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1. INTRODUCTION

In many social and economic environments, an individual’s behavior or outcome (such

as a consumption choice or a test score) depends not only on his or her own characteris-

tics, but also on the behavior and characteristics of other individuals. Call such dependence

between two individuals a link. A social network consists of a group of individuals, some

of whom are linked to others. The econometrics literature on social networks has largely

focused on disentangling various channels of social effects based on observed outcomes

and characteristics of network members. These include identifying the effects on each in-

dividual’s outcome of (i) the individual’s own characteristics (individual effects), (ii) the

characteristics of people linked to the individual (contextual effects), and (iii) the outcomes

of people linked to the individual (peer effects). See Blume et al. (2011) and Graham (2020)

for extensive surveys about identifying such effects in social network models.

A popular approach for estimating social network models is to use two-stage least

squares (2SLS). This requires researchers to construct instruments for the endogenous peer

outcomes, using perfect knowledge of the network structure, as given by the adjacency ma-

trix (i.e., the matrix that lists all links in the network). See, for example, Bramoullé et al.

(2009), Kelejian and Prucha (1998), Lee (2007), and Lin (2010). In practice, samples of

network links are often collected from survey responses. Such samples may be subject to

an issue of misclassification in link status, due, e.g., to recall errors or misunderstandings

by survey respondents, or lapses in data input. These misclassification errors can be two-

sided: an existing link between two individuals may be misclassified as non-existent, or the

sample may erroneously record links between those who are not linked.

Misclassification of links in the sample poses major methodological challenges for es-

timators like 2SLS. To see this, consider a data-generating process (DGP) from which a

large number of independent networks (i.e., groups) are drawn. Each group consists of n

individual members.1 Suppose that in each group, a vector of individual outcomes y ∈ Rn

is determined by a structural model:

y = λGy +Xβ + ε, where E(ε|X,G) = 0.

1We later allow for a single growing network, but our results are easiest to illustrate in the context of many

independent, identically sized groups.
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In this model, the adjacency matrix, G, is an n-by-n matrix of dummy variables that de-

scribes the group’s network: the element in row j and column k of G equals one if in-

dividual j is linked to member k, and zero otherwise.2 Here X is an n-by-K matrix of

exogenous covariates, and ε is an n-vector of structural errors. The random arrays y, G, X ,

and ε all vary across the groups in the sample, while the coefficients λ and β are the same

across groups. We drop group subscripts for clarity.

For simplicity we have for now omitted contextual effects, i.e., a term defined as GXγ,

and any group-level fixed effects. Extensions of our results that deal with these features are

provided later in Section 5.

The regressors in the model are Gy and X . While X is exogenous, the regressors Gy

are correlated with ε. The issue of simultaneity arises here, because any one individual’s

outcome depends on, and is determined simultaneously with, the outcomes of other group

peers. A simple estimator of the peer effect λ and individual effects β that deals with this

simultaneity problem is 2SLS, using GX or G2X as instruments for Gy, as in Bramoullé

et al. (2009).3

But now suppose that, in each group, a researcher does not observe G perfectly, but

instead observes a noisy measure H , which differs from G by randomly misclassifying

some links in the data-generating process. The goal now is to estimate λ and β from a

“feasible” structural form like:

y = λHy +Xβ + u, (1)

where u≡ [ε+ λ(G−H)y] is a vector of composite errors.

The misclassified links inH aggravate endogeneity issues in (1) in three important ways.

First, they lead to correlation between X and the error u through λ(G−H)y, a component

of u that is due to the measurement error in the adjacency matrix. This component contains

2This is a “local-aggregate” network model, where the endogenous effect depends on the aggregate outcome

of those linked to an individual. It differs from a “local-average” network model, where the endogenous effect is

represented by the average outcome of those linked peers.
3If the model includes contextual effects GXγ in its structural form, then G2X can be used as instruments for

Gy; otherwise use of GX as instruments suffices.
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y which by the model is correlated with X . This means that the regressors X are no longer

exogenous!

Second, these misclassified links cause an additional source of endogeneity in Hy. Like

Gy, the feasibleHy is correlated with the model error ε due to simultaneity. But in addition,

Hy is also correlated with u through the measurement error term λ(G−H)y.

Third, misclassification means that, unlike using GX or G2X as instruments when G is

perfectly reported in the sample, 2SLS estimates based on the feasible instruments HX or

H2X would be inconsistent because HX correlates with λ(G−H)y, resulting in a failure

of instrument exogeneity.

