝐴 pair, suchas (𝐴𝐵−𝑂,𝑂−𝐴, 𝐴−𝐵,𝐵−𝐴𝐵) or (𝐴𝐵−𝑂,𝑂−𝐵,𝐵−𝐴, 𝐴−𝐴𝐵).
Alternatively, it can form a three-way exchange on its own, such as (𝐴𝐵 − 𝑂,𝑂 − 𝐴, 𝐴 − 𝐴𝐵) or
(𝐴𝐵 − 𝑂,𝑂 − 𝐵,𝐵 − 𝐴𝐵), when paired with underdemanded pairs. Thus, the surplus from an
𝐴𝐵 −𝑂 pair is 4 in a four-way exchange and 3 in a three-way exchange.

Sinceblood type𝐴𝐵 is rare inmost countries, controlling𝐴𝐵−𝑂 asa separate state isunnecessary
anddoesnot affect the results. To simplify,weclassify anyarriving𝐴𝐵−𝑂 pair arbitrarily as either
a𝕆𝐴−𝐵 or a𝕆𝐵−𝐴 pair to avoid confusion. Based on this, wemake the following assumption:

Assumption 4. (Rare 𝐴𝐵 assumption) The maximum exchange size including an 𝕆𝐴−𝐵 pair is 3
when also an 𝐴 − 𝐵 pair is used and 2 when it is not. Similarly, the maximum exchange size of
including an𝕆𝐵−𝐴 pair is 3 when also a 𝐵 − 𝐴 pair is used and 2 when it is not.

Trade-offs anddecisions regarding optimal control.When a𝐵 −𝐴 pair exists in the pool and there
is no 𝐴 − 𝐵 pair, suppose a composite-type 𝕆𝐵−𝐴 pair such as of type 𝐴 −𝑂 arrives: should we
match the 𝐴 −𝑂 pair in a two-way exchange (e.g., (𝐴 −𝑂,𝑂 − 𝐴) with an abundant𝑂 − 𝐴 pair)
with an immediate surplus 2, and retain the 𝐵 −𝐴 pair to save a future arriving 𝐴 −𝐵 pair (with a
surplus of 2 in the future) or shouldwe conduct the three-way exchange (𝐵 −𝐴, 𝐴−𝑂,𝑂 −𝐵) now
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with an immediate surplus of 3? Thus, if the waiting value is more than 1 at the current state of
the pool, we will retain the 𝐵 − 𝐴 pair andmatch it otherwise.

The decision can bemuchmore complicated, as the same decision applies to also an𝕆𝐴−𝐵 pair
when it arrives: will we match it immediately in a two-way exchange or wait for a three-way
exchange, holding on to it with a future coming 𝐴 − 𝐵 pair (and an abundant underdemanded
pair).

If the optimal value function is monotonic and concave in the stock of each pair type then a
multi-threshold policywill exist: initially, wewill hold on to𝕆𝐴−𝐵 or𝐵−𝐴 pairswhen their stocks
are small, and eventually, as their stocks grow, the value of waiting will fall below 1, and we will
need to conduct the immediate higher surplus match whenever feasible. The situation may be
even more complex if we have to do the symmetric control for 𝐴 − 𝐵 pairs depending on the
arrival rates of these types.

3 General Model
We next introduce our general dynamic exchange model, which covers kidney exchange as a
special case.
3.1 Dynamicmatching as aMarkov Decision Process

Let T = {1, 2, . . . , 𝑛} be a set of agent types such that an agent of type 𝑖 ≠ 1, 𝑛 can be matched
only with an agent of types 𝑗 = 𝑖 − 1 or 𝑗 = 𝑖 + 1, her immediate neighbors, and an agent of type
𝑖 = 1 or 𝑖 = 𝑛 can be matched by herself or type 𝑗 = 2 or 𝑗 = 𝑛 − 1, respectively. We refer to such
an 𝑖 𝑗 as an exchange such that when 𝑖 = 𝑗 we match an agent of type 𝑖 by herself. We refer to
agents (or types) that can bematched with each other as compatible.

When compatible agents of types 𝑖 and 𝑗 are matched, a surplus of 𝑎𝑖 𝑗 ∈ ℝ++ is realized. When
an agent of type 𝑖 = 1 or 𝑖 = 𝑛 is matched by herself a surplus of 𝑎𝑖 ∈ ℝ is realized.11 In this case,
we sometimes refer to 𝑎𝑖 as 𝑎𝑖 𝑖 when convenient.

For each agent type 𝑖 , we denote the probability that an arriving agent is of type 𝑖 by 𝑝𝑖 , and the
associated probability distribution by 𝑝 = (𝑝𝑖 )𝑖 ∈T .

We assume that agents arrive over time with a stochastic (discrete) Poisson arrival process in
continuous time. Let 𝜆𝑖 denote the arrival rate of agent type 𝑖 ∈ T ; that is the expected number
of agents of type 𝑖 that arrive per unit time. We formulate the dynamic matching under this
arrival structure as aMarkov Decision Process (MDP).

Let 𝜌 denote the continuousdiscount rate. Thus, the surplus generatedby realizing𝐾 exchanges
of types 𝑖1𝑗1, . . . , 𝑖𝐾 𝑗𝐾 at time 𝑡 is∑

𝑘 𝑎𝑖𝑘 𝑗𝑘 . Let𝑀 (𝑡 ) denote the surplus of agentsmatched at time
11If agents of types 𝑖 = 1 or 𝑖 = 𝑛 can indeed be feasibly matched by themselves then 𝑎𝑖 > 0while in some problems this

may not be feasible and in that case we allow 𝑎𝑖 < 0, without loss of generality.
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𝑡 . We assume that the number of exchanges that can be conducted at each time 𝑡 is bounded by
a capacity and hence,𝑀 (𝑡 ) is also uniformly bounded above (see also Footnote 14). The goal of
the central authority is to maximize the expected surplus, denoted by 𝐸𝑆 and defined as

𝐸𝑆 = 𝔼𝑡=0

∑︁
𝑡 ∈ (0,∞)

𝑀 (𝑡 )𝑒 −𝜌𝑡 .

Note that, although the index set 𝑡 ∈ (0,∞) is uncountable, since𝑀 (𝑡 ) almost surely has count-
able support and is bounded, this value is finite.

Definition 1. A dynamic exchange mechanism is dynamically optimal if it maximizes the ex-
pected surplus.

The decision associated with this maximization problem is when to match arriving agents and
which agents to match. If an arriving agent is decided not to be matched, she joins the pool of
waiting agents. If an 𝑖 𝑗 exchange is executed at time 𝑡 , the total surplus increases by 𝑎𝑖 𝑗𝑒 −𝜌𝑡 , and
if 𝑖 ≠ 𝑗 , then these twomatched agents are removed, and if 𝑖 = 𝑗 , then thematched type 𝑖 agent
is removed.

First, we observe that this is indeed a Markovian process: by the memorylessness property of
Poisson arrival, the process starting from any pool with a specified composition is the same re-
gardless of time it takes for theprocess to achieve this pool. Thus, our state space for this process
consists of all possible pools of agents. Therefore, a pool can be denoted by its state, defined as
follows:

Definition 2. The set of states is the set of non-negative valued integer 𝑛-tuples, S = {𝑠 =

(𝑠1, 𝑠2, . . . , 𝑠𝑛) : 𝑠𝑖 ∈ ℕ} = ℕ𝑛 , where for each state 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), the numbers 𝑠𝑖 , denote
the number of agents of type 𝑖 .

We illustrate our definitions so far within the kidney exchange setting:

Example1. In thekidney exchange setting, anagent is apatient-donorpair. Sinceweassume there
are no self-demanded pairs (Assumption 3) and that there are infinitely many underdemanded
pairs (Assumption 2), the only types that are relevant for the process are overdemanded pairs and
reciprocal pairs. Since we focus on exchanges of size at most 3, types of overdemanded pairs also
do not matter for the process, in so far as they can conduct a three-way exchange with a given re-
ciprocal pair. Thus, there are four types thatmatter for our formulation of the process: Reciprocal
pairs (pairs of type 𝐴 − 𝐵 and 𝐵 − 𝐴), and overdemanded pairs that can be part of a three-way
exchange including a reciprocal pair of type 𝐴 −𝐵 and𝐵 −𝐴, namely𝕆𝐴−𝐵 and𝕆𝐵−𝐴 , respectively.
We refer to the following enumeration of pair types: The type space is given as T = {1, 2, 3, 4} and
𝑛 = 4 is the number of pair types, so that for any state 𝑠 = (𝑠1, 𝑠2, 𝑠3, 𝑠4),
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1. 𝑠1 is the number of𝕆𝐴−𝐵 overdemanded pairs,

2. 𝑠2 is the number of 𝐴 − 𝐵 reciprocal pairs,
3. 𝑠3 is the number of 𝐵 − 𝐴 reciprocal pairs, and
4. 𝑠4 is the number of𝕆𝐵−𝐴 overdemanded pairs.

Since, whenever an overdemanded pair is to be matched, an underdemanded pair is always part
of the exchange,12 we formulate exchanges as if 𝕆𝐴−𝐵 pairs match with themselves, or match
with 𝐴 −𝐵 pairs, generating a surplus of 2 and 3, respectively (similarly, for the𝕆𝐵−𝐴 pairs). Thus,
we integrate the existence of underdemanded pairs into the surplus values of exchanges and sup-
press them from the states and actions throughout. Thus, for each state 𝑠 , if 𝑠1, 𝑠2 > 0 (𝑠3, 𝑠4>0), we
canmatch𝕆𝐴−𝐵 and 𝐴 − 𝐵 pairs (𝕆𝐵−𝐴 and 𝐵 − 𝐴 pairs) to generate a surplus of 3, if 𝑠2, 𝑠3 > 0, we
can match 𝐴 − 𝐵 and 𝐵 − 𝐴 pairs to generate a surplus of 2, if 𝑠1 > 0 (𝑠4 > 0), we can match 𝕆𝐴−𝐵

(𝕆𝐵−𝐴) pairs with themselves to generate a surplus of 2. Therefore, the surplus 𝑎𝑖 𝑗 is defined as

𝑎𝑖 𝑗 :=


3 if {𝑖 , 𝑗 } = {1, 2} or {𝑖 , 𝑗 } = {3, 4}

2 if {𝑖 , 𝑗 } = {2, 3} or 𝑖 = 𝑗 = 1 or 𝑖 = 𝑗 = 4
.

Thus, our goal is to maximize the discounted sum of the number of pairs matched.13

The total arrival rate of agents is denoted by 𝜆 :=
∑
𝑖 ∈T 𝜆𝑖 . Note that, 𝑝𝑖 , the probability that an

arriving agent is of type 𝑖 , is equal to 𝜆𝑖
𝜆
. By standard arguments, the expected discounting until

an agent arrives is 𝔼[𝑒 −𝜌𝜏 ] = 𝜆
𝜆+𝜌 , where 𝜏 denotes the random variable of the first arrival. We

also denote this quantity by 𝛿 := 𝜆
𝜆+𝜌 , whenever convenient.

The MDP starting from state 𝑠 works as follows: A discount of 𝛿 is incurred for the time passed
until an agent arrives. When an agent of type 𝑖 arrives, the temporary state becomes 𝑠 +𝑒𝑖 . Then,
the central mechanism decides which subset of available exchanges to conduct, where the sur-
plus of each exchange is as described above. After conducting a (possibly empty) subset of (pos-
sibly empty) available exchanges, the state transitions to 𝑠 ′ ≤ 𝑠 + 𝑒𝑖 , at which the waiting for
another agent starts and the process continues. Here 𝑒𝑖 ∈ {0, 1}𝑛 is the unit vector of agent type
𝑖 with 1 in component 𝑖 and 0 in other components.

For two states 𝑠 , 𝑠 ′ such that 𝑠 ′ ≤ 𝑠 , wewrite 𝑠 → 𝑠 ′ if there is a feasible finite exchange sequence
(𝑖𝑘 𝑗𝑘 ) such thatbeginning from 𝑠 , conductingeachexchange inorderandremoving thematched
agents transitions the state to 𝑠 ′ and the sequence involves at most 𝑞 exchanges of each type.14
12Note that there are infinitely many underdemanded pairs in the pool, and an overdemanded pair is always necessary

tomatch them.
13Themaximizationof thediscountedexpectedsurplus is equivalent to thecostminimizationproblemhere,where there

isunit timecost forwaiting in thepool. Weskip thederivationof this equivalence,which is already shown(seeÜnver, 2010).
14Here, 𝑞 is an arbitrarily large integer quota denoting a finite capacity for each exchange type 𝑖 𝑗 to be conducted per

period. It is only utilized for technical convenience to prevent an unbounded number of exchanges being feasible as the
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Let 𝐸 (𝑠 , 𝑠 ′) be the set of exchange sequences that transitions state from 𝑠 to 𝑠 ′. We define the
matching value of transition from 𝑠 to 𝑠 ′ as

M(𝑠 , 𝑠 ′) := max
(𝑖𝑘 𝑗𝑘 ) ∈𝐸 (𝑠 ,𝑠 ′ )

∑︁
𝑘

𝑎𝑖𝑘 𝑗𝑘 .

We set 𝑠 → 𝑠 andM(𝑠 , 𝑠 ) := 0 for any 𝑠 ∈ S.15

We denote the set of real-valued functions on the state space byV := {𝑓 | 𝑓 : S → ℝ}. Let 𝜈∗(𝑠 )
denote the maximized expected discounted surplus of the process that starts at state 𝑠 . Then,
we have the following recursive equation:

𝜈∗(𝑠 ) = 𝛿
(∑︁

𝑖

𝑝𝑖 max
𝑠 ′ : 𝑠+𝑒𝑖→𝑠 ′

(
M(𝑠 + 𝑒𝑖 , 𝑠 ′) + 𝜈∗(𝑠 ′)

) )
. (1)

This formulation is compact and easy to understand, but, its structure is analytically difficult.
To achieve a more tractable formulation, we next define the event operators with which we can
construct the recursive equation given above.

3.2 Matching and other event operators

Our approach in this work is based on the concept of event-based dynamic programming (dp),
which is introduced byKoole (1998) for queueingmodels andwidely studied in that literature.16

We adopt event-based dp and generalize it to our context.

Thismethodology consists of (i) decomposing thevalue function (Equation (1) above) in smaller
parts, called (event) operators, each of which captures an event in the dynamic exchange, and
(ii) analyzing the desired properties of the value function through these operators such that we
can unravel the structure of the optimal mechanism. Here, we establish Part (i), and we return
to Part (ii) in Section 5.

An (event) operator is amapping𝑇 : V𝑚 → V for any positive integer𝑚. Thus, Equation (1) can
be written as a fixed point relation, 𝑇 ∗𝜈∗ = 𝜈∗, where the optimality operator 𝑇 ∗ : V → V is
state goes to infinity.
15Wedemonstrate transitionswithin thekidneyexchange setting via anexample: The transitionof (1, 1, 0, 0) → (0, 0, 0, 0)

is obtained by matching 𝕆𝐴−𝐵 and 𝐴 − 𝐵 pairs, and (1, 1, 1, 1) → (1, 0, 0, 1) is obtained by matching 𝐴 − 𝐵 and 𝐵 − 𝐴 pairs.
Similarly, (3, 2, 1, 0) → (0, 0, 0, 0) is obtained by four exchanges: first, matching an 𝐴 − 𝐵 with a 𝐵 − 𝐴 pair, second, an 𝐴 − 𝐵
with an𝕆𝐴−𝐵 and third and fourth, two𝕆𝐴−𝐵 ’s with themselves. We denote the situation where state 𝑠 ′ cannot be reached
from state 𝑠 through exchangeswith available pairs, by 𝑠 ̸→ 𝑠 ′. For example, (1, 1, 1, 0) ̸→ (1, 0, 1, 0) since 𝐴−𝐵 pairs cannot
match with themselves.
For any 𝑠 → 𝑠 ′, regardless of which exchange sequence is chosen to realize the transition, we have

M(𝑠 , 𝑠 ′) = 2(𝑠1 + 𝑠4 − 𝑠 ′1 − 𝑠
′
4) + (𝑠2 + 𝑠3 − 𝑠 ′2 − 𝑠

′
3).

16This approach completely differs from the one used in Ünver (2010) and our analysis is substantially different from
Koole’s as ourmatching operators do not have an antecedent in his work.
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defined for any 𝑓 ∈ V and 𝑠 ∈ S by

(𝑇 ∗ 𝑓 ) (𝑠 ) := 𝛿
(∑︁

𝑖

𝑝𝑖 max
𝑠 ′ : 𝑠+𝑒𝑖→𝑠 ′

(
M(𝑠 + 𝑒𝑖 , 𝑠 ′) + 𝑓 (𝑠 ′)

) )
. (2)

Moreover, thisoperator canbewrittenasacompositionof smalleroperators, reflectingevents in
dynamic exchange. We start with the characteristic operators of the current context, thematch-
ing operators.

Definition 3.Matching operators are defined as follows:

• Forany twocompatible types 𝑖 and 𝑗 with 𝑖 ≠ 𝑗 thematchingoperatorof 𝒊 − 𝒋𝑇𝑖 𝑗 : V → V
is defined for any 𝑓 ∈ V and 𝑠 ∈ S by

(𝑇𝑖 𝑗 𝑓 ) (𝑠 ) :=
{
max{𝑓 (𝑠 ), 𝑓 (𝑠 − 𝑒𝑖 − 𝑒 𝑗 ) + 𝑎𝑖 𝑗 } if 𝑠 − 𝑒𝑖 − 𝑒 𝑗 ≥ 0

𝑓 (𝑠 ) otherwise,

• For any type 𝑖 ∈ {1, 𝑛}, thematching operator of 𝒊 𝑇𝑖 : V → V is defined for any 𝑓 ∈ V
and 𝑠 ∈ S by

(𝑇𝑖 𝑓 ) (𝑠 ) :=
{
max{𝑓 (𝑠 ), 𝑓 (𝑠 − 𝑒𝑖 ) + 𝑎𝑖 } if 𝑠 − 𝑒𝑖 ≥ 0

𝑓 (𝑠 ) otherwise. .

We call ±(𝑒𝑖 + 𝑒 𝑗 ) and ±𝑒𝑖 as thematching vectors of the operators𝑇𝑖 𝑗 and𝑇𝑖 , respectively.

We also consider a generic version ofmatching operators:

• For each𝑤 ∈ ℤ𝑛
+ ∪ ℤ𝑛

− \ {0}, and a surplus 𝑎𝑤 ∈ ℝ+, the generalized (matching) operator
of 𝒘 𝑇𝑤 : V → V is defined for any 𝑓 : S → ℝ and 𝑠 ∈ S by

(𝑇𝑤 𝑓 ) (𝑠 ) :=
{
max{𝑓 (𝑠 ), 𝑓 (𝑠 − |𝑤 |) + 𝑎𝑤 } if 𝑠 − |𝑤 | ≥ 0

𝑓 (𝑠 ) otherwise .

Note that for𝑤 = ±(𝑒𝑖 + 𝑒 𝑗 ), 𝑇𝑖 𝑗 = 𝑇𝑤 & 𝑎𝑤 = 𝑎𝑖 𝑗 , and for𝑤 = ±𝑒𝑖 , 𝑇𝑖 = 𝑇𝑤 & 𝑎𝑤 = 𝑎𝑖 . For other
𝑤 , this operator is more abstract. The generalized operator is utilized in Section 5.1 tomotivate
ourmethodology andprove our results in Section 5.2, where itwill also be clearwhywe consider
both positive and negative values for𝑤 and not fix its sign as a definition.

We next define other operators relevant to the dynamic aspects of the problem:

Definition 4.We define

• the discount operator 𝑇𝛿 : V → V as follows: for any 𝑓 ∈ V and 𝑠 ∈ S, (𝑇𝛿 𝑓 ) (𝑠 ) := 𝛿 𝑓 (𝑠 ),
• for each agent type 𝑖 , the arrival operator of 𝒊 𝑇arr,𝑖 : V → V as follows: for any 𝑓 ∈ V and
𝑠 ∈ S, (𝑇arr,𝑖 𝑓 ) (𝑠 ) := 𝑓 (𝑠 + 𝑒𝑖 ), and

• theuniformization operator 𝑇𝑝 : V𝑚 → V as follows: for any 𝑓1, 𝑓2, . . . , 𝑓𝑚 ∈ V and 𝑠 ∈ S,
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(
𝑇𝑝 ( 𝑓1, 𝑓2, . . . , 𝑓𝑚)

)
(𝑠 ) := ∑

𝑖 𝑝𝑖 𝑓𝑖 (𝑠 ).
Typically,𝑚 ≤ 𝑛, the number of agent types, 𝑝 ∈ ℝ𝑚 , and𝑇𝑝 is an implicit function of𝑚.