For all these reasons, conventional 2SLS estimators of this model become inconsistent

in the presence of misclassification errors in the links.4

In this paper, we introduce an adjusted-2SLS estimator, which resolves these endogene-

ity issues and consistently estimates (λ,β) using alternative valid instruments constructed

from H despite the misclassification errors in the links. We first introduce the main idea for

a benchmark case, where an observed H differs from the true G due to random, two-sided

misclassification errors at unknown rates p0, p1 ∈ (0,1). Here, p1 is the probability that any

existing link is missing in the sample, while p0 is the probability that a non-existent link is

erroneously recorded as existing in the sample. Later, in Section 5, we extend our method

to allow the misclassification rates p0(X), p1(X) to depend on covariates.

Our method is based on a series of new insights that have not been explored in the

literature. First, we observe that by adjusting the noisy measure of peer outcomes Hy using

the misclassification rates (p0, p1), we restore the exogeneity of X in an adjusted feasible

structural form. Formally, this means if we replace (1) with:

y = λW(H,p0,p1)y +Xβ + v, (2)

where W(H,p0,p1) is a properly designed adjustment of the network measure H , then the

adjusted composite errors v ≡ ε+ λ[G−W(H,p0,p1)]y in (2) satisfy E(v|X,G) = 0. This

holds regardless of how the actual network G is formed, as long as E(ε|X,G) = 0.

4While we focus on the 2SLS estimator in this paper, the same arguments apply to show that conventional

maximum likelihood, and the generalized least squares estimators based on (1) are also inconsistent when there

are misclassification errors in the links.
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Second, despite the restored exogeneity of X in (2), conventional instruments such as

HX or H2X remain invalid, because the adjusted errors v still depend on H . To resolve

this issue, we provide alternative functions of H and X that are valid instruments. For

example, we show that if H is an unsymmetrized measure of the actual adjacency matrix

G, then H ′X is uncorrelated with v (where H ′ is the transpose of H), despite misclassi-

fication errors in H . This result holds regardless of whether G is symmetric (i.e., with all

links being undirected) or asymmetric (i.e., consisting of directed links). Therefore, we can

use H ′X as valid instruments in an adjusted-2SLS where peer outcomes are adjusted by

W(H,p0,p1). To the best of our knowledge, no other paper in the literature has proposedH ′X

as instruments.

Another scenario, which works regardless of whether the observed or actual adjacency

matrices are symmetric or not, is when we observe two noisy measures of the same actual

G. An example is our empirical application, where we observe two different reports of who

visits whom. This means we observe two different H matrices with independent misclassi-

fication errors. We show 2SLS becomes valid if we use one of these matrices to construct

the adjustment term W(H,p0,p1) and the other to construct instruments.

Our third contribution is to show that under either scenario above (i.e., when the sample

reports either a single unsymmetrized noisy measure H , or two independent measures that

may or may not be symmetrized), we can provide simple methods to identify and estimate

the unknown misclassification rates (p0, p1).5

Building on these insights, we construct adjusted 2SLS estimators for (λ,β), and provide

their limiting distribution as the number of groups in the sample grows to infinity. This

estimator essentially applies 2SLS to the adjusted peer outcomes W(H,p0,p1)y in (2), using

our new instruments and a closed-form, sample analog estimator for the misclassification

rates (p0, p1). The estimator is easy to implement, does not require any numerical searches,

and Monte Carlo simulations demonstrate its good performance in finite samples.

5The approach we take in this step differs from, and is simpler than, other papers that use multiple measures to

deal with misclassification in discrete explanatory variables (e.g. Mahajan (2006), Lewbel (2007), and Hu (2008)).

This is because, for implementing our adjusted-2SLS, it is only necessary to estimate the rates (p0, p1), rather

than the distribution of outcomes conditional on the actual G.
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We then generalize the model and our estimator in several directions. We show how to

include contextual effects (a term defined as GXγ) as well as group-level fixed effects into

the structural form in (2). We also allow the misclassification rates (p0, p1) to be heteroge-

neous and depend on covariates in X . Furthermore, we extend our method to the case of a

single large network where the sample can partitioned into approximate groups.

Finally, we apply our method to estimate peer effects in household decisions to partici-

pate in a microfinance program in Indian villages, using data from Banerjee et al. (2013).