We denote the composition of the operators𝑇 and𝑇 ′ by𝑇 ◦𝑇 ′. Also, for the 𝑘 consecutive com-
position of an operator𝑇 , we use the notation𝑇 𝑘 .

Observation 1.Matching operators 𝑇𝑤 commute under composition, so that for any pair of
matching vectors𝑤,𝑤 ′,𝑇𝑤 ◦𝑇𝑤 ′ = 𝑇𝑤 ′ ◦𝑇𝑤 .

This follows simply by observing that both expressions evaluated by any 𝑓 ∈ V at any 𝑠 ∈ S are
equal tomax{𝑓 (𝑠 ), 𝑓 (𝑠 − |𝑤 |) + 𝑎𝑤 , 𝑓 (𝑠 − |𝑤 ′ |) + 𝑎𝑤 ′ , 𝑓 (𝑠 − |𝑤 | − |𝑤 ′ |) + 𝑎𝑤 + 𝑎𝑤 ′}, where the terms
of the form 𝑓 (𝑠 − |𝑤 |) or 𝑓 (𝑠 − |𝑤 ′ |) disappear if 𝑠 − |𝑤 | ≱ 0 or 𝑠 − |𝑤 ′ | ≱ 0, respectively.

This observation allows us to conclude the following:

Lemma 1. For any state 𝑠 ∈ S and 𝑓 ∈ V,

(𝑇 𝑞
1 ◦𝑇 𝑞

12 ◦ . . . ◦𝑇
𝑞

(𝑛−1)𝑛 ◦𝑇 𝑞
𝑛 𝑓 ) (𝑠 ) = max

𝑠 ′ : 𝑠→𝑠 ′

(
M(𝑠 , 𝑠 ′) + 𝑓 (𝑠 ′)

)
.

Proof of Lemma 1. The left-handsideconsistsof amax{·} expressionwith termsof the form 𝑓 (𝑠+
𝑑) +𝑎𝑑 where𝑑 iterates over all possible sums ofmatching vectors (namely, the vectors−𝑒1,−𝑒1−
𝑒2, . . . ,−𝑒𝑛−1 − 𝑒𝑛 ,−𝑒𝑛) with each vector used at most 𝑞 times, and 𝑎𝑑 is the sum of values 𝑎𝑤 for
eachmatching vector 𝑤 used. Letting 𝑠 +𝑑 = 𝑠 ′, and observing 𝑎𝑑 = M(𝑠 , 𝑠 +𝑑) for some 𝑎𝑑 (i.e.,
for the sequence of exchanges achieving the maximum surplus), we see that the left-hand side
iterates over all 𝑠 ′ such that 𝑠 → 𝑠 ′. But this is the domain of themax{·} in the right-hand side.
So we have the equality. □

We define the compositematching operator as

𝑇𝑀 := 𝑇1 ◦𝑇12 ◦ . . . ◦𝑇(𝑛−1)𝑛 ◦𝑇𝑛 .

Finally, we obtain the following:

Observation 2. The optimal value function 𝜈∗ (Equation (1) in Section 3.1) is equivalent to for
any 𝑠 ∈ S,

𝜈∗(𝑠 ) =
(
𝑇𝛿 ◦𝑇𝑝

(
𝑇
𝑞

𝑀
◦𝑇arr,1𝜈∗,𝑇

𝑞

𝑀
◦𝑇arr,2𝜈∗, . . . ,𝑇

𝑞

𝑀
◦𝑇arr,𝑛𝜈∗

))
(𝑠 ). (3)

Thus, the optimality operator 𝑇 ∗ (Equation (2)) is a composition of matching operators, arrival
operators, discount operator, and uniformization operator.

We return to event-based dp andmatching operators in Section 5 to analyze the desired proper-
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ties of the value function to solve the optimal control problem. But first, we argue that concavity
and certain second-order properties of𝜈∗ are crucial for this solution.

4 Monotonicity of Optimal Control

Thestructureof theoptimalmechanism is, it turnsout, closely related to the second-orderprop-
erties of the value function 𝜈∗. To see this, consider the simpler case of our model and focus on
thematching operator of the form (𝑇𝑖 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒𝑖 ) + 1}. Then, the optimal mech-
anism chooses the first action if and only if 𝑓 (𝑥) − 𝑓 (𝑥 − 𝑒𝑖 ) > 1. Now, the intuition is simply the
following: The left-hand side of this inequality is themarginal value of an agent of type 𝑖 , that is,
the opportunity cost of matching, and the right-hand side is the benefit of matching the agent
of type 𝑖 . Now, if there are diminishing returns to pooling type 𝑖 (concavity, see Definition 5),
then the left-hand side becomes lower as the pool gets larger. Then, there is a critical level, the
threshold, such that optimality implies pooling the agent below the level andmatching above it.
Thus, the optimal mechanism is a thresholdmechanism (see Koole, 1998 for this argument).

As we analyze later, the structure of the optimal mechanism for the current problem is also de-
termined by the second-order properties of the value function (see Section 6). Here, we focus
on these second-order properties and their economic intuitions.

Definition 5. A function 𝑓 : ℕ𝑛 → ℝ satisfies concavity in component 𝒊 if for each 𝑥 ∈ ℕ𝑛 ,

𝑓 (𝑥) + 𝑓 (𝑥 + 2𝑒𝑖 ) ≤ 2𝑓 (𝑥 + 𝑒𝑖 ). (4)

A function is componentwise concave if it is concave in each component 𝑖 ∈ {1, 2, . . . , 𝑛}.

For each agent type 𝑖 , Condition (4) is equivalent to

𝑓 (𝑥 + 2𝑒𝑖 ) − 𝑓 (𝑥 + 𝑒𝑖 ) ≤ 𝑓 (𝑥 + 𝑒𝑖 ) − 𝑓 (𝑥),

which implies diminishing marginal return on 𝑖 . As we explained above, this connects compo-
nentwise concavity to a thresholdmechanism being optimal.

As we argue later in detail, in addition to concavity, substitutability and complementarity prop-
erties of agent types are essential in unraveling the structure of the optimal control (see Sec-
tion 6), and also for the consistency of our theoretical framework (see Section 5). The intuition
is clear: For example, in kidneyexchange, certain types are complements (e.g.𝑋 −𝑌 and𝑌 −𝑋 pair
types) and certain others are substitutes (e.g. 𝑋 − 𝑌 and 𝕆𝑌 −𝑋 type pairs), and these properties
clearly affect which pairs to keep and which others tomatch at a given state of theMDP.
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Definition 6. A function 𝑓 : ℕ𝑛 → ℝ is 𝒊𝒋-submodular if for each 𝑥 ∈ ℕ𝑛 ,

𝑓 (𝑥) + 𝑓 (𝑥 + 𝑒𝑖 + 𝑒 𝑗 ) ≤ 𝑓 (𝑥 + 𝑒𝑖 ) + 𝑓 (𝑥 + 𝑒 𝑗 ).

A function 𝑓 : ℕ𝑛 → ℝ is 𝒊𝒋-supermodular if for each 𝑥 ∈ ℕ𝑛 ,

𝑓 (𝑥 + 𝑒𝑖 ) + 𝑓 (𝑥 + 𝑒 𝑗 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑒𝑖 + 𝑒 𝑗 ).

The connection of these two properties to substitutability and complementarity is clear: The
condition for 𝑖 𝑗 -submodularity is equivalent to

𝑓 (𝑥 + 𝑒𝑖 + 𝑒 𝑗 ) − 𝑓 (𝑥 + 𝑒 𝑗 ) ≤ 𝑓 (𝑥 + 𝑒𝑖 ) − 𝑓 (𝑥),

which states that marginal value of an additional agent of type 𝑖 decreases with each additional
agent of type 𝑗 . Thus, 𝑖 𝑗 -submodularity states that 𝑖 and 𝑗 agent types are substitutes. Simi-
larly, 𝑖 𝑗 -supermodularity states that 𝑖 and 𝑗 agent types are complements.

Definition 7. A function 𝑓 : ℕ𝑛 → ℝ is 𝒊𝒋-superconcave if for each 𝑥 ∈ ℕ𝑛 ,

𝑓 (𝑥 + 𝑒𝑖 ) + 𝑓 (𝑥 + 𝑒𝑖 + 𝑒 𝑗 ) ≥ 𝑓 (𝑥 + 𝑒 𝑗 ) + 𝑓 (𝑥 + 2𝑒𝑖 ).

A function is superconcave if for each 𝑖 , 𝑗 , it is 𝑖 𝑗 -superconcave.

Superconcavity states that themarginal value of 𝑖 is lower whenwe have an additional 𝑖 instead
of an additional 𝑗 . Economically, this states that no other type is a closer substitute to 𝑖 than 𝑖
itself.

5 How to Solve the Optimal Control Problem

We have explained so far that the second-order properties of the value function are crucial in
understanding the structure of the optimal policy. In particular, we argued that concavity of the
value function implies monotonicity of the optimal control, i.e., existence of a threshold-type
dynamic mechanism. We now present our methodology for proving the second-order proper-
ties of the value function. Wefirst state the existence of the optimal value functionwhich follows
directly from the fundamental theorem ofMDPs:17

Theorem 1. The function𝜈∗ : S → ℝ defined by the fixed point relation

𝜈∗(𝑠 ) = 𝛿
(∑︁

𝑖

𝑝𝑖 max
𝑠 ′ : 𝑠+𝑒𝑖→𝑠 ′

(
M(𝑠 + 𝑒𝑖 , 𝑠 ′) + 𝜈∗(𝑠 ′)

) ) (5)

17See Chapter 6 in Puterman (1994), for this result and the related discussion.
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exists and is unique. Moreover, for any 𝜈0 : S → ℝ, the sequence (𝜈𝑘 ) defined by the relation 𝜈𝑘 =

𝑇 ∗𝜈𝑘−1 converges uniformly to𝜈∗, where the operator𝑇 ∗ is defined by the relation

(𝑇 ∗𝜈) (𝑠 ) := 𝛿
(∑︁

𝑖

𝑝𝑖 max
𝑠 ′ : 𝑠+𝑒𝑖→𝑠 ′

(
M(𝑠 + 𝑒𝑖 , 𝑠 ′) + 𝜈 (𝑠 ′)

) )
. (6)

The second part is particularly important for the methodology of event-based dp. Notice that,
the choice of𝜈0 in the sequence (𝜈𝑘 ) is arbitrary, thus, we can start the sequencewith a function
𝜈0 satisfying a given property, as long as the property is not logically inconsistent with itself.18

This observation allows us to focus on the operator𝑇 ∗ itself. Wefirst define the followingnotion:

Definition 8.We say an operator𝑇 : V → V propagates a property𝑃 , if for each function𝜈 ∈ V
satisfying 𝑃 ,𝑇𝜈 ∈ V also satisfies 𝑃 .

We observe the following: if a property 𝑃 is propagated by the operator 𝑇 ∗, and 𝑃 is preserved
under uniform convergence,19 then, by the second part of Theorem 1, the fixed point of the op-
erator𝑇 ∗ also satisfies 𝑃 . Thus, our proof strategy is to show that the operator𝑇 ∗ propagates the
desired second-order properties of the value function.

The difficulty with this approach is that, as it could be that properties 𝑃 and 𝑃 ′ are not, sepa-
rately and alone, propagated by some operator𝑇 , their intersection 𝑃 ∩ 𝑃 ′ is propagated by𝑇 .
Indeed, it is often the case that, desired properties are too weak to be propagated by𝑇 , and we
look for additional properties so that the intersection of these properties are propagated by the
operator as a stronger property. We next observe (in Section 5.1) that the current model of dy-
namic exchange suffers from this difficulty: The second-order properties defined in Section 4
are not propagated separately. Furthermore, if we consider all these properties together (in-
stead of considering whether they are propagated one-by-one), they are not propagated either.
Thismotivates the definition ofmultimodularity, which, it turns out, is just strong enough to be
propagated by the operator𝑇 ∗.

5.1 Motivation formultimodularity in exchange context

First, we utilize the generalized matching operator defined in Definition 3. Additionally, we for-
mulate a generic version for the second-order properties given in Section 4.

Definition 9. Let 𝑢,𝑣 ∈ ℤ𝑛 . A function 𝑓 : ℕ𝑛 → ℝ satisfies property 𝑷 (𝒖,𝒗) if for each 𝑥 ∈ ℕ𝑛 ,
18In particular, since all of the properties we define haveweak inequalities, the constant zero function𝜈0 (𝑠 ) := 0 satisfies

every property we present in this paper.
19The definition of uniform convergence is standard: for any sequence (𝑥𝑘 ) that satisfy the property and converges uni-

formly to 𝑥 , the limit 𝑥 also satisfies the property.
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such that 𝑥 + 𝑢, 𝑥 + 𝑣, 𝑥 + 𝑢 + 𝑣 ∈ ℕ𝑛 , we have

𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 ). (7)

Note that 𝑃 (𝑢,𝑣 ) states that the vectors 𝑢 and 𝑣 are complements (that is, there is supermodu-
larity between 𝑢 and 𝑣). Also, note that 𝑃 (𝑢,𝑣 ) is defined such that 𝑢 and 𝑣 are not restricted
to be positive vectors and this provides a general formulation for the properties defined in Sec-
tion 4: For example, taking 𝑢 = 𝑒𝑖 and 𝑣 = −𝑒𝑖 , 𝑃 (𝑢,𝑣 ) is equivalent to componentwise concavity
in component 𝑖 , or taking𝑢 = 𝑒𝑖 and 𝑣 = −𝑒 𝑗 , it is equivalent to 𝑖 𝑗 -submodularity.

Now, the problemof characterizing the set of second-order properties such that they are propa-
gated together (as explained above) can now be defined as exploring the set of these properties
in the formof𝑃 (𝑢,𝑣 ). As it will be clear in Section 5.4, the crux of the propagation problem is the
propagation by thematching operator (defined inDefinition 3 in Section 3.2). Thus, a necessary
condition for the solution to this problemof characterizing the set of properties is the condition
on how 𝑃 (𝑢,𝑣 ) is propagated by 𝑇𝑤 . Now, by definition of the matching operator 𝑇𝑤 , showing
that 𝑃 (𝑢,𝑣 ) is propagated by𝑇𝑤 requires to show the following for any 𝑥 ∈ ℕ𝑛 :

max{𝑓 (𝑥 + 𝑢), 𝑓 (𝑥 + 𝑢 +𝑤 ) + 𝑎𝑤 } +

max{𝑓 (𝑥 + 𝑣 ), 𝑓 (𝑥 + 𝑣 +𝑤 ) + 𝑎𝑤 }

≤ max{𝑓 (𝑥), 𝑓 (𝑥 +𝑤 ) + 𝑎𝑤
}
+

max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 }.

Here we introduce two definitions that will be helpful throughout the paper. The left-hand side
of the inequality equals to one of the four expressions: (i) 𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 ), (ii) 𝑓 (𝑥 + 𝑢 +𝑤 ) +
𝑎𝑤 + 𝑓 (𝑥 + 𝑣 +𝑤 ) + 𝑎𝑤 , (iii) 𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 +𝑤 ) + 𝑎𝑤 , and (iv) 𝑓 (𝑥 + 𝑢 +𝑤 ) + 𝑎𝑤 + 𝑓 (𝑥 + 𝑣 ). We
call the first two cases the symmetric cases, as these cases occur when bothmax{·} expressions
are equal to their first (respectively second) argument. We call the next twopossible expressions
as the first case of asymmetry and the second case of asymmetry respectively. In the first case of
asymmetry the firstmax{·} expression equals to its first argument and second expression equals
to its second argument, and in the second case of asymmetry it is vice versa.

Now, we can further observe that, in order to show the inequality, we can arbitrarily replace
max{·} expressions on the right-hand side of the inequality by one of their arguments. To see
this, note that showing that 𝑥 < 𝑎 or 𝑥 < 𝑏 suffices for showing 𝑥 < max{𝑎, 𝑏}. Thus, depending
on the cases on the left-hand side, we can pick the arguments on the right-hand side arbitrarily.

Using this observation, our inequality follows easily in the symmetric cases: We can pick the
arguments on the right-hand side so that theymatch the symmetry on the left-hand side. Then,
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the inequalitywill eitherbecome 𝑓 (𝑥+𝑢)+ 𝑓 (𝑥+𝑣 ) ≤ 𝑓 (𝑥)+ 𝑓 (𝑥+𝑢+𝑣 ) or 𝑓 (𝑥+𝑢+𝑤 )+ 𝑓 (𝑥+𝑣+𝑤 ) ≤
𝑓 (𝑥 +𝑤 ) + 𝑓 (𝑥 +𝑢 +𝑣 +𝑤 ), both of which follows from the fact that 𝑓 satisfies𝑃 (𝑢,𝑣 ). Thus, what
remains to show is the asymmetric cases.

Now suppose the left-hand side of the equation has first case of asymmetry, so that it is equal
to 𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 + 𝑤 ) + 𝑎𝑤 . Then, it would suffice to show that this expression is less than
𝑓 (𝑥) + 𝑓 (𝑥 +𝑢 +𝑣 +𝑤 ) +𝑎𝑤 , since the right-hand side of the inequality is greater than this. This is
equivalent to showing 𝑃 (𝑢,𝑣 +𝑤 ). The same can be observed in the second case of asymmetry
as well. Thus, a sufficient condition for the propagation of a set of properties is the following: if
a set of properties in the formof𝑃 (𝑢,𝑣 ) is propagated, then𝑃 (𝑢,𝑣 +𝑤 ) should also be in this set.
We refer to the set of properties satisfying this condition as closed.

We illustrate the concept of closedness in propagation in a two-dimensional setting. Suppose
𝑓 : ℤ2 → ℝ is a concave function in each of the two components. Also, 𝑇1 and 𝑇2 are two
operators, defined by the equations (𝑇1 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒1) + 𝑎1} and (𝑇2 𝑓 ) (𝑥) =

max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒2) + 𝑎2}, respectively. We show that, in this setting, even though concavity
does not propagate alone, it propagates together with superconcavity. Thus the set of properties
{concavity, superconcavity} is closed with respect to the set of operators {𝑇1,𝑇2} (for the proof,
see the Online Appendix).

Unfortunately, these results do not generalize to multiple dimensions, for the simple reason
that, when we have 𝑖 𝑗 -superconcavity, and we have an operator 𝑇𝑘 defined similar to 𝑇1 above
for some 𝑘 ≠ 𝑖 , 𝑗 , the necessary second-order property we obtain does not follow from super-
concavity.20 For this reason, the set of properties we have defined so far are also not closed.

Tomake this point precise in the kidney exchange domain, we note that, to show that concavity
in component 𝑖 = 2 is propagated by the operator 𝑇−𝑒1 (which is thematching operator decid-
ing whether an overdemanded pair should be matched in a two-way exchange), we also need
to show that the function is 𝑖 𝑗 -superconcave in components 𝑖 = 2 and 𝑗 = 1, thus, we need to
show𝑃 (𝑒2, 𝑒1−𝑒2). But, to show that superconcavity is propagatedby thematching operator𝑇−𝑒4 ,
the required property is of the form 𝑃 (𝑒2 − 𝑒4, 𝑒1 − 𝑒2), which is not implied by our existing prop-
erties. Moreover, to show submodularity and supermodularity properties, we need additional
properties of the form 𝑃 (𝑢,𝑣 ), which are not implied by the set of our properties defined so far.
Thus, this set of four second-order properties {concavity, superconcavity, submodularity, super-
modularity} is not closed: they cannot be propagated by thematching operator.

The puzzle becomes the following: what is the set of restrictions on 𝑢 and 𝑣 such that the set
of properties of the form 𝑃 (𝑢,𝑣 ) is closed, that is, when is it the case that whenever we have a
20Ease of two dimensions here comes from the fact that, when we have an operator for a component 𝑘 and a property

for some components 𝑖 , 𝑗 , 𝑘 must coincide with one of 𝑖 or 𝑗 , whichmakes the proofs trivial.

21



matching operator 𝑇𝑤 , 𝑃 (𝑢,𝑣 +𝑤 ) is also contained in this set? It turns out that the concept of
D-multimodularity, introduced by Hajek (1985) (see also Altman et al., 2003), helps us develop
amethodology to solve the closedness puzzle and captures this general form.

5.2 D-Multimodularity

We have seen that all of the second-order properties we are interested in is of the form 𝑃 (𝑢,𝑣 ),
and their difference lies in the domain from which vectors 𝑢 and 𝑣 are chosen. The approach
ofD−multimodularity is based on the idea of constructing a set of vectorsD, such that for any
two vectors𝑢,𝑣 ∈ D, our set of properties includes 𝑃 (𝑢,𝑣 ).

By choosing both vectors𝑢,𝑣 arbitrarily from the samedomain, the obtained set of properties is
strong enough to satisfy closedness property we discussed in Section 5.1 (see Lemma 2 below).

Definition 10. A set of integer-valued vectorsD ⊆ ℤ𝑛 is called amultimodular basis ofℤ𝑛 if

i. ∑
𝑣∈D 𝑣 = 0, and

ii. span(D) = ℤ𝑛 .21

We are now ready to defineD-multimodularity.

Definition 11. (Hajek, 1985) A function 𝑓 : ℕ𝑛 → ℝ is D-multimodular if for each 𝑥 ∈ ℕ𝑛 ,
𝑢,𝑣 ∈ D, such that 𝑥 + 𝑢, 𝑥 + 𝑣, 𝑥 + 𝑢 + 𝑣 ∈ ℕ𝑛 , we have

𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 ).22 (8)

Note thatD-multimodularity is equivalent to property 𝑃 (𝑢,𝑣 ) being satisfied for each𝑢,𝑣 ∈ D.
The usefulness of this definition lies in the following result:

Lemma 2. A function 𝑓 : ℕ𝑛 → ℝ is D-multimodular if and only if for any two disjoint subsets
𝑈 ,𝑉 ⊂ D we have

𝑓 (𝑥 + ∑
𝑢∈𝑈 𝑢) + 𝑓 (𝑥 + ∑

𝑣∈𝑉 𝑣 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + ∑
𝑢∈𝑈 𝑢 + ∑

𝑣∈𝑉 𝑣 ).

See Appendix A for the proof of this result.

By Lemma 2, instead of taking two distinct vectors 𝑢,𝑣 ∈ D and stating that they are comple-
ments, we can alternatively state that any two sums of distinct vectors in disjoint subsets of D
are complements. The proof of the statement is intuitive: If 𝑢 and 𝑣 are complements, and 𝑢
21Note that in our context span(D) = {𝑧 ∈ ℤ𝑛 : 𝑧 =

∑
𝑣∈D 𝛼𝑣𝑣 ∃ (𝛼𝑣 )𝑣∈D ∈ ℤ |D | }.

22InHajek (1985), aswell as inother prominentworks onmultimodularity, this inequality is of reversed form. The reason
we define it differently here is that we focus on a reward-maximization problem, as opposed to a cost-minimization prob-
lem that is frequent in this literature. Thus, we search for concavity-related properties, as opposed to convexity-related
properties.
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and𝑤 are complements, then𝑢 and 𝑣 +𝑤 should also be complements, since themarginal value
of 𝑢 is increasing in both 𝑣 and𝑤 . Thus, we can prove the statement by induction on the size
of the sets𝑈 ,𝑉 . If the statement holds for sets of size at most 𝑘 , by applying the definition of
D-multimodularity again we can see that the statement holds for sets of size 𝑘 + 1 as well.

Lemma2explains the reasonwhy theconceptofD-multimodularity solves the closedness prob-
lemdiscussed in Section 5.1. Notice that as a special case of Lemma 2, we can take three vectors
𝑢,𝑣,𝑤 ∈ D, and conclude that aD-multimodular function 𝑓 also satisfies property 𝑃 (𝑢,𝑣 +𝑤 ).
Thus, the closedness property defined in Section 5.1 is satisfied for eachmatching operator 𝑇𝑤
such that𝑤 ∈ D. Thus, as long as thematching operators are of the form 𝑇𝑤 for some𝑤 ∈ D,
sufficient propagation results are obtained. Although there are someminor nuances, this is es-
sentially themain idea behind the proof of the core result (Proposition 2)we utilize for ourmain
theorem (Theorem 3).

Anothermotivation revealed by Lemma 2 is the reason behind property (i) in Definition 10. No-
tice that, since∑

𝑢∈D 𝑢 = 0, we have that for𝑢 ∈ D, the sumof elements excluding𝑢 is −𝑢 . Thus,
𝑢 and −𝑢 are always sums of distinct vectors in disjoint subsets ofD, and by Lemma 2, property
𝑃 (𝑢,−𝑢) is satisfied. For example, when 𝑢 = ±𝑒𝑖 , 𝑃 (𝑢,−𝑢) is componentwise concave in 𝑖 . This
is also true for all vectors 𝑢 that can be written as sums of distinct vectors in disjoint subsets of
D. This observation will become useful in later sections when we discuss the implications of
D-multimodularity.

5.3 Multimodular basis of matching

We construct amultimodular basis, capturing both the decisions in dynamic exchange and the
necessary second-order properties.

Definition 12. Themultimodular basisD𝑀 = {𝑒1,−𝑒2−𝑒1, 𝑒3+𝑒2, . . . , (−1)𝑛−1(𝑒𝑛 +𝑒𝑛−1), (−1)𝑛𝑒𝑛}
ofℤ𝑛 is called thematching basis.

It is straightforward to check thematching basis is indeed amultimodular basis. Also, this basis
containsmatching vectors relevant for the exchange context: Ourmatching operators are of the
form (𝑇𝑤 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥−|𝑤 |)+𝑎𝑤 } (seeDefinition3),where𝑤 ∈ {∓𝑒1,∓(𝑒2+𝑒1), . . . ,∓(𝑒𝑛+
𝑒𝑛−1),∓𝑒𝑛}. We separate these operators into two groups: We write (𝑇 +

𝑤 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 +
𝑤 ) + 𝑎𝑤 } for𝑤 ∈ D𝑀 ∩ ℤ𝑛

− and (𝑇 −
𝑤 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 −𝑤 ) + 𝑎𝑤 } for𝑤 ∈ D𝑀 ∩ ℤ𝑛

+ . Thus, all
of our operators are of the form𝑇 ±

𝑤 for some𝑤 ∈ D𝑀 , where the sign of𝑇 ± depends on whether
𝑤 < 0 or 𝑤 > 0. Matching vectors being members of thematching basis will be crucial in our
main theorem below.

InFigure 1,wepresent thematching vectors andmatchingbasis reflecting complementarity and
substitutability relations in the context of kidney exchange: There are two sides of the market,
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Sides A and B, for 𝐴 and 𝐵 type patients, respectively. Each side contains a reciprocal pair and
an overdemanded pair such that each reciprocal pair can bematched with pairs from the other
side, with the cross-type pair via a two-way exchange and with the overdemanded pair via a
three-way exchange (including an underdemanded pair). This representation provides a clear
viewof complementarity and substitutability structure: pairs on the same side of themarket are
substitutes of each other, and each reciprocal pair is a complementwith the cross-type pair and
alsowith the overdemandedpair from the other side. This figure also depicts the insight for how
thematching basis is constructed.

Complements

A−B

Side B

B −A

Complements

(‘B’ referring to B patients)

Side A

(‘A’ referring to A patients)

Complements

Substitutes

OA−B

OB−A

Substitutes

1 2

3 4

e1 + e2

e2 + e3

e3 + e4

surplus: 2

surplus: 3

(includes also an
underdemanded pair)

surplus: 3

(includes also an
underdemanded pair)

e1

e4

surplus: 2

surplus: 2

(includes also an

(includes also an

underdemanded pair)

underdemanded pair)

i : state variable index (see Definition 2)

Matching basis: DM = {e1,−e2 − e1, e3 + e2,−e4 − e3, e4}
so that for each u ∈ DM , u or− u is a matching vector.

Figure 1: Matching vectors andmultimodular basis in kidney exchange

5.4 Main result

As we have previously explained in Section 3.2, optimality operator 𝑇 ∗ itself can be written as
a composition of matching operators and other operators capturing discounting, arrival and
linear combination (see Observation 2 in Section 3.2 for this argument).

First, we state the following result on propagation:

Proposition1. Let 𝑓 , 𝑓1, 𝑓2, . . . , 𝑓𝑚 beD𝑀 -multimodular functions fromℕ𝑛 toℝwith𝑚 ≤ 𝑛. Then,
𝑇𝛿 𝑓 , for any agent type 𝑖 ,𝑇arr,𝑖 𝑓 , and𝑇𝑝 ( 𝑓1, 𝑓2, . . . , 𝑓𝑚) are alsoD𝑀 -multimodular.

Proof of Proposition 1. D𝑀 -multimodularity of the discount operator anduniformization oper-
ators follows frommultiplying each inequalitywith the discount factor (respectively theweights
𝑝𝑖 ) and summing the resulting inequalities in the latter case.D𝑀 -multimodularity of the arrival
operator follows from letting 𝑠 ′ = 𝑠 + 𝑒𝑖 . □

24



Since by Proposition 1, arrival, uniformization and discount operators propagate D𝑀 -
multimodularity, to prove that𝜈∗ satisfiesD𝑀 -multimodularity, byObservation 2 (Section 3.2),
it is sufficient to prove that eachmatching operator propagates D𝑀 -multimodularity.

The result below states thatD𝑀 -multimodularity is propagated by generalized matching oper-
ator 𝑇𝑤 for each𝑤 ∈ D𝑀 defined in Definition 3:

Proposition 2. Let 𝑓 : ℕ𝑛 → ℝ be a D𝑀 -multimodular function. Then, for each 𝑤 ∈ D𝑀 , the
function𝑇𝑤 𝑓 is alsoD𝑀 -multimodular.

We only present the proof for 𝑤 < 0 here. The proof for the case 𝑤 > 0 as well as the rigor-
ous treatment of the boundary conditions (i.e., if one or more of the vectors that go into 𝑓 (·) as
argument are not non-negative) are in Appendix B.

Proof of Proposition 2 for𝑤 < 0. Let 𝑢,𝑣 ∈ D𝑀 . Fix 𝑥 ∈ ℕ𝑛 . Since 𝑤 < 0, (𝑇𝑤 𝑓 ) (𝑥) =

max{𝑓 (𝑥), 𝑓 (𝑥 + 𝑤 ) + 𝑎𝑤 }. In what follows, assume that all arguments of 𝑓 are non-negative,
and thus, 𝑓 (·) is well-defined. First, we assume𝑤 ≠ 𝑢,𝑣 . We need to show the following:

max{𝑓 (𝑥 + 𝑢), 𝑓 (𝑥 + 𝑢 +𝑤 ) + 𝑎𝑤 } +

max{𝑓 (𝑥 + 𝑣 ), 𝑓 (𝑥 + 𝑣 +𝑤 ) + 𝑎𝑤 }

≤ max{𝑓 (𝑥), 𝑓 (𝑥 +𝑤 ) + 𝑎𝑤 } +

max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 }.

If the maximizing actions are the same on the left-hand side,23 the statement follows immedi-
ately from D𝑀 -multimodularity of 𝑓 . Suppose they are different. Then, the left-hand side is
equal to either 𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 + 𝑤 ) + 𝑎𝑤 or to 𝑓 (𝑥 + 𝑣 ) + 𝑓 (𝑥 + 𝑢 + 𝑤 ) + 𝑎𝑤 . Since 𝑢,𝑣,𝑤 are
distinct and 𝑓 is D𝑀 -multimodular, by Lemma 2, both of these expressions are smaller than
𝑓 (𝑥) + 𝑓 (𝑥 +𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 , which is weakly smaller than the right-hand side of the inequality.24

Now, suppose𝑢 = 𝑤 and 𝑎 = 𝑎𝑤 = 𝑎𝑢 . Then, we need to show

max{𝑓 (𝑥 + 𝑢), 𝑓 (𝑥 + 𝑢 + 𝑢) + 𝑎} +

max{𝑓 (𝑥 + 𝑣 ), 𝑓 (𝑥 + 𝑣 + 𝑢) + 𝑎}

≤ max{𝑓 (𝑥), 𝑓 (𝑥 + 𝑢) + 𝑎} +

max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑢 + 𝑣 + 𝑢) + 𝑎}.
23Bymaximizing action wemean which of its arguments equals to the value ofmax{·}.
24max{𝑓 (𝑥), 𝑓 (𝑥 +𝑤 ) + 𝑎𝑤 } +max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 } ≥ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 .
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Symmetric actions again follow easily. ByD𝑀 -multimodularity, we have

𝑓 (𝑥) + 𝑓 (𝑥 + 2𝑢) ≤ 2𝑓 (𝑥 + 𝑢) (concavity), and
𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 ).

Summing these inequalities, and rearranging it, we obtain

𝑓 (𝑥 + 𝑣 ) − 𝑓 (𝑥 + 𝑢 + 𝑣 ) ≤ 𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥 + 2𝑢).

Thus, if 𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥 + 2𝑢) ≤ 𝑎 , then we have 𝑓 (𝑥 + 𝑣 ) − 𝑓 (𝑥 + 𝑢 + 𝑣 ) < 𝑎 as well. Thus, if
max{𝑓 (𝑥 +𝑢), 𝑓 (𝑥 +𝑢 +𝑢) +𝑎} = 𝑓 (𝑥 +2𝑢) +𝑎 , thenmax{𝑓 (𝑥 +𝑣 ), 𝑓 (𝑥 +𝑣 +𝑢) +𝑎} = 𝑓 (𝑥 +𝑢 +𝑣 ) +𝑎 .
Thus, theonly casewehave to check for different actions is the casewith the left-hand sidebeing
equal to 𝑓 (𝑥 +𝑢) + 𝑓 (𝑥 +𝑢 + 𝑣 ) + 𝑎 . But, choosing the second and first arguments in themax{·}’s
respectively, this expression is less than the right-hand side. The case for𝑣 = 𝑤 is symmetric. □

The next result is the core result for the rest of the paper.

Theorem 2. The optimal value function𝜈∗ isD𝑀 -multimodular.

Proof of Theorem 2. The result follows immediately from Observation 2 in Section 3.2, and
Propositions 1 and 2 above. □

Using this result, we prove the crucial second-order properties of the value function of the dy-
namically optimal mechanism.

Theorem3. Theoptimal value function𝜈∗ is componentwise concave, superconcave, and for each
pair of types 𝑖 , 𝑗 where 𝑗 and 𝑖 are both even or both odd, i.e., have the same parity, 𝑖 𝑗 -submodular
and for each pair of types 𝑖 , 𝑗 where 𝑖 and 𝑗 have different parities, 𝑖 𝑗 -supermodular.

See Appendix C for the proof of this result.

Theorem 3 states that the optimal value function is concave in each component. Thus, the
marginal optimal value of stocking an additional agent of any given type is a monotonically
decreasing function of the stock of that type. Moreover, the optimal value function is super-
modular for types that can be utilized in exchange together, and thus these types are indeed
complements. In the kidney exchange setting, complementary pair types are 𝕆𝐴−𝐵 & 𝐴 − 𝐵 ,
𝐴 −𝐵 & 𝐵 − 𝐴, 𝐵 − 𝐴 &𝕆𝐵−𝐴 , and𝕆𝐴−𝐵 &𝕆𝐵−𝐴 . Additionally, it is submodular for types that can
be utilized instead of each other in an exchange, and thus these types are substitutes. The sub-
stitute types are𝕆𝐴−𝐵 &𝐵−𝐴 and𝐴−𝐵 &𝕆𝐵−𝐴 . The optimal value function is also superconcave,
which implies that two agents of the same type are better substitutes than two agents, one of a
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different type and one from the same type.

6 The Structure of the Optimal Mechanism

We have argued that themonotonicity properties of the value function are crucial for the struc-
ture of theoptimalmechanismandexplained the intuitionbehind it (see Section 4). In addition,
we have shown that the value function satisfies a certain set of these properties (Theorem 3).
Next, we characterize the optimal mechanism. We first define the following.

Definition 13. For a value function𝜈∗, a state 𝑠 ∈ S is reachable if for each 𝑠 ′with 𝑠 → 𝑠 ′wehave

𝜈∗(𝑠 ) > M(𝑠 , 𝑠 ′) + 𝜈∗(𝑠 ′).

Wedenote the set of reachable states byR ⊆ S. We call a state unreachable if it is not reachable.

A reachable state is such that there is no sequence of exchanges (including only -some of- the
existing pairs) which increases the surplus. An unreachable state 𝑠 , on the other hand, implies
the existence of another state 𝑠 ′ with 𝑠 → 𝑠 ′ such that transitioning from 𝑠 to 𝑠 ′ (by means of a
sequence of exchanges) is not only feasible but also increases surplus. The motivation is sim-
ple: since unreachable states imply transitionswith additional surplus, the optimalmechanism
never reaches these states.

When the state is 𝑠 , and the incoming pair is of type 𝑖 , the state first transitions to 𝑠 + 𝑒𝑖 , before
the relevant decision is made. Then, the optimal mechanism maximizes∑

𝑘 #𝑘𝑎𝑤𝑘
+ 𝜈 (𝑠 + 𝑒𝑖 −∑

𝑘 #𝑘 |𝑤𝑘 |) subject to 𝑥 +𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | ≥ 0, where#𝑘 denotes the number of exchanges of type

𝑤𝑘 used. Defining𝑤𝑘 = ±𝑒𝑘 for any 𝑘 ∈ {1, 𝑛 + 1} and𝑤𝑘 = ±(𝑒𝑘−1 + 𝑒𝑘 ) for any 𝑘 ∈ {2, . . . , 𝑛}, we
have

D𝑀 = {|𝑤1 |,−|𝑤2 |, |𝑤3 |, ..., (−1)𝑛 |𝑤𝑛+1 |}. (9)

Note that for each agent type 𝑖 odd, 𝑒𝑖 is the sumof first 𝑖 elements in this set, and for each agent
type 𝑖 even, 𝑒𝑖 is the sum of last 𝑛 + 1 − 𝑖 elements in this set.

Nowwe define a special set of matching vector indices corresponding to each agent type 𝑖 :

Definition 14. For each agent type (or state component index) 𝑖 ∈ 𝜏 = {1, . . . , 𝑛}, define an index
set of matching vectors inD𝑀 , 𝑲𝒊 ⊂ {1, . . . , 𝑛 + 1}, as

𝐾𝑖 := {𝑖 , 𝑖 − 2, 𝑖 − 4, . . .} ∪ {𝑖 + 1, 𝑖 + 3, 𝑖 + 5, . . .}.

27



Observe that for 𝑖 odd, we have the following two equalities:

{𝑤𝑘 : 𝑘 ∈ 𝐾𝑖 } = {|𝑤1 |, |𝑤3 |, . . . , |𝑤𝑖 |} ∪ {−|𝑤𝑖+1 |,−|𝑤𝑖+3 |, . . .} and

D𝑀 = {|𝑤1 |,−|𝑤2 |, |𝑤3 |, . . . , |𝑤𝑖 |,︸                            ︷︷                            ︸
the sum is 𝑒𝑖

the sum is −𝑒𝑖︷                           ︸︸                           ︷
−|𝑤𝑖+1 |, . . . , (−1)𝑛 |𝑤𝑛+1 |} (10)

where (10) follows as explained in Section 5.3.

Moreover, for 𝑖 even, we have

{𝑤𝑘 : 𝑘 ∈ 𝐾𝑖 } = {−|𝑤2 |,−|𝑤4 |, . . . ,−|𝑤𝑖 |} ∪ {|𝑤𝑖+1 |, |𝑤𝑖+3 |, . . .} and

D𝑀 = {|𝑤1 |,−|𝑤2 |, |𝑤3 |, . . . ,−|𝑤𝑖 |,︸                              ︷︷                              ︸
the sum is −𝑒𝑖

the sum is 𝑒𝑖︷                         ︸︸                         ︷
|𝑤𝑖+1 |, . . . , (−1)𝑛 |𝑤𝑛+1 |}. (11)

We refer to the first 𝑖 vectors in (10) if 𝑖 is odd, and the last 𝑛 − 𝑖 + 1 vectors in (11) if 𝑖 is even,
as the set of matching vectors summing up to 𝑒𝑖 . This structure enables us to express the sets of
indices 𝐾𝑖 in amore compact way.

Observation3. For each 𝑖 , the set𝐾𝑖 is characterizedby the set of all indices ℓ forwhich ℓ is oddand
𝑤ℓ is included in the set of matching vectors summing up to 𝑒𝑖 , or ℓ is even and𝑤ℓ is not included
in the set of matching vectors summing up to 𝑒𝑖 .