We match the individual survey to the household survey there, yielding a sample of 4,149

households from 43 villages in South India. The parameter of interest is the peer (endorse-

ment) effect, which reflects how a household’s decision is influenced by the microfinance

program participation of other households to which it is linked. Survey information about

visits between the households provides two symmetrized noisy measures of undirected

links (i.e., two symmetrized H measures). We estimate the misclassification rates in each

of these two measures using our method, and apply these estimated rates in our adjusted-

2SLS procedure to estimate the peer effects.

We find that participation by another linked household increases a household’s own par-

ticipation rate by around 5.1%. This effect is economically significant, compared to the

average participation rate of 18.9% in the sample. We also find that ignoring the issue of

link misclassification in the noisy measures and applying conventional 2SLS estimation

results in an upward bias in the estimates of these peer effects (Monte Carlo simulations

show that this bias can be large, though it turns out to be modest in our application).

Roadmap. Section 2 reviews the related literature, and explains our contribution in its con-

text. Section 3 specifies the model, and illustrates the main ideas in a benchmark model with

independent and identical misclassification rates. Section 4 defines a closed-form estima-

tor for the misclassification rates, and provides an adjusted-2SLS estimator for the social

effects. Section 5 extends the method to settings with contextual effects, heterogeneous

misclassification rates, or group fixed effects, and to the setting of a single large network.

Section 6 presents Monte Carlo simulation results. Section 7 applies our method to ana-

lyze peer effects in microfinance participation in India. Proofs are collected in the Online

Appendix.
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2. RELATED LITERATURE

Models with misclassified binary or discrete variables have been studied extensively in

the econometrics literature. Aigner et al. (1973), Klepper (1988), Bollinger (1996), and

Molinari (2008) point-identify or set-identify such models using various restrictions on the

misclassification rates; Mahajan (2006), Lewbel (2007), and Hu (2008) exploit exogenous

instruments to deal with misclassified explanatory variables.

Estimation of peer effects in social networks with measurement errors in the links is an

increasingly important topic. Butts (2003) proposes a hierarchical Bayesian model to infer

social structure in the presence of measurement errors. Shalizi and Rinaldo (2013) note

the challenge of dealing with missing network links in Random Graph Models. Advani

and Malde (2018) show that even a relatively low misreporting rate can lead to large bias in

causal effect estimates. Chandrasekhar and Lewis (2011) show how egocentrically sampled

network data can be used to predict the full network in a graphical reconstruction process.

Liu (2013a) shows that when the adjacency matrix is not row-normalized, instrumental

variable estimators based on an out-degree distribution can be valid.

Hardy et al. (2019) estimate treatment effects on a social network when the reported

links are a noisy representation of true spillover pathways. They use a mixture model that

accounts for missing links as unobserved network heterogeneity, and estimate it using an

Expectation-Maximization algorithm. This approach requires a parametric model of how

links are determined and treatment is assigned, and requires enumerating the likelihood

conditional on all possible treatment exposures (which in turn depends on the latent un-

observed network). Auerbach (2022) studies a network model where links are correctly

measured but both peer and contextual effects interact with unobserved individual hetero-

geneity that affects link formation. In contrast with these papers, we focus on estimating

social effects in linear social networks while fully exploiting implications of randomly mis-

classified links. Our method does not require modeling the formation of actual links; our

estimator is an adjusted 2SLS, which has a closed form and is easy to compute.

Liu (2013b) estimates a social network model when the data consists of a subset of

individuals sampled randomly from a larger group in the population. In his setting, the

links and outcomes among this sampled subset of group members are perfectly measured
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while those of all others are not reported in the data.6 In comparison, we do not study

the inference of sampled networks; instead, we let the group memberships be fixed and

known, and allow every individual in the sample to have randomly misclassified links. As

noted above, this imperfect measure of links leads to failure of conventional 2SLS in our

setting.

Boucher and Houndetoungan (2020) estimate peer effects when the social networks in

the sample are subject to measurement issues, such as missing or misclassified links. They

also consider the case when the researcher has access to aggregated relational data only.

Their method requires researchers know, or have a consistent estimator of, the distribution

of the actual network. They construct instruments by drawing from this distribution, and

use 2SLS to estimate the peer effects. In comparison, the method we propose does not

require such prior knowledge or estimates of network distribution.