We use the set 𝐾𝑖 and its complement 𝐾 𝑐
𝑖
:= {1, . . . , 𝑛 + 1} \ 𝐾𝑖 to classify how themarginal value

of each exchange of type 𝑘 changes when an agent of type 𝑖 arrives (i.e., Δ |𝑤𝑘 |𝜈
∗(𝑠 + 𝑒𝑖 ) := 𝜈∗(𝑠 +

𝑒𝑖 ) − 𝜈∗(𝑠 + 𝑒𝑖 − |𝑤𝑘 |) provided that 𝑠 + 𝑒𝑖 − |𝑤𝑘 | ≥ 0). First note that, by Lemma 2, if |𝑤𝑘 | and 𝑒𝑖
are sums of distinct vectors in disjoint subsets ofD𝑀 ,𝑃 (𝑒𝑖 , |𝑤𝑘 |) holds. Then, by definition of𝐾𝑖 ,
for 𝜈∗, for each 𝑘 ∈ 𝐾𝑖 , 𝑃 (𝑒𝑖 ,−|𝑤𝑘 |) holds and, for each index 𝑘 ∈ 𝐾 𝑐

𝑖
, 𝑃 (𝑒𝑖 , |𝑤𝑘 |) holds. Now, by

definition of Property𝑃 , for𝜈∗, themarginal value decreases whenever𝑃 (𝑒𝑖 ,−|𝑤𝑘 |) holds, and it
increases whenever 𝑃 (𝑒𝑖 , |𝑤𝑘 |) holds. Thus, when an agent of type 𝑖 arrives, for each type 𝑘 ∈ 𝐾𝑖 ,
themarginal value of |𝑤𝑘 | decreases, and for each type 𝐾 𝑐

𝑖
, themarginal value of |𝑤𝑘 | increases.

Our structural theorems and their proofs use this important conclusion of Lemma 2. Thus, we
have the following observation:

Observation 4. For each agent type 𝑖 andmatching vector index 𝑘 ∈ 𝐾𝑖 , 𝑃 (𝑒𝑖 ,−|𝑤𝑘 |) holds for 𝜈∗,
thus, the the marginal value of |𝑤𝑘 | decreases; moreover, for each index ℓ ∈ 𝐾 𝑐

𝑖
, 𝑃 (𝑒𝑖 , |𝑤ℓ |) holds

for𝜈∗, thus, the marginal value of |𝑤𝑘 | increases.

We now state our next theorem regarding the structure of exchanges used in the optimalmech-
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anism:

Theorem 4.When the state is reachable and the incoming agent is of type 𝑖 , the optimal mecha-
nism conducts only exchanges of type𝑤𝑘 for 𝑘 ∈ 𝐾𝑖 . Moreover, it conducts each such exchange at
most once, so that all decisions can be identified with a set of indices 𝐴 (𝑠 , 𝑖 ) ⊆ 𝐾𝑖 for each reach-
able state 𝑠 and agent type 𝑖 such that when the state is 𝑠 and the incoming agent is of type 𝑖 ,
optimal mechanism transitions to 𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | in exchange for an immediate reward of∑

𝑘 ∈𝐴 (𝑠 ,𝑖 ) 𝑎𝑤𝑘
.

See Appendix D for the proof of this theorem.

By Theorem 4, themaximum number of exchanges of each type that can be conducted in a pe-
riod, quota 𝑞 , in the problem definition is never binding, since regardless of how high the quota
is, starting from any reachable state, at the optimalmechanism, each exchange vector is used at
most once.

Theorem4 shows that the only exchanges that can be conductedwhen a type 𝑖 agent arrives at a
reachable state 𝑠 are captured by indices in a subset 𝐴 (𝑠 , 𝑖 ) of 𝐾𝑖 . This is because, when an agent
of type 𝑖 arrives,𝐾𝑖 is the set ofmatching vector indiceswhosemarginal value decreases, and𝐾 𝑐

𝑖

is the set of indices whosemarginal value increases.

We next show that after a type 𝑖 agent arrives, there is a particular structure in how conducted
exchanges change at two consecutively reachable states that only differ in whether there is an
additional type 𝑗 agent or not.

Theorem5. Let 𝑠 be a reachable state such that 𝑠 +𝑒 𝑗 is also reachable for some agent type 𝑗 . Then,
we have for any agent type 𝑖 ,

𝐴 (𝑠 , 𝑖 ) ∩ 𝐾 𝑗 ⊆ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) ⊆ 𝐴 (𝑠 , 𝑖 ) ∪ 𝐾 𝑗 .

See Appendix D for the proof of this theorem.

Theorem 5 states that the decision of the optimal mechanism after an type 𝑖 agent arrives, i.e.,
the sets 𝐴 (𝑠 , 𝑖 ) and 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) (recall that they are both subsets of 𝐾𝑖 ), can only potentially add
vectors from 𝐾 𝑗 and remove vectors from 𝐾 𝑐

𝑗
when this arrival occurs at state 𝑠 versus 𝑠 + 𝑒 𝑗 , re-

spectively. This is because the sets𝐾 𝑗 and𝐾 𝑐
𝑗
characterize the indices ofmatching vectorswhose

marginal values respectively decrease and increasewhen an additional type 𝑗 agent exists in the
pool. Thus, in the latter state, the optimalmechanism can only additionally conduct exchanges
whosemarginal value decreases and only stop conducting exchanges whosemarginal value in-
creases.

Moreover, we establish that marginal value changes are monotonic.
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Theorem 6. Let 𝑠 be a reachable state such that 𝑠 + 𝑒 𝑗 is not reachable for some agent type 𝑗 . Then,
𝑠 + 𝑘𝑒 𝑗 is not reachable for any positive integer 𝑘 .

Proof of Theorem 6. Suppose 𝑠 is reachable and 𝑠+𝑒 𝑗 is not. Then,𝐴 (𝑠 , 𝑗 ) ≠ ∅. Let ℓ ∈ 𝐴 (𝑠 , 𝑗 ) ⊆ 𝐾 𝑗 .
Then, the property 𝑃 (−|𝑤ℓ |, 𝑒 𝑗 ) holds for 𝜈∗ by Observation 4. Thus, we also have the property
𝑃 (−|𝑤ℓ |, (𝑘 − 1)𝑒 𝑗 ) hold for 𝜈∗ by the claim in the proof of Lemma 2. Thus, setting 𝑠 ′ = 𝑠 + 𝑒 𝑗 ,
𝑢 = −|𝑤ℓ |, 𝑣 = (𝑘 − 1)𝑒 𝑗 in the definition of property 𝑃 we obtain,

𝜈∗(𝑠 + 𝑘𝑒 𝑗 ) + 𝜈∗(𝑠 + 𝑒 𝑗 − |𝑤ℓ |) ≤ 𝜈∗(𝑠 + 𝑒 𝑗 ) + 𝜈∗(𝑠 + 𝑘𝑒 𝑗 − |𝑤ℓ |).

Thus, by rearranging the terms, Δ |𝑤ℓ |𝜈
∗(𝑠 + 𝑘𝑒 𝑗 ) ≤ Δ |𝑤ℓ |𝜈

∗(𝑠 + 𝑒 𝑗 ) ≤ 𝑎 |𝑤ℓ | . Since 𝑠 + 𝑘𝑒 𝑗 − |𝑤ℓ | ≥
𝑠 +𝑒 𝑗 − |𝑤ℓ | ≥ 0, it is feasible for the optimalmechanism to transition to state 𝑠 +𝑒 𝑗 − |𝑤ℓ |. Hence,
optimalmechanismwould (at least) conduct the exchangeof vector |𝑤ℓ | at state 𝑠 +𝑘𝑒 𝑗 , implying
that 𝑠 + 𝑘𝑒 𝑗 is not reachable. □

In the following section,weutilize these insights toderive theoptimalmechanism for the kidney
exchange application, i.e., when 𝑛 = 4. In this case, depending on the arrival probabilities of
agent types, we can obtainmore structured thresholdmechanisms.

7 The Structure of the Optimal Kidney ExchangeMechanism

Recall that kidney exchange is a special case of the general problemwith 4 state variables. When
the state is 𝑠 = (𝑠1, 𝑠2, 𝑠3, 𝑠4), 𝑠1 refers to the number of type 𝕆𝐴−𝐵 pairs, 𝑠2 is the number of type
𝐴 − 𝐵 pairs, 𝑠3 is the number of type 𝐵 − 𝐴 pairs, and 𝑠4 is the number of type𝕆𝐵−𝐴 pairs. In this
case,

1. 𝐾1 = {1, 2, 4}, i.e., for𝕆𝐴−𝐵 type pairs, marginal value decreasing exchanges are a two-way
exchange of an 𝕆𝐴−𝐵 pair with an underdemanded pair (represented by𝑤1), a three-way
exchange of an 𝕆𝐴−𝐵 with an 𝐴 − 𝐵 and an underdemanded pair (𝑤2), and a three-way
exchange of an𝕆𝐵−𝐴 pair with a 𝐵 − 𝐴 and an underdemanded pair (𝑤4).

2. 𝐾2 = {2, 3, 5}, i.e., for 𝐴−𝐵 type pairs,marginal value decreasing exchanges are a three-way
exchange of an𝕆𝐴−𝐵 with an 𝐴 −𝐵 and an underdemanded pair (𝑤2), a two-way exchange
of an 𝐴 − 𝐵 and a 𝐵 − 𝐴 pair (𝑤3), and a two-way exchange of an𝕆𝐵−𝐴 pair with an under-
demanded pair (𝑤5).

3. 𝐾3 = {1, 3, 4}, i.e. for𝐵 −𝐴 type pairs, marginal value decreasing exchanges are a three-way
exchange of an 𝕆𝐵−𝐴 with a 𝐵 − 𝐴 and an underdemanded pair (𝑤1), a two-way exchange
of an 𝐴 − 𝐵 and a 𝐵 − 𝐴 pair (𝑤3), and a two-way exchange of an𝕆𝐴−𝐵 pair with an under-
demanded pair (𝑤4).

30



4. 𝐾4 = {2, 4, 5}, i.e., for𝕆𝐵−𝐴 typepairs,marginal value decreasing exchanges are a three-way
exchange of an 𝕆𝐴−𝐵 with an 𝐴 − 𝐵 and underdemanded pair (𝑤2), a three-way exchange
of an𝕆𝐵−𝐴 pair with a 𝐵 − 𝐴 and an underdemanded pair (𝑤4), and a two-way exchange of
an𝕆𝐵−𝐴 pair with an underdemanded pair (𝑤5).

We begin analyzing kidney exchange with a simple observation regarding reachable states:

Observation 5. For each 𝑠 ,

i. 𝑠2 > 0 and 𝑠3 > 0 imply 𝑠 ∉ R,
ii. 𝑠1 = 𝑠3 = 𝑠4 = 0 or 𝑠1 = 𝑠2 = 𝑠4 = 0 implies 𝑠 ∈ R.

The first observation follows from the fact that, pair types excluding 𝐴 − 𝐵 and 𝐵 − 𝐴 pairs are
overdemanded, and thus can be matched in arbitrary times. Thus, matching existing 𝐴 − 𝐵

and 𝐵 − 𝐴 pairs earlier implies no cost, but a benefit of earlier match. The second part follows
from the fact that these are the states without overdemanded pairs andwith atmost one type of
reciprocal pair, and they are always reachable since they do not admit any feasible exchange.

Given the state space is S = {𝑠 = (𝑠1, 𝑠2, 𝑠3, 𝑠4) : 𝑠𝑖 ∈ ℕ} = ℕ4, the set R lies, in general, in the four-
dimensional Euclidian space.25 We consider a special case of the problem where it is optimal
not to keep any pair of a certain overdemanded type in the pool. Aswe see next, this special case
corresponds essentially to an analysis in the usual two-dimensional space and is very useful in
understanding the structure of the optimalmechanism and the intuition behind it. The general
case is a mere extension of this structure and intuition.26

7.1 Unbalanced dynamic exchange

Wecall the special case of thedynamic kidney exchangeproblem,where it is optimal not to keep
any pair of a certain overdemanded type in the pool, as unbalanced. The set of conditions for a
problem being unbalanced depends on the problem parameters and we cannot provide these
exact analytical conditions. But, numerically, a problem isunbalanced if the difference between
the arrival rates of the reciprocal pairs is above a certain threshold.27 We suppose, without loss
of generality, that 𝐴 − 𝐵 types arrivemore frequently than 𝐵 − 𝐴 pairs by a sufficiently highmar-
gin. This is the case we consider in this section (and the other case is essentially the same and
symmetric to this case). The intuition for this problem being unbalanced is the following: It is
25Note that, Observation 5 implies a set of restrictions on the reachable states, but not on the set of dimensions.
26For the purposes of brevity, we defer the analysis of this general case to the Online Appendix on balanced dynamic

exchange.
27It is important to note here that it could be that the conditions for unbalancedness are very weak. In fact, using the

reported simulation values in Ünver (2010), the problem turns out to be unbalanced for all values 𝑝𝐴−𝐵 , 𝑝𝐵−𝐴 such that
𝑝𝐴−𝐵 ≠ 𝑝𝐵−𝐴 . Thus, evenminor deviations from equal probabilities can imply unbalanced problem. Such different prob-
abilities that trigger the unbalanced case were also recorded in the field by Terasaki et al. (1998) in their exchange-pool
sample as 𝑝𝐴−𝐵/𝑝𝐵−𝐴 = 5/3.
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unlikely that, there will be many 𝐵 − 𝐴 pairs waiting in the pool for incoming 𝐴 − 𝐵 pairs. Thus,
keeping an𝕆𝐵−𝐴 pair in the pool has low value, and it is optimal not to keep this pair in the pool.
Similarly, since 𝐴 −𝐵 type arrivemore frequently and thus, there will bemore 𝐴 −𝐵 pair arrivals
to the pool expectedly, it is optimal to match these pairs with 𝕆𝐴−𝐵 pairs, which is implied by
their marginal value being smaller than one.

Definition 15. A problem (T , (𝜆𝑖 )𝑖 ∈T , 𝜌) with the value function 𝜈∗ is called unbalanced, if for
each 𝑠 ∈ R,

• there are no𝕆𝐵−𝐴 pairs available in the pool at any reachable state,
• whenever 𝑠 − 𝑒2 ≥ 0,𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒2) < 1.28

Suppose there are 𝐴 − 𝐵 pairs in the pool. This is the trivial case since there is no decision to
make: An incoming𝕆𝐴−𝐵 pairs is matched with an existing 𝐴 − 𝐵 pair, an incoming𝕆𝐵−𝐴 pair is
matchedwith an underdemanded pair, an incoming𝐵 −𝐴 pair ismatchedwith an existing 𝐴−𝐵
pair, and an incoming 𝐴 − 𝐵 pair is pooled (since there are no exchanges available for them).
Thus, we focus on the nontrivial case of reachable states: when there are no 𝐴 − 𝐵 pairs in the
pool, whichmeans, byObservation 5 (i), andDefinition 15, that, at any reachable state, there are
(potentially) 𝐵 − 𝐴 and𝕆𝐴−𝐵 pairs in the pool.

7.1.1 Multi-dimensional thresholdmechanism

Wehave shown that the set of reachable states is such that either there areonly𝐴−𝐵 pairs, or𝐵−𝐴
and 𝕆𝐴−𝐵 pairs. Thus, for an unbalanced problem, we have R ⊆ {𝑠 : 𝑠2 = 𝑠4 = 0} ∪ {𝑠 : 𝑠1 = 𝑠3 =

𝑠4 = 0}. This facilitates theuseof two-dimensional space such thatwe canvisualize the structure
of the optimal mechanism. Since 𝐴 − 𝐵 and 𝐵 − 𝐴 pairs are never present together in the pool
at any time, we can label the 𝑥-axis as 𝑠2 − 𝑠3 such that whenever it is positive, there are 𝐴 − 𝐵

pairs (and no 𝐵 − 𝐴 pairs) in the pool, and otherwise, there are 𝐵 − 𝐴 pairs (and no 𝐴 − 𝐵 pairs).
Moreover, since, by definition of an unbalanced problem, there are no 𝕆𝐵−𝐴 pairs in the pool,
we refer the 𝑦 -axis as 𝑠1, the number of 𝕆𝐴−𝐵 pairs in the pool. In Figure 2, we depict the set of
all potentially reachable states. As we argued above, the case 𝑠2 > 0 is trivial and in this section,
we focus on the case 𝑠2 = 𝑠4 = 0, thus, the left-hand-side (LHS) quadrant in Figure 2.

Now, we analyze the optimal mechanism for the unbalanced problem. It turns out that the op-
timal mechanism is a generalized version of the simple threshold mechanism, where, for each
arriving pair, a threshold function determines whether to keep the pair in the pool or to match
it with an existing pair. These thresholds are utilized in the mechanism described in Table 1,
which we refer to as themulti-dimensional threshold mechanism. There are three threshold
functions: 𝑡 1,3 is utilizedwhen the arriving pair is type 1 (𝕆𝐴−𝐵 ) or 3 (𝐵−𝐴), 𝑡 2 is utilizedwhen the
28This means that that is, themarginal value of 𝐴 − 𝐵 pairs is always less than one.
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s2 − s3

s1

A−BB −A

OA−B

R ∩ {s : s1 = s3 = s4 = 0}R ∩ {s : s2 = s4 = 0}

Figure 2: Depiction of the potentially reachable states

arriving pair is type 2 (𝐴 − 𝐵), and 𝑡 4 is utilized when the arriving pair is type 4 (𝕆𝐵−𝐴). All three
functions determine thresholds relating the number of 𝕆𝐴−𝐵 and 𝐵 − 𝐴 pairs with each other.
While 𝑡 1,3 determines a threshold number of𝕆𝐴−𝐵 pairs as a function of 𝑠3 (the number of 𝐵 − 𝐴
pairs), 𝑡 2 and 𝑡 3 determine a threshold number of 𝐵 − 𝐴 pairs as a function of 𝑠1 (the number of
𝕆𝐵−𝐴 pairs). The decision of which exchange to conduct at a state 𝑠 after a new pair arrives de-
pends onwhether the respective numbers 𝑠1 and 𝑠3 exceed the threshold. The left-hand column
of Table 1 corresponds to the non-trivial case 𝑠2 = 𝑠4 = 0 (also to the LHS of Figure 2), where
we explain how these thresholds are utilized. The right-hand column corresponds to the trivial
case 𝑠1 = 𝑠3 = 𝑠4 = 0 (also to the RHS of Figure 2), and the optimal decision is trivial or there is no
decision tomake.

The broad idea here is to prove the existence and the properties of these threshold functions by
exploiting D𝑀 -multimodularity (Theorem 2) and the resulting second-order properties (The-
orem 3) of the value function 𝜈∗. Our next result characterizes a multi-dimensional threshold
mechanism and states its optimality.

Theorem 7. Let (T , (𝜆𝑖 )𝑖 ∈T , 𝜌) be an unbalanced kidney exchange problem with the value func-
tion 𝜈∗. Then, there exist three threshold functions 𝑡 1,3, 𝑡 2, and 𝑡 4 such that the induced multi-
dimensional thresholdmechanism is optimal. Moreover, these threshold functions satisfy the fol-
lowing properties:

i. 𝑡 1,3 : ℕ → ℕ is a non-increasing function of the number of type 3 (𝐵 − 𝐴) pairs such that
i.1. for a state 𝑠 with 𝑠1 ≥ 1,𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒1) ≤ 2 if and only if 𝑠1 > 𝑡 1,3(𝑠3),
i.2. for each 𝑘 ∈ ℕ, 𝑡 1,3(𝑘 + 1) ≥ 𝑡 1,3(𝑘 ) − 1.

ii. 𝑡 2 : ℕ → ℕ is a non-decreasing function of the number of type 1 (𝕆𝐴−𝐵 ) pairs such that

ii.1. for a state 𝑠 with 𝑠3 ≥ 1 and 𝑠1 ≥ 1,𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) ≤ 1 if and only if 𝑠3 < 𝑡 2(𝑠1),
iii. 𝑡 4 : ℕ → ℕ is a non-increasing function of the number of type 1 (𝕆𝐴−𝐵 ) pairs such that

iii.1. for a state 𝑠 with 𝑠3 ≥ 1,𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3) ≤ 1 if and only if 𝑠3 > 𝑡 4(𝑠1),
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MULTI-DIMENSIONAL THRESHOLDMECHANISM

Case 1: Arriving pair is type𝕆𝐴−𝐵 (type 1)

𝑠2 = 0:
1.1 𝑠1 + 1 ≤ 𝑡 1,3 (𝑠3): Keep in the pool.
1.2 𝑠1 + 1 > 𝑡 1,3 (𝑠3): Match with an underdemanded pair.

𝑠2 > 0:
• Match with an existing 𝐴 − 𝐵 pair
and an underdemanded pair.

Case 2: Arriving pair is type 𝐴 − 𝐵 (type 2)

𝑠1 > 0 or 𝑠3 > 0:
2.1 𝑠1 = 0: Match with an existing 𝐵 − 𝐴 pair.
2.2 𝑠3 = 0: Match with an existing𝕆𝐴−𝐵 pair and an

underdemanded pair.
2.3 𝑠1 > 0 and 𝑠3 > 0:

2.3.1 𝑠3 ≤ 𝑡 2 (𝑠1): Match with an existing𝕆𝐴−𝐵 pair and
underdemanded pair.

2.3.2 𝑠3 > 𝑡 2 (𝑠1): Match with an existing 𝐵 − 𝐴 pair.

𝑠1 = 𝑠3 = 0:
• Keep in the pool.

Case 3: Arriving pair is type 𝐵 − 𝐴 (type 3)

𝑠2 = 0:
3.1 𝑠1 ≤ 𝑡 1,3 (𝑠3 + 1): Keep in the pool.
3.2 𝑠1 > 𝑡 1,3 (𝑠3 + 1): Keep the 𝐵 − 𝐴 pair in the pool, match

an existing𝕆𝐴−𝐵 pair with an underdemanded pair.

𝑠2 > 0:
• Match with an existing 𝐴 − 𝐵 pair.

Case 4: Arriving pair is type𝕆𝐵−𝐴 (type 4)

𝑠3 > 0:
4.1 𝑠3 ≤ 𝑡 4 (𝑠1): Match with an underdemanded pair.
4.2 𝑠3 > 𝑡 4 (𝑠1): Match with an existing 𝐵 − 𝐴 pair and an

underdemanded pair.

𝑠3 = 0:
• Match with an underdemanded pair.

Table 1: The description of themulti-thresholdmechanismwith threshold functions 𝑡 1,3, 𝑡 2, 𝑡 4.

iii.2. for each 𝑘 ∈ ℕ, 𝑡 4(𝑘 + 1) ≥ 𝑡 4(𝑘 ) − 1.

See Appendix E for its proof.

The existence of the threshold function 𝑡 1,3 and the properties (i.1.), (i.2.) characterizes the op-
timal decision on the arriving pairs of types𝕆𝐴−𝐵 and 𝐵 − 𝐴.

Property (i.1.) states that themarginal value of keeping a pair of type𝕆𝐴−𝐵 in the pool is greater
than 2 whenever the number of 𝕆𝐴−𝐵 pairs in the pool is less than a certain threshold that de-
pends on the number of available 𝐵 − 𝐴 pairs, and it is less than 2 after this threshold. The
intuition simply follows from the componentwise concavity of𝜈∗ (see Theorem 3).

We next explain the intuition for non-increasingness of the threshold function, 𝑡 1,3: First, note
that, 𝐵 − 𝐴 pairs and 𝕆𝐴−𝐵 pairs are substitutes since both can be used for matching future ex-
cess 𝐴 − 𝐵 pairs in the pool (this is by 𝑖 𝑗 -submodularity for 𝑖 = 1 and 𝑗 = 3 of the value function,
which follows fromD𝑀 -multimodularity (Theorem2). Thus, as the number of𝐵 −𝐴 pairs in the
pool increases, themarginal value of keeping an arriving pair of type𝕆𝐴−𝐵 in the pool decreases,
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and thus, incentives to pool these pairs weaken.

Property (i.2.) states that this threshold is not only non-increasing but also does not decrease
faster than the rate of a linear function with slope one. The intuition is superconcavity: Even
though 𝐵 − 𝐴 pairs are substitutes for 𝕆𝐴−𝐵 pairs, they are not as close of a substitute as 𝕆𝐴−𝐵

pairs themselves. Thus, whenwe have an additional𝕆𝐴−𝐵 pair but one less 𝐵 − 𝐴 pair, the effect
of the additional𝕆𝐴−𝐵 pair dominates, andmarginal value of𝕆𝐴−𝐵 pairs decreases. Thus, when
we have an additional 𝐵 − 𝐴 pair, the number of𝕆𝐴−𝐵 pairs to be removed from the pool (for an
immediate exchange surplus of 2) can not exceed 1.

These results regarding the threshold functions 𝑡 2 and 𝑡 4 and their interpretation are analytically
symmetric (and the intuition is similar) to properties (i.1.) and (i.2.). We skip the explanation of
the intuition for brevity purposes.

We next depict the dynamically optimalmechanism on a graph. The set of reachable states R is
defined by the function 𝑡 1,3, since it determines whether the existing 𝕆𝐴−𝐵 pair has a marginal
value greater than 2. The other two functions 𝑡 4 and 𝑡 2 define two new regions that correspond
to two different decisions. We next explain that these three regions interact in a way that allows
us to obtain a simple illustration of the optimal mechanism.

To see this, we use the following observation.

Observation 6. For a state 𝑠 with 𝑠1, 𝑠3 > 0, if 𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒1) < 2 and 𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3) > 1

then 𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) < 1; if 𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒1) > 2 and 𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3) < 1 then
𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) > 1.

First, we depict the regions induced by threshold functions in Figure 3.

s2 − s3

s1

A−BB −A

OA−B

ν∗(s)− ν∗(s− e3) ≥ 1

ν∗(s)− ν∗(s− e1) ≥ 2

Figure 3: Regions induced by 𝑡 1,3 and 𝑡 4

Now, byObservation 6, in the red region in Figure 3, we have𝜈∗(𝑠 − 𝑒3) −𝜈∗(𝑠 − 𝑒1) < 1 and in the
blue region we have 𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) > 1. Thus, 𝑠3 < 𝑡 2(𝑠1) in the red region and 𝑠3 > 𝑡 2(𝑠1)
in the blue region. Thismeans that the function 𝑡 2, as depicted in Figure 4, should pass through
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the intersection point of blue, red and dark green regions in Figure 3.

s2 − s3

s1

A−BB −A

OA−B

Figure 4: Regions induced by 𝑡 2

Moreover, the red region in Figure 3 is not reachable, and thus, irrelevant for the optimalmecha-
nism. This leaves uswith the regions in Figure 5below, that together describe the optimalmech-
anism:

s2 − s3

s1

A−BB −A

OA−B

The arriving pair:

OB−A A−B

DNM

DNM

M

Match with OA−B

Match with B −A

Match with B −A

Figure 5: Themulti-dimensional thresholdmechanism

The three regions together with the 𝑥-axis characterize the set of reachable states. The decision
of whether to keep or match an arriving 𝕆𝐴−𝐵 pair, as well as the decision to match an existing
𝕆𝐴−𝐵 pair in a two-way exchangewhen a𝐵 −𝐴 pair arrives, is determined by the set of reachable
states R. Other decisions, namely, decision of Match (Decision 4.2) vs Do-Not-Match (𝐷𝑁𝑀 )
(Decision 4.1) and decision ofMatch with 𝕆𝐴−𝐵 (Decision 2.3.1) vsMatch with 𝐵 − 𝐴 (Decision
2.3.2) are determined by these regions.29 30

29Note that we do not color the axis, since they correspond to trivial decisions. When there is no 𝐵 − 𝐴 pair,Match and
Match with 𝐵 − 𝐴 decisions are irrelevant. Similarly, when there is no𝕆𝐴−𝐵 pair,Match with𝕆𝐴−𝐵 is irrelevant.
30Moreover, although the structure depicted above is a theoretical necessity, what we observe numerically is much sim-

pler. Numerically, the blue and gray regions in Figure 5 are empty, and set of reachable states constitute the light blue re-
gion: Whenever there exists an𝕆𝐴−𝐵 pair, incoming 𝐴 − 𝐵 pairs are matched with these overdemanded pairs in three-way
exchanges. Moreover, the𝐷𝑁𝑀 region contains all reachable stateswith some𝕆𝐴−𝐵 pairs in the pool. Thus, the numerical
results imply that the optimal mechanism is described (i) by the triangular region of reachable states R, and (ii) a number
𝑠 denoting the threshold for the𝑀 or𝐷𝑁𝑀 decision. But, we are unable to show that this special case we observe numeri-
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8 Conclusion

Ourcontributions in thispaperare twofold: onepertains to themethodologyofdynamicmatch-
ing theory, and the other concerns the practice of market design for kidney exchange.

First, throughourmethodological contribution,we introducenovel tools for analyzingdynamic
matching frameworks in which substitutes and complements inmatching are well defined—as
on a spatial linear mutual compatibility graph over types. We extend tools recently developed
in queueing theory—specifically, within event-based dynamic programming usingMarkov De-
cision Processes—to dynamic matching. Standard techniques in queueing rely almost entirely
on substitutable inputs. Ourmethodology provides an elegant and tractable framework for op-
timally controlling multi-dimensional state spaces by characterizing the second-order proper-
ties of the optimal value function. The optimal mechanism is a complexmulti-threshold policy
that prescribes conducting a certain set of exchangeswhen the number of agents of a given type
exceeds a threshold, and otherwise taking no action, as a function of the other state variables.
We also characterize the structure of these optimal exchanges. This technique is applicable to
a range of practical problems and high-level models, from on-demand ride-sharing to spatial
bilateral trade economies.

As our second contribution, we use this methodology to characterize the optimal dynamic kid-
ney exchangemechanisms under certain largemarket assumptions, extending the work of Ün-
ver (2010) by removing the assumption that overdemanded types arematched immediately and
pointing out an erroneous interim result motivating this assumption. This application reduces
to a four-state-variable case of our more general model with specific exchange surpluses. As a
result, we demonstrate that a multi-threshold mechanism is optimal, controlling at most three
types of pairs simultaneously: overdemanded pairs complementing 𝐴 −𝐵 , overdemanded pairs
complementing 𝐵 − 𝐴, and either 𝐴 − 𝐵 or 𝐵 − 𝐴 (but not both).

When the arrival rates of patient-donor pair types 𝐴 − 𝐵 and 𝐵 − 𝐴—the two central adja-
cent types—arebalanced, our general characterizationapplies; however, near-greedyoptimiza-
tion performs well in such cases (as explained in the Online Appendix). Greedy optimization
matches each pair in the largest feasible exchange immediately upon arrival. This intuition
aligns with several findings in the literature such as Anderson et al. (2017) and

In contrast, when arrival rates are unbalanced—e.g., when 𝐴 − 𝐵 arrives significantly more fre-
quently than𝐵−𝐴, as observed inpast data—retaining both𝐵−𝐴 pairs andoverdemandedpairs
complementing 𝐴 − 𝐵 (such as 𝐵 −𝑂) may be optimal. Interestingly, this policy is anti-greedy:
while a 𝐵 − 𝑂 pair can be immediately matched with an underdemanded pair (e.g., 𝑂 − 𝐵), it
cally is also a theoretical necessity. Thus, whenever wemention the optimal unbalancedmechanism, we refer to the three
regions depicted above. We provide a numerical example in the Online Appendix for the unbalanced case.
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is optimal to retain 𝐵 −𝑂 pairs until their stock reaches a threshold. Such policies are dynamic
and underscore the importance of explicitly modeling blood types, a practice often overlooked
in more recent dynamic matching literature. Indeed, under realistic arrival rates where 𝐴 − 𝐵

arrives more frequently than 𝐵 − 𝐴, the thresholds can exceed 30 pairs for both 𝐵 − 𝐴 and the
overdemanded pairs that complement 𝐴 − 𝐵 .
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Appendix A Proof of Lemma 2
Claim 1. If the properties 𝑃 (𝑢,𝑣 ) and 𝑃 (𝑢,𝑤 ) hold for some function 𝑓 , then 𝑃 (𝑢,𝑣 +𝑤 ) also holds.

Proof. We first rewrite the definitions of 𝑃 (𝑢,𝑣 ) and 𝑃 (𝑢,𝑤 ): for each 𝑥 , and 𝑥 ′,

𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 ),

𝑓 (𝑥 ′ + 𝑢) + 𝑓 (𝑥 ′ +𝑤 ) ≤ 𝑓 (𝑥 ′) + 𝑓 (𝑥 ′ + 𝑢 +𝑤 ).

Substituting 𝑥 ′ = 𝑥 + 𝑣 into the second inequality, we obtain

𝑓 (𝑥 + 𝑢 + 𝑣 ) + 𝑓 (𝑥 +𝑤 + 𝑣 ) ≤ 𝑓 (𝑥 + 𝑣 ) + 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ).

Lastly, summing the last and first inequalities, we obtain for each 𝑥 ,

𝑓 (𝑥 + 𝑢) + 𝑓 (𝑥 + 𝑣 +𝑤 ) ≤ 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑢 + 𝑣 +𝑤 ),

which is equivalent to 𝑃 (𝑢,𝑣 +𝑤 ). □

Let𝑈 = {𝑢1, 𝑢2, ...𝑢𝑘 } and𝑉 = {𝑣1, 𝑣2..., 𝑣𝑙 }. Since each of these vectors is a distinctmember ofD𝑀 , we
have the property 𝑃 (𝑢𝑖 , 𝑣𝑗 ) for any two indices 𝑖 , 𝑗 . Then, using Claim 1, we have 𝑃 (𝑢1, 𝑣1 + 𝑣2), and
repeatedly using the claim we have 𝑃 (𝑢1,

∑
𝑣∈𝑉 𝑣 ). Again, using the same argument for 𝑢2 we have

𝑃 (𝑢2,
∑
𝑣∈𝑉 𝑣 ), and combining with the previous conclusion we have 𝑃 (𝑢1 + 𝑢2,

∑
𝑣∈𝑉 𝑣 ). We iterate

using the claim—this time on𝑢𝑖 ’s—to obtain 𝑃 (∑𝑢∈𝑈 𝑢,
∑
𝑣∈𝑉 𝑣 ), completing the proof.

Appendix B Complete Proof of Proposition 2
To complete the proof of Proposition 2, we first present the following lemma, which deals with the
boundary cases in the proof.

Lemma 3. Let 𝑥 ∈ ℕ4, and let 𝑢,𝑣,𝑤 ∈ D𝑀 be three distinct vectors inD𝑀 such that 𝑥 + 𝑢, 𝑥 + 𝑣 ≥ 0. If
𝑤 ≤ 0 and 𝑥 +𝑢 +𝑤 ≥ 0 or 𝑥 +𝑣 +𝑤 ≥ 0, then 𝑥 +𝑢 +𝑣 +𝑤 ≥ 0. If𝑤 ≥ 0 and 𝑥 +𝑢 −𝑤 ≥ 0 or 𝑥 +𝑣 −𝑤 ≥ 0,
then 𝑥 −𝑤 ≥ 0

Proof of Lemma 3. First, suppose𝑤 ≤ 0, 𝑥 +𝑢 +𝑤 ≥ 0 or 𝑥 +𝑣 +𝑤 ≥ 0. Now, suppose 𝑥𝑖 +𝑢𝑖 +𝑣𝑖 +𝑤𝑖 < 0

for some 𝑖 . Since 𝑥𝑖 ≥ 0, we must have 𝑢𝑖 + 𝑣𝑖 + 𝑤𝑖 < 0. By construction of D𝑀 , exactly one of this
numbers is −1whereas the other two are zero.

Suppose𝑤𝑖 = −1 and 𝑢𝑖 = 𝑣𝑖 = 0. Then, we must have 𝑥𝑖 = 0 as well, since if 𝑥𝑖 > 0, we would have
𝑥𝑖 + 𝑢𝑖 + 𝑣𝑖 + 𝑤𝑖 = 0. Then, we have 𝑥𝑖 + 𝑢𝑖 + 𝑤𝑖 = 𝑥𝑖 + 𝑣𝑖 + 𝑤𝑖 = −1. This means 𝑥 + 𝑢 + 𝑤 ≱ 0 and
𝑥 + 𝑣 +𝑤 ≱ 0 and contradicts our assumption.

Now suppose𝑤𝑖 = 0, then, 𝑥𝑖 + 𝑢𝑖 + 𝑣𝑖 +𝑤𝑖 = 𝑥𝑖 + 𝑢𝑖 or 𝑥𝑖 + 𝑢𝑖 + 𝑣𝑖 +𝑤𝑖 = 𝑥𝑖 + 𝑣𝑖 , since one of 𝑢𝑖 and
𝑣𝑖 equals to zero by the above observation. But by assumption, we have 𝑥𝑖 + 𝑣𝑖 ≥ 0 and 𝑥𝑖 + 𝑢𝑖 ≥ 0,
contradicting 𝑥𝑖 + 𝑢𝑖 + 𝑣𝑖 +𝑤𝑖 < 0
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Nowwe consider with the symmetric case of𝑤 ≥ 0. Suppose 𝑥𝑖 −𝑤𝑖 < 0. Then, wemust have𝑤𝑖 = 1

and 𝑥𝑖 = 0. Then, by the observation above, exactly one of 𝑢𝑖 and 𝑣𝑖 equals to zero while the other
equals to −1. Thus,𝑢𝑖 , 𝑣𝑖 ≤ 0, and 𝑥𝑖 +𝑢𝑖 −𝑤𝑖 ≤ 𝑥𝑖 −𝑤𝑖 < 0 and 𝑥𝑖 +𝑣𝑖 −𝑤𝑖 ≤ 𝑥𝑖 −𝑤𝑖 < 0, contradicting
our assumption. □

Finally, we present the proof for the case𝑤 ≥ 0, in which case thematching operator takes the form
𝑇 𝑓 = max{𝑓 (𝑥), 𝑓 (𝑥 −𝑤 ) + 𝑎𝑤 }.

We have to show

max{𝑓 (𝑥 + 𝑢), 𝑓 (𝑥 + 𝑢 −𝑤 ) + 𝑎𝑤 } + max{𝑓 (𝑥 + 𝑣 ), 𝑓 (𝑥 + 𝑣 −𝑤 ) + 𝑎𝑤 }

≤ max{𝑓 (𝑥), 𝑓 (𝑥 −𝑤 ) + 𝑎𝑤 } + max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑢 + 𝑣 −𝑤 ) + 𝑎𝑤 }.

First suppose𝑢,𝑣,𝑤 are distinct elements fromD𝑀 .

Again, symmetric actions are trivial. If the actions are different, then by Lemma 3, we have 𝑥 −𝑤 ≥ 0,
thus, the right-hand side of the inequality isweakly greater than 𝑓 (𝑥−𝑤 )+ 𝑓 (𝑥+𝑢+𝑣 )+𝑎𝑤 . In different
action cases, the left-hand side is equal to either 𝑓 (𝑥 +𝑢)+ 𝑓 (𝑥 +𝑣−𝑤 )+𝑎𝑤 or 𝑓 (𝑥 +𝑣 )+ 𝑓 (𝑥 +𝑢−𝑤 )+𝑎𝑤 .
Since 𝑥 −𝑤 ≥ 0, we can let 𝑥 ′ = 𝑥 −𝑤 ≥ 0 to write the left-hand side as 𝑓 (𝑥 ′ + 𝑢 +𝑤 ) + 𝑓 (𝑥 ′ + 𝑣 ) + 𝑎𝑤
or 𝑓 (𝑥 ′ + 𝑢) + 𝑓 (𝑥 + 𝑣 +𝑤 ) + 𝑎𝑤 . Bymultimodularity, both of these expressions are weakly less then
𝑓 (𝑥 ′) + 𝑓 (𝑥 ′ + 𝑢 + 𝑣 +𝑤 ) + 𝑎𝑤 , which by substituting 𝑥 ′ = 𝑥 −𝑤 equals to 𝑓 (𝑥 −𝑤 ) + 𝑓 (𝑥 + 𝑢 + 𝑣 ) + 𝑎𝑤 .
We showed this expression is weakly less than the right-hand side, so the proof ends here.

Now suppose wlog that𝑤 = 𝑢 . Then, the expression becomes

max{𝑓 (𝑥 + 𝑢), 𝑓 (𝑥) + 𝑎𝑢 } + max{𝑓 (𝑥 + 𝑣 ), 𝑓 (𝑥 + 𝑣 − 𝑢) + 𝑎𝑢 }

≤ max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑢) + 𝑎𝑢 } + max{𝑓 (𝑥 + 𝑢 + 𝑣 ), 𝑓 (𝑥 + 𝑣 ) + 𝑎𝑢 }.

After noting that symmetric actions are trivial and 𝑥 +𝑢, 𝑥 +𝑣 ≥ 0, we show that the left-hand side can
only be equal to 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑣 ) + 𝑎𝑢 , if the actions are different. First, note that if 𝑥 + 𝑣 − 𝑢 ≱ 0, then
this is trivial. Then, assuming 𝑥 +𝑣 −𝑢 ≥ 0, we can let 𝑥 ′ = 𝑥 −𝑢 ≥ 0, and by combining concavity and
multimodularity as above, we can write

𝑓 (𝑥 ′ + 𝑣 ) − 𝑓 (𝑥 ′ + 𝑢 + 𝑣 ) ≤ 𝑓 (𝑥 ′ + 𝑢) − 𝑓 (𝑥 ′ + 2𝑢)

and substituting again we have

𝑓 (𝑥 + 𝑣 − 𝑢) − 𝑓 (𝑥 + 𝑣 ) ≤ 𝑓 (𝑥) − 𝑓 (𝑥 + 𝑢).