Griffith (2022) studies the case where links are censored in the sample, and character-

izes the bias in a reduced-form regression (i.e., when the outcomes in y are regressed on

exogenous covariates X and GX). For a model with λ = 0, Griffith (2022) shows the

bias can be consistently estimated under an order invariance condition, i.e., the covariance

of characteristics of those linked to an individual is invariant to the order in which those

links are reported or censored.7 Griffith and Kim (2023) extend this investigation to in-

clude both linear-in-sums (where G has binary entries) and linear-in-means (where G is

row-normalized). They show how nonzero, structural peer effects λ enter the estimand of

the reduced-form regression above, as well as how general misclassification, e.g., due to

randomly missing links or censored links, affect these estimands. In comparison, we focus

on empirical settings where links are misclassified at random. (This is later generalized

to the case with heterogeneous misclassification rates.) We show that conventional 2SLS

estimands in this case contain bias in peer effects (e.g., an augmentation bias when misclas-

sification is one-sided with p0 = 0 and p1 > 0), and no bias in other individual effects. Bias

6In our notation, this means some rows in G, as well as their corresponding rows in Y and X , are not included

in the data due to random sampling.
7This condition mitigates the issue of endogenous selection of uncensored links, and in this sense plays a

similar role to our assumption of randomly misclassified links.
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correction in our case is immediate once the misclassification rates are estimated using a

simple approach that we provide.

Lewbel et al. (2023) show that if the order of measurement errors in links is sufficiently

small (e.g., the number of misclassified links in a single, large network does not grow

too fast with the sample size), conventional instrumental variables estimators that ignore

these measurement errors remain consistent, and standard asymptotic inference methods

remain valid. They also provide specific examples in which the link formation or misclas-

sification rates decrease with the sample size to imply such a small order of measurement

errors. In contrast, in this paper we deal with new challenges outside the scope of Lewbel

et al. (2023). Namely, we allow the misclassification rates to non-diminishing (fixed) in

an asymptotic framework with many independent, finite-sized groups. In such settings, the

measurement errors are large enough to invalidate conventional 2SLS estimators.

3. MODEL AND IDENTIFICATION

Consider a DGP from which a large number of small, independent networks (groups) are

drawn, such as villages or classrooms.8 We will first identify and estimate a linear social

network model when links are randomly misclassified in the sample (we later allow mis-

classification probabilities to depend on covariates). We establish the asymptotic properties

of our estimator as the number of groups in the sample approaches infinity.

The structural form for the vector of individual outcomes ys ∈Rns in group s is:

ys = λGsy +Xsβ + εs, (3)

where the peer effect λ and the direct effects β are constant parameters of interest, Xs is an

ns-by-K matrix of individual- or group-level explanatory variables, and Gs ∈ {0,1}ns×ns

is the network (adjacency) matrix for group s, with its (i, j)-th entry Gs,ij = 1 if an in-

dividual member i is linked to another member j in group s, and Gs,ij = 0 otherwise.

The matrix Gs may be asymmetric with directed links (Gs,ij ̸= Gs,ji for some i ̸= j), or

symmetric with undirected links (Gs,ij =Gs,ji for all i ̸= j almost surely).

8Later in Section 5.4 and the Online Appendix we consider the extension to a single growing network, which

includes links both between and within groups. Each group s consists of ns ≥ 3 individual members.
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Let Is by an ns-by-ns identity matrix, and assume (Is−λGs) is invertible almost surely.

A sufficient condition for this is that ||λGs|| < 1 for any matrix norm || · || almost surely.

Solving equation (3) for ys gives the reduced form for outcomes:

ys =Ms(Xsβ + εs), where Ms ≡ (Is − λGs)
−1. (4)

We do not observe the Gs matrices. Instead, for each group s, the sample reports a noisy

measure Hs ∈ {0,1}ns×ns of the actual adjacency matrix Gs. That is, for some unknown

pairs of individuals i ̸= j, Gs,ij is randomly misclassified as Hs,ij = 1−Gs,ij . By conven-

tion, let Gs,ii = 0 and Hs,ii = 0 for all i and s.

To simplify exposition, we let the group sizes ns = n be fixed across groups s =

1,2, ..., S for now. This allows us to drop the group subscript s while presenting our identi-

fication argument. We will later add back these group subscripts and allow for variation in

group sizes when we define our estimator in Section 4.