Thus, if 𝑓 (𝑥 +𝑢) ≥ 𝑓 (𝑥) + 𝑎𝑢 then 𝑓 (𝑥 +𝑣 −𝑢) − 𝑓 (𝑥 +𝑣 ) ≤ 𝑓 (𝑥) − 𝑓 (𝑥 +𝑢) ≤ −𝑎𝑢 , so 𝑓 (𝑥 +𝑣 −𝑢) + 𝑎𝑢 ≤
𝑓 (𝑥 + 𝑣 ). This shows the only possible case for actions being different is if the left-hand side is equal
to 𝑓 (𝑥) + 𝑓 (𝑥 + 𝑣 ) + 𝑎𝑢 . Finally, we see that picking the first argument in the first max and the second
argument in the secondmax on the right-hand side, the right-hand side becomes 𝑓 (𝑥) + 𝑓 (𝑥 +𝑣 ) +𝑎𝑢 ,
completing the proof.
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Appendix C Proof of Theorem 3
As we mentioned earlier, all the properties of the theorem are of the form 𝑃 (𝑢,𝑣 ) for some vectors
𝑢,𝑣 ∈ ℤ𝑛 . By Theorem 2, the value function 𝜈∗ is D𝑀 -multimodular. Thus, by Lemma 2, 𝑃 (𝑢,𝑣 )
holds for any 𝑢,𝑣 such that 𝑢 =

∑
𝑢 ′∈𝑈 𝑢

′, 𝑣 =
∑
𝑣 ′∈𝑉 𝑣

′ and𝑈 ,𝑉 are disjoint subsets ofD𝑀 . It suffices
to show that each of the properties is equivalent to 𝑃 (𝑢,𝑣 ) for some 𝑢,𝑣 that are sums of distinct
vectors in disjoint subsets ofD𝑀 .

First, we make the simple observation that the first 𝑖 terms inD𝑀 sum up to 𝑒𝑖 if 𝑖 is odd and −𝑒𝑖 if 𝑖
is even. Similarly, since elements ofD𝑀 sum to 0, the remaining 𝑛 + 1− 𝑖 elements sumup to −𝑒𝑖 and
𝑒𝑖 if 𝑖 is odd or even, respectively.

From this observation, it follows that 𝑒𝑖 and−𝑒𝑖 are always sums of distinct vectors in disjoint subsets
ofD𝑀 . Since concavity in component 𝑖 is equivalent to𝑃 (𝑒𝑖 ,−𝑒𝑖 ), componentwise concavity follows.

Suppose 𝑖 , 𝑗 ∈ 𝜏 are distinct types with the same parity, i.e., both are odd or both are even, and sup-
pose without loss of generality that 𝑖 < 𝑗 . First, suppose 𝑖 and 𝑗 are odd. Then, the first 𝑖 terms sum
up to 𝑒𝑖 and last 𝑛 + 1 − 𝑗 terms sum up to −𝑒 𝑗 , and since 𝑖 < 𝑗 , these sums are disjoint. If 𝑖 and 𝑗 are
even, the first 𝑖 terms sum up to −𝑒𝑖 , and the last 𝑛 + 1 − 𝑗 terms sum up to 𝑒 𝑗 . Since 𝑖 < 𝑗 , these sums
are disjoint. Thus in either case, 𝑃 (𝑒𝑖 ,−𝑒 𝑗 ) and 𝑃 (−𝑒𝑖 , 𝑒 𝑗 ) hold, respectively. They are both equivalent
to each other and to 𝑖 𝑗 -submodularity.31

Next, suppose 𝑖 , 𝑗 ∈ 𝜏 have different parities. By the same argument as before, we can take the first 𝑖
terms and last 𝑛 +1− 𝑗 terms for 𝑖 < 𝑗 to obtain conclude𝑃 (𝑒𝑖 , 𝑒 𝑗 ) or𝑃 (−𝑒𝑖 ,−𝑒 𝑗 ) holds. These are both
equivalent to 𝑖 𝑗 -supermodularity.

For superconcavity, take any two distinct 𝑖 , 𝑗 ∈ 𝜏 . First, we observe that if 𝑖 and 𝑗 have different pari-
ties, so that 𝑖 𝑗 -supermodularity is satisfied, 𝑖 𝑗 -superconcavity is trivial. We can see this by writing

𝜈∗(𝑥 + 𝑒𝑖 ) + 𝜈∗(𝑥 + 𝑒𝑖 + 𝑒 𝑗 ) ≥ 𝜈∗(𝑥 + 𝑒𝑖 ) + 𝜈∗(𝑥 + 𝑒𝑖 ) + 𝜈∗(𝑥 + 𝑒 𝑗 ) − 𝜈∗(𝑥) ≥ 𝜈∗(𝑥 + 𝑒 𝑗 ) + 𝜈∗(𝑥 + 2𝑒𝑖 ),

where the first inequality follows from 𝑖 𝑗 -supermodularity and the second inequality follows from
concavity in component 𝑖 .

Suppose 𝑖 and 𝑗 have the same parity. Then, superconcavity in these components is equivalent to
𝑃 (𝑒𝑖 , 𝑒 𝑗 − 𝑒𝑖 ), which is equivalent to 𝑃 (−𝑒𝑖 , 𝑒𝑖 − 𝑒 𝑗 ). Assume 𝑖 and 𝑗 are odd. If 𝑖 < 𝑗 , then the first 𝑖
terms sum up to 𝑒𝑖 and the first 𝑗 terms sum up to 𝑒 𝑗 . Thus, terms from 𝑖 + 1 to 𝑗 sum up to 𝑒 𝑗 − 𝑒𝑖 .
Thus, 𝑒𝑖 and 𝑒 𝑗 − 𝑒𝑖 are sums of distinct vectors in disjoint subsets ofD𝑀 , which proves 𝑃 (𝑒𝑖 , 𝑒 𝑗 − 𝑒𝑖 ).
If 𝑖 > 𝑗 , the last 𝑛 + 1 − 𝑖 terms sum to −𝑒𝑖 , and the first 𝑗 terms sum to 𝑒 𝑗 . Thus, terms from 𝑗 + 1 to 𝑖
sum to 𝑒𝑖 − 𝑒 𝑗 , and −𝑒𝑖 and 𝑒𝑖 − 𝑒 𝑗 are sums of distinct vectors in disjoint subsets ofD𝑀 , which proves
𝑃 (−𝑒𝑖 , 𝑒𝑖 − 𝑒 𝑗 ). In either case, we have 𝑖 𝑗 -superconcavity. When 𝑖 and 𝑗 are even the symmeric proof
holds. We showed that 𝜈∗ is superconcave.
31𝑃 (𝑢,𝑣 ) is equivalent to 𝑃 (−𝑢,−𝑣 ). This can be observed by the simple change of variables 𝑥 ′ = 𝑥 − 𝑢 − 𝑣 .
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𝑤𝑘 ∈ {𝑤ℓ : ℓ ∈ 𝐾𝑖 } = {|𝑤1 |, |𝑤3 |, . . . , |𝑤𝑖 |} ∪ {−|𝑤𝑖+1 |,−|𝑤𝑖+3 |, . . .}
if 𝑘 > 𝑖 :

D𝑀 = {|𝑤1 |,−|𝑤2 |, |𝑤3 |, . . . , |𝑤𝑖 |,︸                            ︷︷                            ︸
𝑒𝑖=

∑𝑖
ℓ=1𝑤ℓ

−|𝑤𝑖+1 |, . . .−|𝑤𝑘 |︸︷︷︸
=𝑤𝑘

. . . , (−1)𝑛 |𝑤𝑛+1 |

𝑒𝑖 − |𝑤𝑘 | =
∑︁

ℓ∈{1,2,...,𝑖 }∪{𝑘 }
𝑤ℓ is a sum of distinct vectors inD𝑀

if 𝑘 ≤ 𝑖 :

D𝑀 = {|𝑤1 |,−|𝑤2 | . . . ,

=𝑤𝑘︷︸︸︷
|𝑤𝑘 | , . . . , |𝑤𝑖 |,︸                                   ︷︷                                   ︸

𝑒𝑖=
∑𝑖
ℓ=1𝑤ℓ

−|𝑤𝑖+1 |, . . . , (−1)𝑛 |𝑤𝑛+1 |

𝑒𝑖 − |𝑤𝑘 | =
∑︁

ℓ∈{1,2,...,𝑖 }\{𝑘 }
𝑤ℓ is a sum of distinct vectors inD𝑀

Figure 6: Illustration of Observation 7 when 𝑖 is odd and 𝐵 = {𝑘 } ⊆ 𝐾𝑖 .

Appendix D Proofs of Theorems 4 and 5
Before proving Theorem 4, we will make a couple of observations.

First, note that if the optimal mechanism transitions to 𝑠 + 𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | after a type 𝑖 agent arrives

at state 𝑠 , then for each ℓ such that #ℓ > 0, we must have that Δ |𝑤ℓ |𝜈
∗(𝑠 + 𝑒𝑖 −

∑
𝑘 #𝑘 |𝑤𝑘 | + |𝑤ℓ |) =

𝜈∗(𝑠 +𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | + |𝑤ℓ |) −𝜈∗(𝑠 +𝑒𝑖 −

∑
𝑘 #𝑘 |𝑤𝑘 |) < 𝑎𝑤ℓ

, since otherwise optimalmechanismwould
have kept an additional vector𝑤ℓ as themarginal value of the vector would be greater than 𝑎𝑤ℓ

.

Second, if 𝑠 is reachable, and 𝑠 − |𝑤ℓ | ≥ 0, we must have that Δ |𝑤ℓ |𝜈
∗(𝑠 ) > 𝑎𝑤ℓ

, since otherwise 𝑠
would not be reachable. Thus, we can further conclude that Δ |𝑤ℓ |𝜈

∗(𝑠 + 𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | + |𝑤ℓ |) < 𝑎𝑤ℓ

<

Δ |𝑤ℓ |𝜈
∗(𝑠 ). Thus, if we show that𝜈∗ satisfies property𝑃 ( |𝑤ℓ |, 𝑒𝑖 −

∑
𝑘 #𝑘 |𝑤𝑘 | + |𝑤ℓ |) and that 𝑠 − |𝑤ℓ | ≥ 0,

wewill arrive at a contradiction, since𝑃 ( |𝑤ℓ |, 𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | + |𝑤ℓ |) impliesΔ |𝑤ℓ |𝜈

∗(𝑠 +𝑒𝑖 −
∑
𝑘 #𝑘 |𝑤𝑘 | +

|𝑤ℓ |) > Δ |𝑤ℓ |𝜈
∗(𝑠 ).

Third, 𝑒𝑖 is the sumof the first 𝑖 or last 𝑛 + 1− 𝑖 vectors inD𝑀 , depending onwhether 𝑖 is odd or even.
Moreover, if𝑤𝑘 is a vector not included in this sum for any 𝑘 ∈ 𝐾𝑖 then 𝑘 is even and, hence, as𝑤𝑘 < 0

and |𝑤𝑘 | = −𝑤𝑘 , we obtain 𝑒𝑖 − |𝑤𝑘 | = 𝑒𝑖 +𝑤𝑘 is also a sum of distinct vectors inD𝑀 (i.e., the sum of
matching vectors included in the sum equating 𝑒𝑖 and𝑤𝑘 ). Similarly, if𝑤𝑘 is a vector included in this
sum for any 𝑘 ∈ 𝐾𝑖 , then 𝑘 is odd, and hence, as𝑤𝑘 > 0 and𝑤𝑘 = |𝑤𝑘 |, we obtain 𝑒𝑖 − |𝑤𝑘 | = 𝑒𝑖 −𝑤𝑘 is
also a sum of distinct vectors inD𝑀 (i.e., the sum of matching vectors included in the sum equating
𝑒𝑖 except𝑤𝑘 ). Therefore, 𝑒𝑖 − |𝑤𝑘 | for any 𝑘 ∈ 𝐾𝑖 is a sum of distinct vectors inD𝑀 (e.g., see Figure 6
when 𝑖 is odd). We observe that this argument can be iterated, and thus, we obtain the following:

Observation 7. For any 𝐵 ⊆ 𝐾𝑖 , 𝑒𝑖 −
∑
𝑘 ∈𝐵 |𝑤𝑘 | is a sum of distinct vectors inD𝑀 . This sum includes all

vectors𝑤𝑘 that are included in the sum of matching vectors inD𝑀 equating 𝑒𝑖 (first 𝑖 or last 𝑛 + 1 − 𝑖
vectors depending on the parity of 𝑖 ) except thosewhose indices are included in𝐵 , and also includes all
vectors𝑤𝑘 for 𝑘 ∈ 𝐵 such that𝑤𝑘 is not included in the sum of matching vectors inD𝑀 equating 𝑒𝑖 .

Similarly, for any 𝐴 ⊆ 𝐾 𝑐
𝑗
, 𝑒𝑖 +

∑
𝑘 ∈𝐴 |𝑤𝑘 | is a sumof distinct vectors inD𝑀 . This sum includes all vectors

𝑤𝑘 that are included in the sum of matching vectors inD𝑀 equating 𝑒𝑖 (first 𝑖 or last 𝑛 + 1 − 𝑖 vectors
depending on the parity of 𝑖 ) except thosewhose indices are included in 𝐴, and also includes all vectors
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𝑤𝑘 for 𝑘 ∈ 𝐴 such that𝑤𝑘 is not included in the sum of matching vectors inD𝑀 equating 𝑒𝑖 .

Moreover, if we have 𝐴 ⊆ 𝐾 𝑐
𝑗
and𝐵 ⊆ 𝐾 𝑗 , we canmerge the two cases, and conclude that 𝑒 𝑗 +

∑
𝑘 ∈𝐴 |𝑤𝑘 | −∑

𝑘 ∈𝐵 |𝑤𝑘 | is a sum of distinct set of vectors inD𝑀 .

We are ready to state the proof of the theorem:

Proof of Theorem 4. Suppose 𝑠 is a reachable state and the optimal mechanism uses #ℓ ≥ 0 ex-
changes of each exchange type𝑤ℓ after an agent of type 𝑖 arrives. We will show that#ℓ ≤ 1 for each

ℓ and that #ℓ = 0 for any ℓ ∉ 𝐾𝑖 . Let 𝐴 = 𝐾𝑖 ∩ {ℓ : #ℓ > 0}, and #′
ℓ
=


#ℓ − 1 if ℓ ∈ 𝐴

0 if ℓ ∉ 𝐴
. Then,

𝑒𝑖 −
∑
ℓ #ℓ |𝑤ℓ | = 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ | −

∑
ℓ #

′
ℓ
|𝑤ℓ |. By Observation 7, 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ | is a sumof distinct vectors

inD𝑀 . We will show that#′
ℓ
= 0 for any ℓ. We will start with showing that if#′

ℓ
> 0, then 𝜈∗ satisfies

𝑃 ( |𝑤ℓ |, 𝑒𝑖 −
∑
𝑘 |𝑤𝑘 |).

Suppose#′
ℓ
> 0. First, assume ℓ ∉ 𝐾𝑖 : two cases exist depending on whether ℓ is odd or even.

If ℓ is odd: Then𝑤ℓ = |𝑤ℓ |, and by definition of𝐾𝑖 , as ℓ ∉ 𝐾𝑖 ,𝑤ℓ is not included in the sumofmatching
vectors inD𝑀 equating𝑒𝑖 . Moreover, it isnot included in the sumofmatchingvectors inD𝑀 equating
𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 |, since we only potentially add or remove elements inside 𝐴 ⊆ 𝐾𝑖 whenwe add the term

−∑
𝑘 ∈𝐴 |𝑤𝑘 |. Thus,𝑤ℓ = |𝑤ℓ | and 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ | are sums of distinct vectors in disjoint subsets ofD𝑀 ,

whichmeans 𝑃 ( |𝑤ℓ |, 𝑒𝑖 −
∑
ℓ∈𝐴 |𝑤ℓ |) holds for𝜈∗.

If ℓ is even: Then𝑤ℓ = −|𝑤ℓ |, and since ℓ ∉ 𝐾𝑖 ,𝑤ℓ = −|𝑤ℓ | is included in the sum of matching vectors
inD𝑀 equating 𝑒𝑖 . Moreover, it is also included in the sum of matching vectors inD𝑀 equating 𝑒𝑖 −∑
ℓ∈𝐴 |𝑤ℓ |, sincewe canonly addor remove elements in𝐴 ⊆ 𝐾𝑖 whenweadd the term−∑

𝑘 ∈𝐴 |𝑤𝑘 |, and
ℓ ∉ 𝐾𝑖 . Thus,𝑤ℓ is included in the sum 𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 |. Therefore, it is not included in the sum −(𝑒𝑖 −∑

𝑘 ∈𝐴 |𝑤𝑘 |), which consists of the sumof the remaining vectors inD𝑀 . Hence𝑤ℓ and−(𝑒𝑖 −
∑
𝑘 ∈𝐴 |𝑤𝑘 |)

are sums of distinct vectors in disjoint subsets ofD𝑀 , and thuswehave𝑃 (
𝑤ℓ ,−(𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 |)

) holds
for 𝜈∗. Since −𝑤ℓ = |𝑤ℓ |, equivalently we have 𝑃 ( |𝑤ℓ |, 𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 |) holds for 𝜈∗, which is what we

wanted to show.

Now assume that ℓ ∈ 𝐾𝑖 . By definition of#′
ℓ
, we have that#ℓ > 1 and ℓ ∈ 𝐴. Thus, either ℓ is odd and

𝑤ℓ = |𝑤ℓ | is included in the sum of matching vectors in D𝑀 equating 𝑒𝑖 but it is not included in the
sumofmatching vectors inD𝑀 equating 𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 | since it is removedwith the term −∑

𝑘 ∈𝐴 |𝑤𝑘 |.
This case yields 𝑃 ( |𝑤ℓ |, 𝑒𝑖 −

∑
𝑘 ∈𝐴 |𝑤𝑘 |) holds for 𝜈∗. Or, ℓ is even and𝑤ℓ = −|𝑤ℓ |, and thus, it is not

included in the sum of matching vectors in D𝑀 equating 𝑒𝑖 but is included in 𝑒𝑖 −
∑
ℓ∈𝐴 |𝑤ℓ | since

it is added with the term −∑
ℓ∈𝐴 |𝑤ℓ |. This yields 𝑃

(
𝑤ℓ ,−(𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |)

) holds for 𝜈∗ which means
equivalently 𝑃 ( |𝑤ℓ |, 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |) holds for𝜈∗.

We thus showed that for each#′
ℓ
> 0, wehave𝑃 ( |𝑤ℓ |, 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |) holds for𝜈∗. Summing all of these

inequalities, we conclude that 𝑃 (∑ℓ #
′
ℓ
|𝑤ℓ |, 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |) holds for𝜈∗.

We will now show that if 𝑠 + 𝑒𝑖 −
∑
ℓ∈𝐴 |𝑤ℓ | −

∑
ℓ #

′
ℓ
|𝑤ℓ | ≥ 0, then we have 𝑠 −∑

ℓ #
′
ℓ
|𝑤ℓ | ≥ 0 as well. To

see this, note that each entry in−∑
ℓ∈𝐴 |𝑤ℓ | is non-positive, thus, only positive contribution to 𝑠 +𝑒𝑖 −∑

ℓ∈𝐴 |𝑤ℓ | −
∑
ℓ #

′
ℓ
|𝑤ℓ | comes from 𝑒𝑖 . Thismeans that only index of 𝑠 −∑

ℓ #
′
ℓ
|𝑤ℓ | that can be negative
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is the 𝑖 𝑡ℎ index. But only two vectors𝑤ℓ that has a non-zero entry in the 𝑖 𝑡ℎ index are𝑤𝑖 and𝑤𝑖+1, both
ofwhich are included in𝐾𝑖 . Thus, if 𝑖 𝑡ℎ index of 𝑠−

∑
ℓ #

′
ℓ
|𝑤ℓ | is negative, itmust bedue to some𝑘 ∈ 𝐾𝑖

(more specifically, some 𝑘 ∈ {𝑖 , 𝑖 + 1}), such that#′
𝑘
> 0. By definition of#′

𝑘
, we have that 𝑘 ∈ 𝐴, and

thus, |𝑤𝑘 | is also included in the sum−∑
ℓ∈𝐴 |𝑤ℓ |. But since 𝑠+𝑒𝑖−

∑
ℓ∈𝐴 |𝑤ℓ |−

∑
ℓ #

′
ℓ
|𝑤ℓ | ≥ 0, and the+𝑒𝑖

term can only compensate for one term of the form −|𝑤𝑘 |, wemust also have that 𝑠 − ∑
ℓ #

′
ℓ
|𝑤ℓ | ≥ 0.

Finally, using our observations, we can see that property 𝑃 (∑ℓ #
′
ℓ
|𝑤ℓ |, 𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |) for 𝜈∗ together

with 𝑠−∑
ℓ #

′
ℓ
|𝑤ℓ | ≥ 0 and the fact that optimalmechanism transitions to 𝑠 +𝑒𝑖 −

∑
ℓ∈𝐴 |𝑤ℓ |−

∑
ℓ #

′
ℓ
|𝑤ℓ |,

contradicts with the state 𝑠 being reachable, since the optimal mechanism would instead transition
to 𝑠 − ∑

ℓ #
′
ℓ
|𝑤ℓ |. Thus, wemust have that#′

ℓ
= 0 for all ℓ, which is what we wanted to show. □

Wewill nowmake a generalization to Observation 7, which will allow us to prove Theorem 5.

Lemma 4. Let 𝐴, 𝐴′, 𝐵, 𝐵 ′ ⊆ {1, ..., 𝑛 + 1} be pairwise disjoint sets of indices such that 𝐴, 𝐴′ ⊆ 𝐾 𝑐
𝑗
and

𝐵,𝐵 ′ ⊆ 𝐾 𝑗 . Then, 𝑃 (
∑
𝑘 ∈𝐴 |𝑤𝑘 | −

∑
𝑘 ∈𝐵 |𝑤𝑘 |, 𝑒 𝑗 +

∑
𝑘 ∈𝐴′ |𝑤𝑘 | −

∑
𝑘 ∈𝐵 ′ |𝑤𝑘 |) holds for𝜈∗.

Proof of Lemma 4. By Observation 7, 𝑒 𝑗 +
∑
𝑘 ∈𝐴′ |𝑤𝑘 | −

∑
𝑘 ∈𝐵 ′ |𝑤𝑘 | is a sum of distinct vectors in D𝑀 ,

moreover, since 𝐴 ∩ 𝐴′ = ∅, for any 𝑘 ∈ 𝐴, |𝑤𝑘 | is not part of this sum of distinct vectors. Thus,
we have that for any 𝑘 ∈ 𝐴, property 𝑃 ( |𝑤𝑘 |, 𝑒 𝑗 +

∑
ℓ∈𝐴′ |𝑤ℓ | −

∑
ℓ∈𝐵 ′ |𝑤ℓ |) holds for 𝜈∗ by Lemma 2.

Similarly, since 𝐵 ∩𝐵 ′ = ∅, for any 𝑘 ∈ 𝐵 , −|𝑤𝑘 | is not part of this sumof distinct vectors ,thus we have
𝑃 (−|𝑤𝑘 |, 𝑒 𝑗 +

∑
ℓ∈𝐴′ |𝑤ℓ | −

∑
ℓ∈𝐵 ′ |𝑤ℓ |) holding for 𝜈∗. Summing the relevant inequalities, we observe

that property 𝑃 (∑𝑘 ∈𝐵 |𝑤𝑘 | −
∑
𝑘 ∈𝐴 |𝑤𝑘 |, 𝑒 𝑗 +

∑
𝑘 ∈𝐴′ |𝑤𝑘 | −

∑
𝑘 ∈𝐵 ′ |𝑤𝑘 |) holds for 𝜈∗ by Claim in the proof

of Lemma 2. □

We also use the following simple property of the optimal mechanism in proving Theorem 5.

Lemma 5. Let 𝑠 be a reachable state such that optimal mechanism transitions to 𝑠 + 𝑒𝑖 −
∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |

after an agent of type 𝑖 arrives. Let 𝑢 =
∑
𝑘 ∈𝐴 |𝑤𝑘 | −

∑
𝑘 ∈𝐵 |𝑤𝑘 | ≠ 0where 𝐴 ⊆ {1, . . . , 𝑛 + 1}, 𝐵 ⊆ 𝐴 (𝑠 , 𝑖 ),

and 𝑠 + 𝑒𝑖 −
∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | − 𝑢 ≥ 0. Then,

Δ𝑢𝜈
∗(𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |) = 𝜈∗(𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |) − 𝜈∗(𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | − 𝑢) > 𝑎𝑢

where 𝑎𝑢 is the sum of rewards of the matching vectors with indices included in 𝐴 minus the sum of
rewards of the matching vectors with indices included in 𝐵 .

Proof of Lemma 5. Since 𝐵 ⊆ 𝐴 (𝑠 , 𝑖 ) and 𝑠 + 𝑒𝑖 −
∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | − 𝑢 ≥ 0, it is feasible for the optimal

mechanism to transition to state 𝑠 + 𝑒𝑖 −
∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | − 𝑢 , by using vectors from 𝐴 and abstain from

using vectors from 𝐵 . In doing so, the mechanism would get the additional rewards of vectors from
𝐴 and lose rewards of vectors from 𝐵 , thus having the additional reward of 𝑎𝑢 . However, this would
result in transitioning to the state 𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 | − 𝑢 instead of 𝑠 + 𝑒𝑖 −

∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |, which

means losing the valueΔ𝑢𝜈∗(𝑠 +𝑒𝑖 −
∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |). Since optimalmechanismdecides to not use these

additional sum of vectors𝑢 (even though it is feasible to do so), it must be the case that Δ𝑢𝜈∗(𝑠 + 𝑒𝑖 −∑
𝑘 ∈𝐴 (𝑠 ,𝑖 ) |𝑤𝑘 |) > 𝑎𝑢 . □

45



Proof of Theorem 5. For simplicity, given a set of indices 𝐴 of matching vectors inD𝑀 , as denoted in
Equation (9), we will write 𝑠 − Σ[𝐴] instead of 𝑠 − ∑

𝑘 ∈𝐴 |𝑤𝑘 |.

Suppose 𝑠 is a reachable state and that 𝑗 is an agent type such that 𝑠 +𝑒 𝑗 is also reachable. Then, when
the arriving pair is of some type 𝑖 , themechanism transitions to 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] from state 𝑠 and to
𝑠 + 𝑒 𝑗 + 𝑒𝑖 − Σ[𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )] from 𝑠 + 𝑒 𝑗 .

Next, by rearranging the terms in 𝑠 +𝑒 𝑗 +𝑒𝑖 −Σ[𝐴 (𝑠 +𝑒 𝑗 , 𝑖 )], we canobtain the followingdecomposition:

𝑠 + 𝑒 𝑗 + 𝑒𝑖 − Σ
[
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

]
= 𝑠 + 𝑒𝑖 + 𝑒 𝑗 − Σ

[
𝐴 (𝑠 , 𝑖 )

]
− Σ

[ (
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

) ]
+ Σ

[ (
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

) ]
= 𝑠 + 𝑒𝑖 − Σ

[
𝐴 (𝑠 , 𝑖 )

]
+ 𝑒 𝑗 − Σ

[ (
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑗

]
− Σ

[ (
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗

]
+ Σ

[ (
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑗

]
+ Σ

[ (
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗

]
= 𝑠 + 𝑒𝑖 − Σ

[
𝐴 (𝑠 , 𝑖 )

]
+

Define 𝑣 :=︷                                                                                            ︸︸                                                                                            ︷
𝑒 𝑗 − Σ

[ (
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑗︸                              ︷︷                              ︸

⊆𝐾 𝑗

]
+ Σ

[ (
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗︸                               ︷︷                               ︸
⊆𝐾 𝑐

𝑗

]

−
( Define𝑢:=︷                                                                                      ︸︸                                                                                      ︷
Σ
[ (
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗︸                               ︷︷                               ︸
⊆𝐾 𝑐

𝑗

]
− Σ

[ (
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑗︸                              ︷︷                              ︸

⊆𝐾 𝑗

] )
. (12)

Our proof strategy here is to show that vector𝑢 defined in (12) satisfies𝑢 = 0, and in particular, each
of the sums in the last line of (12) are taken over empty sets of vectors, i.e., both sets (

𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \
𝐴 (𝑠 , 𝑖 )

)
∩𝐾 𝑐

𝑗
and (

𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )
)
∩𝐾 𝑗 are empty. This will imply that 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) ⊆ 𝐴 (𝑠 , 𝑖 ) ∪𝐾 𝑗 and

𝐴 (𝑠 , 𝑖 ) ∩ 𝐾 𝑗 ⊆ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ), respectively, completing the proof of the theorem.

Suppose𝑢 ≠ 0. We will first use Lemma 5, with 𝑠 ′ := 𝑠 + 𝑒 𝑗 and𝑢 ′ := −𝑢 .

Using the above decomposition, the vector𝑢 ′ = −𝑢 is of the form Σ[𝐴] −Σ[𝐵] where 𝐵 = (𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \
𝐴 (𝑠 , 𝑖 )) ∩ 𝐾 𝑐

𝑗
⊆ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ). We will show that 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] + 𝑣 ≥ 0. Suppose the ℓ𝑡ℎ index of

𝑠 +𝑒𝑖 −Σ[𝐴 (𝑠 , 𝑖 )] +𝑣 is negative. Since 𝑠 +𝑒𝑖 −Σ[𝐴 (𝑠 , 𝑖 )] +𝑣 −𝑢 ≥ 0, it must be the case that ℓ𝑡ℎ index of
Σ[(𝐴 (𝑠 , 𝑖 ) \𝐴 (𝑠 +𝑒 𝑗 , 𝑖 )) ∩𝐾 𝑗 ] is positive, since the other non-negative summation term in𝑢 enters (12)
with a minus sign and is overall non-positive. Moreover, since 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] is also a reachable
state by definition, 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] ≥ 0. Hence, ℓ𝑡ℎ index of 𝑣 must be negative, and since other
terms in 𝑣 are non-negative, ℓ𝑡ℎ index of −Σ[(𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )) ∩ 𝐾 𝑗 ]must be negative.

Notice that each expression of the form Σ[·] is a sumof absolute values of distinct vectors inD𝑀 , and
for each index ℓ there are exactly two vectors inD𝑀 that have non-zero entries in their ℓ𝑡ℎ index,𝑤ℓ

and𝑤ℓ+1. However, the sets (𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )) ∩ 𝐾 𝑗 and (𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )) ∩ 𝐾 𝑗 are disjoint, thus,
it cannot be the case that𝑤ℓ or𝑤ℓ+1 belong to both of them.

Thus, it must be the case that one of these sets contain ℓ whereas the other contains ℓ + 1. However,
bothof these sets are subsets of𝐾 𝑗 , whichdoesnot contain any consecutive elements except for 𝑗 and
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𝑗 +1. Thus, wemust have that ℓ = 𝑗 . However, since there is an 𝑒 𝑗 term in𝑣 , this term can compensate
for the −1 in the −Σ[(𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )) ∩ 𝐾 𝑗 ], which means 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] + 𝑣 ≥ 0. Thus, using
Lemma 5, we conclude that

Δ𝑢 ′𝜈∗(𝑠 ′ + 𝑒𝑖 − Σ[𝐴 (𝑠 ′, 𝑖 )]) = 𝜈∗(𝑠 ′ + 𝑒𝑖 − Σ[𝐴 (𝑠 ′, 𝑖 )]) − 𝜈∗(𝑠 ′ + 𝑒𝑖 − Σ[𝐴 (𝑠 ′, 𝑖 )] − 𝑢 ′) > 𝑎𝑢 ′ .

Substituting 𝑠 ′ and𝑢 ′,

𝜈∗(𝑠 + 𝑒 𝑗 + 𝑒𝑖 − Σ[𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )]) − 𝜈∗(𝑠 + 𝑒 𝑗 + 𝑒𝑖 − Σ[𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )] + 𝑢) > −𝑎𝑢 .

Further substituting 𝑣 , this can be written as

𝜈∗(𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] + 𝑣 − 𝑢) − 𝜈∗(𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] + 𝑣 ) > −𝑎𝑢 ,

and finally multiplying both sides by −1, we have

Δ𝑢𝜈
∗(𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] + 𝑣 ) < 𝑎𝑢 . (13)

Wewill nowuseLemma5with 𝑠 and𝑢 . Notice that𝑢 is of the formΣ[𝐴]−Σ[𝐵]where𝐵 = (𝐴 (𝑠 , 𝑖 )\𝐴 (𝑠+
𝑒 𝑗 , 𝑖 ))∩𝐾 𝑗 ⊆ 𝐴 (𝑠 , 𝑖 ). Wewill showthat 𝑠+𝑒𝑖−Σ[𝐴 (𝑠 , 𝑖 )]−𝑢 ≥ 0. Using the samereasoningasbefore, if ℓ𝑡ℎ
indexof 𝑠 +𝑒𝑖 −Σ[𝐴 (𝑠 , 𝑖 )]−𝑢 is negative, itmust be the case that ℓ𝑡ℎ indexofΣ[(𝐴 (𝑠 +𝑒 𝑗 , 𝑖 )\𝐴 (𝑠 , 𝑖 ))∩𝐾 𝑐

𝑗
]

and Σ[(𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )) ∩ 𝐾 𝑐
𝑗
] are both non-zero. Again with the same reasoning, this can only

happen when both ℓ and ℓ + 1 belong to these sets. However, both of these sets are subsets of 𝐾 𝑐
𝑗
,

which does not contain any two consecutive elements. Thus, we have that 𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )] − 𝑢 ≥ 0

and we can use Lemma 5 to conclude

Δ𝑢𝜈
∗(𝑠 + 𝑒𝑖 − Σ[𝐴 (𝑠 , 𝑖 )]) > 𝑎𝑢 .

Combining this with inequality (13) we obtain

Δ𝑢𝜈
∗(𝑠 + 𝑒𝑖 − 𝐴 (𝑠 , 𝑖 )) > 𝑎𝑢 > Δ𝑢𝜈

∗(𝑠 + 𝑒𝑖 − 𝐴 (𝑠 , 𝑖 ) + 𝑣 ).

Finally, we will use Lemma 4. Let 𝐴 =
(
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗
, 𝐴′ =

(
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗
,

𝐵 =
(
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑗 , and 𝐵 ′ =

(
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑗 , and using Lemma 4 we arrive at

property𝑃 (∑𝑘 ∈𝐴 |𝑤𝑘 |−
∑
𝑘 ∈𝐵 |𝑤𝑘 |, 𝑒 𝑗 +

∑
𝑘 ∈𝐴′ |𝑤𝑘 |−

∑
𝑘 ∈𝐵 ′ |𝑤𝑘 |) for𝜈∗, where𝐴 =

(
𝐴 (𝑠 +𝑒 𝑗 , 𝑖 )\𝐴 (𝑠 , 𝑖 )

)
∩𝐾 𝑐

𝑗
,

𝐴′ =
(
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑐

𝑗
, 𝐵 =

(
𝐴 (𝑠 , 𝑖 ) \ 𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 )

)
∩ 𝐾 𝑗 , and 𝐵 ′ =

(
𝐴 (𝑠 + 𝑒 𝑗 , 𝑖 ) \ 𝐴 (𝑠 , 𝑖 )

)
∩ 𝐾 𝑗 .

Substituting the definitions of𝑢 and 𝑣 , this property is equivalent to 𝑃 (𝑢,𝑣 ).

However, this property is equivalent to the inequality Δ𝑢𝜈∗(𝑠 ) ≤ Δ𝑢𝜈∗(𝑠 + 𝑣 ) for any 𝑠 . Letting 𝑠 ′ =

𝑠 + 𝑒𝑖 − 𝐴 (𝑠 , 𝑖 ), this implies Δ𝑢𝜈∗(𝑠 + 𝑒𝑖 − 𝐴 (𝑠 , 𝑖 )) < Δ𝑢𝜈∗(𝑠 + 𝑒𝑖 − 𝐴 (𝑠 , 𝑖 ) + 𝑣 ) which contradicts the
inequality we obtained above. Thus, we must have that 𝑢 = 0, which proves the desired inclusion
relations. □
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Appendix E Proof of Theorem 7
We first state and prove the following result:

Lemma 6. Let𝜈∗ be the optimal value function, and 𝑠 be a state. Then:

i. If 𝑠1 > 0:
– If𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒1) ≤ 2, then𝜈∗(𝑠 + 𝑒1) − 𝜈∗(𝑠 ) ≤ 2.
– If𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒1) ≤ 2, then𝜈∗(𝑠 + 𝑒3) − 𝜈∗(𝑠 + 𝑒3 − 𝑒1) ≤ 2.
– If𝜈∗(𝑠 + 𝑒3) − 𝜈∗(𝑠 + 𝑒3 − 𝑒1) ≤ 2, then𝜈∗(𝑠 + 𝑒1) − 𝜈∗(𝑠 ) ≤ 2.

ii. If 𝑠3 > 0:
– If𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3) ≤ 1, then𝜈∗(𝑠 + 𝑒3) − 𝜈∗(𝑠 ) ≤ 1.
– If𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3) ≤ 1, then𝜈∗(𝑠 + 𝑒1) − 𝜈∗(𝑠 + 𝑒1 − 𝑒3) ≤ 1.
– If𝜈∗(𝑠 + 𝑒1) − 𝜈∗(𝑠 + 𝑒1 − 𝑒2) ≤ 1, then𝜈∗(𝑠 + 𝑒3) − 𝜈∗(𝑠 ) ≤ 1.

iii. If 𝑠1 > 0 and 𝑠3 > 0:
– If𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) > 1, then𝜈∗(𝑠 ) − 𝜈∗(𝑠 + 𝑒3 − 𝑒1) > 1.
– If𝜈∗(𝑠 + 𝑒1 − 𝑒3) − 𝜈∗(𝑠 ) > 1, then𝜈∗(𝑠 − 𝑒3) − 𝜈∗(𝑠 − 𝑒1) > 1.

Proof of Lemma 6. All of these second-order properties are implied by Theorem 3: By concavity,
𝜈∗(𝑠 +𝑒1)−𝜈∗(𝑠 ) ≤ 𝜈∗(𝑠 )−𝜈∗(𝑠−𝑒1) ≤ 2, andby superconcavity,𝜈∗(𝑠 +𝑒1−𝑒3)−𝜈∗(𝑠−𝑒3) ≤ 𝜈∗(𝑠 )−𝜈∗(𝑠−
𝑒1) ≤ 2, andby submodularity in components 1 and 3,𝜈∗(𝑠 +𝑒3) −𝜈∗(𝑠 +𝑒3−𝑒1) ≤ 𝜈∗(𝑠 ) −𝜈∗(𝑠 −𝑒1) ≤ 2.
This concludes Lemma 6(i). The proof of Lemma 6(ii) follows by the symmetric argument. The same
argument using superconcavity in components 1 and 3 proves Lemma 6(iii). □

Proof of Theorem 7. ByLemma6(i), we can let 𝑡 (𝑠 ) to be the supremumof 𝑠 ′ such that𝜈∗ ((𝑠 ′, 0, 𝑠 , 0))−
𝜈∗ ((𝑠 ′−1, 0, 𝑠 , 0)) > 2. Sucha supremumisfinite since ifwehave infinitelymanyoverdemandedpairs,
an additional overdemanded pair has no future value andmust be immediately used, and thus has a
marginal value of is atmost 2. By concavity, this function satisfies property (i.1.) andby superconcav-
ity it satisfies property (i.2.) in Theorem 7. By a symmetric argument, properties (ii.1.), and (iii.1.),
(iii.2.) in Theorem 7 follow from Lemma 6(ii) and 6(iii).

To show the optimality of the multi-dimensional threshold mechanism, we consider each case (we
skip all the trivial decisions in all cases).

Case 1: The arriving pair is𝕆𝐴−𝐵 type. In this case, themechanism can decide to switch to state 𝑠 +𝑒1,
or stay in state 𝑠 for an immediate surplus of 2. The former is chosen if andonly if𝜈∗(𝑠 +𝑒1) > 𝜈∗(𝑠 ) +2.
By property (i.1.), this is equivalent to 𝑠1 + 𝑒1 > 𝑡 1,3.

Case 2: The arriving pair is 𝐴 − 𝐵 type. In this case, the mechanism can decide to match this 𝐴 − 𝐵

pair with an existing 𝕆𝐴−𝐵 pair, gain a surplus of 3 and transition to state 𝑠 − 𝑒1. Alternatively, it can
decide to match this 𝐴 − 𝐵 pair with an existing 𝐵 − 𝐴 pair, gain a surplus of 2 and transition to state
𝑠 − 𝑒3. Thus, the decision depends onwhether𝜈∗(𝑠 − 𝑒3) + 2 < 𝜈∗(𝑠 − 𝑒1) + 1. By property (ii.1.), this is
equivalent to determining whether 𝑠3 < 𝑡 2(𝑠1).

Case3: Thearrivingpair is𝐵−𝐴 type. Again, themechanismcan transition to states 𝑠+𝑒3 or 𝑠+𝑒3−𝑒1 to
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gain a surplus of 2. Thismeanswecheckwhether𝜈∗(𝑠+𝑒3)−𝜈∗(𝑠+𝑒3−𝑒1) < 2ornot. Byproperty (i.1.),
this is equivalent to whether 𝑠1 ≤ 𝑡 1,3(𝑠3 + 1) or not.