3.1. Assumptions

We maintain the following conditions on the noisy measure H throughout Section 3:

(A1) E(Hij |G,X) =E(Hij |Gij ,X) for all i and j;

(A2) E(Hij |Gij = 1,X) = 1− p1, E(Hij |Gij = 0,X) = p0, and p0 + p1 < 1 for all i ̸= j;

(A3) E(ε|G,X,H) = 0.

Condition (A1) states the incidence of misclassifying a link between individuals i and j

is conditionally independent from the actual status of all other links. Under (A2), misclas-

sification probabilities conditional on actual link status are fixed at p0 and p1 respectively,

and are independent from X (we will later allow these probabilities to depend on X). With

Pr{Gij = 1}< 1, the inequality constraint “p0 + p1 < 1” is equivalent to “Hij and Gij are

positively correlated.” That is, the noisy measure is positively correlated with the actual

link status despite the misclassification error. This is a standard condition in the literature

on misclassified regressors, e.g., Bollinger (1996), Hausman et al. (1998), and ensures the

relevance of the instrumental variable constructed by H . Condition (A3) rules out endo-

geneity in link formation, assuming (G,X,H) are exogenous to structural errors ε.
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Conditions (A1) and (A2) hold jointly in two common scenarios. In the first scenario,

which we refer to as unsymmetrized measures, each (i, j)-th entry in H is an independent

measure of Gij . For example, Hij (or Hji) reports individual i’s (or j’s) binary response to

a survey question about whether a link exists between i and j. A measureH constructed this

way is flexible in that it allows the researcher to remain agnostic about whether the actual

G is symmetric with undirected links or not. This is also an intuitive way to construct

H when the actual G is known to be asymmetric with directed links. In this scenario, if

misclassification of Gij happens independently at rates p0 or p1 across links (depending on

whether Gij = 1 or 0), then (A1) and (A2) are satisfied. To reiterate, (A1) and (A2) hold in

this first scenario, regardless of whether the actual G is symmetric or not.

In the second scenario, which we refer to as symmetrized measures, the actualG is known

to be symmetric with undirected links, and hence the researcher chooses to symmetrize H

by combining independent measures of entries in G. For example, the researcher asks i

and j whether they have an undirected link, and records their responses respectively. The

researcher then constructs a symmetrized measure by setting Hij and Hji both to 1 if

either i or j responds positively, and both to 0 otherwise. Suppose the responses from i

or j independently misclassify an existing link at rate φ1 > 0 (say, due to idiosyncratic

recall errors). Then Pr{Hij = 0|Gij = 1} ≡ p1 = φ2
1. Likewise, if i and j independently

misclassify a non-existent link at rate φ0, then Pr{Hij = 1|Gij = 0} ≡ p0 = 1− (1−φ0)
2.

Thus, in this second scenario, (A1) and (A2) hold with Pr{Hij = Hji} = 1 and with the

two entries sharing the same misclassification rates p1 and p0 specified above.

On the other hand, (A1) does rule out a third, empirically less plausible scenario, in

which the actual G is asymmetric with directed links but researchers mistakenly impose a

symmetrized H using independent measures of Gij and Gji as in the second scenario. In

this case, the equality in (A1) fails in general because E(Hij |Gij = 1,Gji = 1) = 1− φ2
1

while E(Hij |Gij = 1,Gji = 0) = φ0 + (1− φ1)− φ0(1− φ1).

A clear advantage of the method we propose is that it allows researchers to consistently

estimate social effects while being agnostic about whether the actual links in G are di-

rected or not. Our method only requires the noisy measure H satisfy (A1)-(A3), which, as

explained above, is not confined to the (a)symmetry of G or H . We therefore recommend

a simple guideline for practitioners collecting link data: if a researcher is unsure about

whether the actual links in G are directed or undirected, then a safe approach is to con-
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struct an unsymmetrized measure H as in the first scenario, and apply our method in this

paper to deal with possible misclassification of the links.

It is important to note that (A1)-(A3) do not specify how the actual links in G are

formed. These conditions do not impose any known information about the actual adja-

cency matrix, except for its exogeneity in (A3). Nor do they impose any structure that can

be used to derive a conditional likelihood for the actual network, which is Pr{G|H,X}=
Pr(H|G,X)Pr(G|X)∑
G′ Pr(H|G′,X)Pr(G′|X) . Constructing such a likelihood would require specifying the like-

lihood of the actual network Pr{G|X}, which we refrain from doing in this paper. Our

method therefore differs qualitatively from alternative methods which either use graphi-

cal reconstructions such as Chandrasekhar and Lewis (2011), or require knowledge of the

distribution of actual adjacency matrix such as Boucher and Houndetoungan (2020).