Case 4: The arriving pair is𝕆𝐵−𝐴 . The mechanism can transition to state 𝑠 − 𝑒3 and obtain a surplus
of 3 or stay at state 𝑠 to obtain a surplus of 3. Thus, we check whether 𝜈∗(𝑠 ) − 𝜈∗(𝑠 − 𝑒3), which, by
property (iii.1.), is equivalent to checking the threshold 𝑡 4. □
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Online Appendix Not Intended for Print

I. About Proposition 3 in Ünver (2010)

Assumption 2 inÜnver (2010) regarding "overdemanded pairs arematched as soon as they arrive" is
motivated by the following proposition.

Proposition 3 (Ünver, 2010). If arrival probabilities𝑝𝐴−𝐵 and𝑝𝐵−𝐴 are sufficiently close to each other,
then under any dynamically efficient multi-way matching mechanism, overdemanded type pairs are
matched as soon as they arrive at the exchange pool.

There is an analytical flaw in the proof. The proof of Proposition 3 works as follows: We consider two
cases, the first where an overdemanded pair is pooled for at least one period, and the second where
an overdemanded pair is matched immediately as they arrive. Then, we calculate the upper bound
for the surplus of thefirst case, and the lower bound for the surplus of the secondcase. Then,we show
that when |𝑝𝐴−𝐵 − 𝑝𝐵−𝐴 | is small enough, the lower bound is greater than the upper bound, thus, it is
never optimal to accumulate overdemanded pairs.

The upper bound for the first case is calculated as

𝜆(𝑝𝐴−𝐵 + 𝑝𝐵−𝐴)
𝜆(𝑝𝐴−𝐵 + 𝑝𝐵−𝐴) + 𝜌

(
3 + 𝜆(𝑝𝐴−𝐵 + 𝑝𝐵−𝐴)

𝜌

)
. (14)

The coefficient on the left is the expected discounting until a reciprocal pair arrives; this is when a
three-way exchange is conducted (thus, the term 3 inside the parenthesis). The second expression
the parenthesis is the upper bound for the surplus of reciprocal pairs. It is an upper bound because
it is argued that it assumes all incoming reciprocal pairs are matched as soon as they arrive.

The lower bound for the second case is calculated as

2 + 2
𝜆(min{𝑝𝐵−𝐴 , 𝑝𝐴−𝐵 })

𝜌
. (15)

Thefirst item represents the surplus obtainedbymatching theoverdemandedpair immediatelywith
an underdemanded pair (thus, 2). The second term is argued to be a lower bound for the future sur-
plus of all reciprocal pairs. The reasoning is as follows: If reciprocal pairs are matched exclusively
with each other, the amount of exchanges would be bounded by the less frequently arriving type,
and thus, this lower bound would be equal to∑

2(𝛿 min{𝑝𝐴−𝐵 , 𝑝𝐵−𝐴})𝑘 .

We argue and claim that both of these bounds are not proper.

Expression (14) is not an upper bound. If there are sufficiently many 𝐵 − 𝐴 pairs in the pool, then
the upper bound for the future surplus would be 2𝜆(𝑝𝐴−𝐵 )

𝜌
, which is bigger than 𝜆(𝑝𝐴−𝐵+𝑝𝐵−𝐴 )

𝜌
. Thus,

Expression (14) is an upper bound only if we assume that there are no pairs in the pool as the next
reciprocal pair arrives.

Expression (15) is not a lower bound. Suppose,without loss of generality, that 𝐵 − 𝐴 pairs arrive less
frequently then 𝐴 − 𝐵 pairs. Then, this approach assumes that whenever a 𝐵 − 𝐴 pair arrives, there is
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an𝐴−𝐵 pair in the pool. But, thiswould be equivalent to the future surplus in the extreme casewhere
there are infinitely many 𝐴 − 𝐵 pairs at the beginning, which is not a lower bound assumption.32

To argue further, suppose 𝑝𝐴−𝐵 = 𝑝𝐵−𝐴 . Then, the upper bound for the future surplus (𝜆(𝑝𝐴−𝐵+𝑝𝐵−𝐴 )𝜌
)

would be equal to the lower bound for the future surplus (2𝜆min{𝑝𝐵−𝐴 ,𝑝𝐴−𝐵 }
𝜌

). This means that if arrival
probabilities are equal to each other, then the future surplus is (exactly) equal to 2𝜆𝑝𝐴−𝐵

𝜌
and it is inde-

pendent from the state of theMarkov decision process (MDP). But, this is impossible, since the future
surplus certainly depends on the state.

Remark 1.Wehave argued so far that the proof of Proposition 3 is incorrect. But, this does not actually
prove that Proposition 3 is incorrect. To prove that it is incorrect, we have to show that there exists some
𝜆, 𝜌 and arrival probabilities (that satisfy the other assumptions in Ünver, 2010) with 𝑝𝐴−𝐵 = 𝑝𝐵−𝐴 ,
such that in the optimal mechanism, it is optimal to accumulate at least one overdemanded pair type
for at least one period. The numerical example in Figure 8 in Section IV of this Online Appendix proves
this.

II. Illustration of propagation and closedness: A two-dimensional example.

We illustrate the concept of closedness inpropagation in a two-dimensional setting. Supposewehave
a function 𝑓 : ℤ2 → ℝ that is concave in each of the two components. Suppose we have two opera-
tors,𝑇1 defined by the equation (𝑇1 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒1) + 𝑎1} and𝑇2 defined by the equation
(𝑇2 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒2) + 𝑎2}. Suppose we want to show that concavity is propagated by the
operators so that𝑇1 𝑓 and𝑇2 𝑓 are also concave in each component. Take the concavity in 𝑒2 property
and the operator𝑇1 𝑓 . We need to show for any 𝑥 ∈ ℕ𝑛 ,

max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒1) + 𝑎1
}
+

max{𝑓 (𝑥 + 2𝑒2), 𝑓 (𝑥 + 2𝑒2 − 𝑒1) + 𝑎1}

≤ 2max{𝑓 (𝑥 + 𝑒2), 𝑓 (𝑥 + 𝑒2 − 𝑒1) + 𝑎1}

Applying theargumentwedevelopedabove, symmetric cases easily follow, and thefirst caseof asym-
metry requires showing that for any 𝑥 ∈ ℕ𝑛 ,

𝑓 (𝑥) + 𝑓 (𝑥 + 2𝑒2 − 𝑒1) ≤ 𝑓 (𝑥 + 𝑒2) + 𝑓 (𝑥 + 𝑒2 − 𝑒1)

which does not generally hold, unless 𝑓 is also superconcave. Thus, we are not able to propagate
concavity alone, and the set of properties that consists of concavity in the two components are not
closed for the operators𝑇1 and𝑇2.

Now suppose that, in addition to being directionally concave, 𝑓 is also superconcave, and we want
to show that 𝑇1 𝑓 and 𝑇2 𝑓 are also superconcave, in addition to being concave. Then, by the above
32This calculated bound would be closer to the lower bound if |𝑝𝐴−𝐵 − 𝑝𝐵−𝐴 | is large enough. In this case, it would be

more likely that there are 𝐴 − 𝐵 pairs in the pool whenever a 𝐵 − 𝐴 pair arrives. But, the proof is only for the cases where
|𝑝𝐴−𝐵 − 𝑝𝐵−𝐴 | is small enough.
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argument, we are able to propagate concavity.33 What remains to show is that 𝑇1 𝑓 and 𝑇2 𝑓 are also
superconcave. By symmetry, it suffices to show that 𝑖 𝑗 -superconcavity for components 𝑖 = 1 and 𝑗 = 2

is propagated by the two operators.𝑇1 propagating 𝑖 𝑗 -superconcavity for components 𝑖 = 1 and 𝑗 = 2

is equivalent to for any 𝑥 ∈ ℕ𝑛

max{𝑓 (𝑥 + 𝑒2), 𝑓 (𝑥 + 𝑒2 − 𝑒1) + 𝑎1
}
+

max{𝑓 (𝑥 + 2𝑒1), 𝑓 (𝑥 + 𝑒1) + 𝑎1}.

≤ max{𝑓 (𝑥 + 𝑒1), 𝑓 (𝑥) + 𝑎1} +

max{𝑓 (𝑥 + 𝑒1 + 𝑒2), 𝑓 (𝑥 + 𝑒2) + 𝑎1}

Again, the symmetric cases easily follow. The first case of asymmetry also easily follows since by
choosing the first and second arguments on the right-hand side, the two sides of the inequality
become equal. Suppose we have the second case of asymmetry so that the left-hand side equals
𝑓 (𝑥 + 𝑒2 − 𝑒1) + 𝑎1 + 𝑓 (𝑥 + 2𝑒1). Again choosing the first and second arguments respectively on the
right-hand side, it suffices to show that 𝑓 (𝑥 + 2𝑒1) − 𝑓 (𝑥 + 𝑒1) ≤ 𝑓 (𝑥 + 𝑒2) − 𝑓 (𝑥 + 𝑒2 − 𝑒1). By concavity,
𝑓 (𝑥 +2𝑒1) − 𝑓 (𝑥 +𝑒1) ≤ 𝑓 (𝑥 +𝑒1) − 𝑓 (𝑥) andby superconcavity 𝑓 (𝑥 +𝑒1) − 𝑓 (𝑥) ≤ 𝑓 (𝑥 +𝑒2) − 𝑓 (𝑥 +𝑒2−𝑒1).
By combining the two expressions, inequality follows.

To show𝑇2 𝑓 is superconcave, we need to show for any 𝑥 ∈ ℕ𝑛 ,

max{𝑓 (𝑥 + 𝑒2), 𝑓 (𝑥) + 𝑎2
}
+

max{𝑓 (𝑥 + 2𝑒1), 𝑓 (𝑥 + 2𝑒1 − 𝑒2) + 𝑎2}.

≤ max{𝑓 (𝑥 + 𝑒1), 𝑓 (𝑥 + 𝑒1 − 𝑒2) + 𝑎2} +

max{𝑓 (𝑥 + 𝑒1 + 𝑒2), 𝑓 (𝑥 + 𝑒1) + 𝑎2}

Noting that symmetric cases follow, we first look at the first case of asymmetry, where the left-hand
side equals 𝑓 (𝑥 +𝑒2) + 𝑓 (𝑥 +2𝑒1 −𝑒2) +𝑎2. Choosing the first and second arguments on the right-hand
side and letting 𝑥 ′ = 𝑥 +𝑒1, it suffices to show 𝑓 (𝑥 ′+𝑒2−𝑒1) + 𝑓 (𝑥 ′+𝑒1−𝑒2) ≤ 2𝑓 (𝑥 ′). By superconcavity,
we have 𝑓 (𝑥 ′ +𝑒1) − 𝑓 (𝑥 ′) ≤ 𝑓 (𝑥 ′ +𝑒2) − 𝑓 (𝑥 ′ +𝑒2−𝑒1), and 𝑓 (𝑥 ′ +𝑒2) − 𝑓 (𝑥 ′) ≤ 𝑓 (𝑥 ′ +𝑒1) − 𝑓 (𝑥 ′ +𝑒1−𝑒2).
Multiplying the first inequality by−1 and summing the inequalities, we obtain 𝑓 (𝑥 ′ +𝑒2 −𝑒1) − 𝑓 (𝑥) ≤
𝑓 (𝑥) − 𝑓 (𝑥 ′ + 𝑒1 − 𝑒2), fromwhich the desired inequality follows. In the second case of asymmetry, we
can choose the first and second arguments to obtain the definition of concavity in 𝑒1. This finishes
the proof of our desired propagation results.

Notice that, even though we could not prove𝑇1 𝑓 and𝑇2 𝑓 are concave by just assuming that 𝑓 is con-
cave, we are able to prove𝑇𝑖 𝑓 is concave and superconcave by assuming 𝑓 is concave and supercon-
cave. Thus, even though concavity did not propagate alone, it propagates together with supercon-
cavity. This makes the set of properties {concavity, superconcavity} closed with respect to the set of
operators {𝑇1,𝑇2}. With the same methodology, we can further show that an operator of the form
(𝑇12 𝑓 ) (𝑥) = max{𝑓 (𝑥), 𝑓 (𝑥 − 𝑒1 − 𝑒2) + 𝑎12} will also propagate the desired properties, if we further
33Second case of asymmetry similarly follows from superconcavity.
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restrict the set of properties by including supermodularity. □

III. Numerical example for the unbalanced dynamic exchange

We provide a numerical example in Figure 7 for the unbalanced case. The figure depicts the set of
reachable states for a unbalanced problem for 𝑝𝐴−𝐵 = 0.0635, 𝑝𝐵−𝐴 = 0.0381, 𝑝𝕆𝐴−𝐵 = 0.00626, 𝑝𝕆𝐵−𝐴 =

0.021, 𝛿 = 0.999. Thehorizontal axis is 𝑠2−𝑠3 and the vertical axis is 𝑠1. Note that 𝑠4 = 0 for all reachable
states.

Figure 7: A numerical example

IV. Balanced dynamic exchange

We have described a special case of the optimal mechanism, the unbalanced dynamic exchange, in
themain text. Here, we refer to the other case as a balanced dynamic exchange. Numerically, a prob-
lem is a balanced dynamic exchange when the arrival probabilities 𝑝𝐴−𝐵 and 𝑝𝐵−𝐴 are sufficiently
close to each other. In a balanced dynamic exchange problem, the only restriction on the set of reach-
able states is given by Observation 5 (i) and Theorem 6. This latter theorem implies that the set of
reachable states is connected in each dimension, inducing an interval structure.

However, intuitively, one would expect the set of reachable states to not contain a state 𝑠 with 𝑠1 > 0

and 𝑠2 > 0, or 𝑠3 > 0 and 𝑠4 > 0, since existing 𝐴 − 𝐵 and𝕆𝐴−𝐵 pairs can make a three-way exchange.
Moreover, if the mechanism implements a policy such that the 𝐴 − 𝐵 pair is reserved for future in-
coming 𝐵 − 𝐴 pair, then it is also expected intuitively that the𝕆𝐴−𝐵 pair is not reserved, andmatched
immediately in a two-way exchange.

But, it turns out that this intuition is incorrect. In fact, numerically, we observe reachable states 𝑠
with 𝑠1, 𝑠2, 𝑠4 > 0 at the same time. We explore the intuition behind reserving 𝐴 − 𝐵 pairs together
with𝕆𝐴−𝐵 pairs for future exchanges. First, we analyze the optimalmechanism for this most general
case. The state space is in general four dimensional. But, by Observation 5 (i) and letting 𝑠 ′ = 𝑠2 − 𝑠3
to denote the 𝑥-axis as in Section 7.1, we obtain a three dimensional set of reachable states. We first
illustrate the numerically calculated set of reachable states for certain parameter values (see Figure
8).34
34As always, any state 𝑠 with 𝑠1 = 𝑠4 = 0 is reachable, so we have the linear set of points at the bottom.
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s2 − s3
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Figure 8: The set of reachable states for a balanced problem for 𝑝𝐴−𝐵 = 𝑝𝐵−𝐴 = 0.0508, 𝑝𝕆𝐴−𝐵 =

𝑝𝕆𝐵−𝐴 = 0.001346, 𝛿 = 0.999. Note that the set of reachable states is symmetric with respect to the
plane 𝑠2 − 𝑠3 = 0.

This graph points to the similarity between unbalanced and balanced problems. Recall that the set
of reachable states in an unbalanced problem is a triangular region (Figure 5). Here, this is instead a
polyhedral shape. The intuition for this shape is the same as before: TheD𝑀 -multimodularity of the
value function (Theorem 2) implies substitutability and complementarity relation between different
types, which in turn implies trade-offs generating triangular regions of reachable states.

Another complicationwith the balanced problem is that the number of decisions ismuchbigger. For
example, suppose that a 𝐵 − 𝐴 pair arrives. Then, the mechanism can: (i)match the incoming pair
with an existing 𝐴 − 𝐵 pair, (ii)match the incoming pair with an𝕆𝐵−𝐴 pair, (iii)match the incoming
pair with an existing 𝐴 − 𝐵 pair and match an existing 𝕆𝐴−𝐵 pair with an underdemanded pair, (iv)
match the incomingpairwith an existing𝐴−𝐵 pair andmatch anexisting𝕆𝐵−𝐴 pairwith anunderde-
manded pair. Althoughwe can eliminate some of these actions depending on the state, at least three
actions remain for each state. This implies that the threshold mechanism for the balanced problem
is a multiple thresholds mechanism, such that for 𝑡1, 𝑡2 with 𝑡1 < 𝑡2, the actions depend on whether
𝑠 < 𝑡1, 𝑡1 < 𝑠 < 𝑡2, or 𝑡2 < 𝑠 . Moreover, thresholds themselves are multidimensional functions of
the form 𝑡 : ℕ2 → ℕ, and their properties as functions are again determined byD𝑀 -multimodularity
and Theorems 4-6.

We now explain the only counter-intuitive result which the balanced problem entails, the fact that
there are reachable states 𝑠 with 𝑠1 > 0 and 𝑠2 > 0, i.e. it is possible for optimal mechanism to hold
𝕆𝐴−𝐵 pairs together with 𝐴 − 𝐵 pairs. The reason this result is counter-intuitive is because, in Sec-
tion 7.1, the optimal mechanism pools 𝕆𝐴−𝐵 to save future incoming 𝐴 − 𝐵 pairs, as they will likely
be excessive. Thus, whywould the optimalmechanism keep reserving𝕆𝐴−𝐵 pairs when an 𝐴 −𝐵 pair
arrives? We illustrate the answer with an example.

Example 2. Suppose that each arriving pair is an 𝐴 − 𝐵 pair with 1/2 probability and a 𝐵 − 𝐴 pair
with 1/2probability. Thus, we assume that no underdemanded or overdemanded pair arrives after the
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process starts. Further assume that we have an 𝕆𝐴−𝐵 pair at the start of the process (but no such pair
will arrive later). Thus, we can (i) match the existing𝕆𝐴−𝐵 pair with an underdemanded pair to gain
a surplus of 2 at time 0, (ii) wait for an 𝐴 −𝐵 pair to arrive andmatch the existing𝕆𝐴−𝐵 in a three-way
exchange. Supposewe opted for the first option and gained a surplus of 2. Now suppose that next three
arriving pairs are all 𝐴 − 𝐵 . Since the probabilities are equal, it would be expected that this excess of
𝐴 − 𝐵 pairs persists for some time. Thus, if we waited for a couple of periods, and matched the 𝕆𝐴−𝐵

pair in a three-way exchange when the excess occurs, we could have saved an 𝐴 −𝐵 pair for waiting an
excessive period of time. Now suppose thatwe decided towait for an incoming 𝐴−𝐵 pair, andmatched
the𝕆𝐴−𝐵 pair with the first 𝐴 − 𝐵 pair. Now suppose that after we do this, three 𝐵 − 𝐴 pairs arrived in a
row. Same as before, this imbalance will imply a loss of surplus, since excess𝐵 −𝐴 pairs will likely wait
for long. But if we did not match the𝕆𝐴−𝐵 pair with an 𝐴 − 𝐵 pair, we could have used this 𝐴 − 𝐵 pair
to match one of the excess 𝐵 − 𝐴 pairs, andmatched the𝕆𝐴−𝐵 pair with an underdemanded pair, and
used one excess pair without losing any surplus.

We see that, both strategies fail to achieve themaximum surplus for some sequence of incoming pairs.
Now consider the following strategy: We set some threshold for the imbalance, say, three excess pairs
of 𝐴 − 𝐵 and two excess pairs of 𝐵 − 𝐴, and the 𝕆𝐴−𝐵 pairs are reserved, until one of these forms of
imbalances occur. If the first case of imbalance occurs, the𝕆𝐴−𝐵 pair is matched with one of the 𝐴 − 𝐵
pairs. If the second case of imbalance occurs, the 𝕆𝐴−𝐵 pair is matched in a two-way exchange. This
strategy is not dominated by either of the strategies we have discussed above, it is better than at least
one of these strategies for some sequence of incomingpairs. This is precisely the strategywenumerically
observe (although the exact numbers for thresholds depend on the problem).

Optimalmechanismuses overdemanded pairs as a buffer for future imbalances. It pools the overde-
manded pairs of both types up to certain numbers,35 until the reciprocal pairs reach a state of im-
balance, in which case, it uses one of the overdemanded pairs it has been reserving in the pool to
mitigate this imbalance. Thus, we call the set of reachable states we observe in the numerically cal-
culated figure above as the buffer zone.

Although the optimal mechanism for a balanced problem has a more complicated set of decisions
and states, it is closer to being a greedy algorithm (that always conducts the exchange of maximum
size) than the one for an unbalanced problem. This is because, when arrival probabilities are close
to each other, the case of future imbalance of reciprocal pairs is less likely. Thus, the incentives to not
conduct themaximal exchangediminish. For this reason, for abalanced problem, always conducting
themaximal exchange provides a good approximation to the optimal mechanism.

35However, it does so in amuch smaller scale than an unbalancedmechanism.
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