Define an infeasible, adjusted measure of the adjacency matrix:

W ≡W(H,p0,p1) ≡
H − p0(ιι

′ − I)

1− p0 − p1
,

where ι is a vector of ones and (ιι′−I) is a square matrix with all off-diagonal entries being

1 and all diagonal entries being 0. For the rest of this paper, we suppress subscripts indi-

cating the arguments (H,p0, p1) in W to simplify notation. Then, Wij = (Hij − p0)/(1−
p0 − p1) for i ̸= j, and Wii =Hii = 0. Under (A1) and (A2), E(Wij |G,X) = 1 whenever

Gij = 1, and E(Wij |G,X) = 0 whenever Gij = 0 (including the case with i= j). Thus,

E(W |G,X) =G. (5)

In the next subsection, we exploit this property in (5) to establish a useful intermediate

result: despite link misclassification, (λ,β) could be consistently estimated by an adjusted

2SLS if the misclassification rates p0, p1 were known.

3.2. Infeasible two-stage least squares

We write a new adjusted structural form using W :

y = λWy +Xβ + ε+ λ (G−W )y︸ ︷︷ ︸
≡v

. (6)
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This form is infeasible because W is a function of the unknown misclassification rates

p0 and p1. Lemma 1 shows X is uncorrelated with its composite errors v, despite link

misclassification.

LEMMA 1: Under (A1), (A2), and (A3), E(v|G,X) = 0.

This lemma is fundamental for our method; it restores exogeneity of X by adjusting the

structural form properly to account for link misclassification. Such exogeneity then allows

us to construct instruments that depend on X .

The importance of Lemma 1 is best illustrated in contrast with the naive structural form

in (1), i.e., y = λHy+Xβ+ u, which ignores misclassification errors and simply uses Hy

as peer outcomes on the right-hand side. The composition errors in (1) are:

u= ε+ λ(G−H)y = v + λ(W −H)y

= v +

(
p0 + p1

1− p0 − p1

)
λHy−

(
p0

1− p0 − p1

)
λ(ιι′ − I)y. (7)

While E(v|G,X) = 0 by Lemma 1, the second and third terms on the right-hand side of (7)

do not satisfy such mean independence. Therefore, in a simple, feasible structural form that

uses Hy instead of Wy, the covariates in X are generally endogenous due to the ignored

misclassification errors. Later we show such endogeneity leads to an “augmentation bias”

in the 2SLS estimation of (1) when misclassification is one-sided (p0 = 0). To reiterate,

Lemma 1 shows that the adjustment in W is crucial for restoring exogeneity of X in (6).

Lemma 1 may seem surprising ex ante, because one would expect (G,X) to be corre-

lated with the composite error v which depends on y. The intuition for the exogeneity in

this lemma is as follows. Once we condition on the actual adjacency G and X , randomness

in individual outcomes y is solely due to the actual structural errors ε, which are uncorre-

lated with both X and (H,G) under (A3). As a result, any potential correlation between

v and (G,X) could only be due to the measurement error λ(G−W )y. But the property

established in (5) and the exogeneity of ε in (A3) imply this measurement error is mean-

independent from (G,X). A formal proof of Lemma 1 is in the Online Appendix.

Note that we can not use the exogeneity established in Lemma 1 alone to construct

GMM estimators for (λ, p0, p1), because it does not suffice for the joint identification of

these parameters. This can be easily seen in the special case where the misclassification
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is one-sided (p0 = 0). In that case, the conditional moment due to Lemma 1 simplifies to

E(y− λ
1−p1

Hy−Xβ|G,X) = 0, which is not sufficient for recovering λ and p1 separately

even if G were perfectly observed in the data-generating process.

Our goal for the rest of Section 3 is to combine the exogeneity attained in Lemma 1

with further information, such as instruments and multiple measures H , to identify all

model parameters, including the misclassification rates. First off, note the term Wy in (6)

remains endogenous, even if the misclassification rates were known and used to construct

the adjusted measure W . This is because E[(Wy)′ v] ̸= 0 in general.9

We next consider 2SLS estimation of equation (6). Let R ≡ (Wy,X). Suppose that we

had a set of instruments Z for R, i.e., instruments that we could use to estimate equation

(6). By Lemma 1, Z can include X , so we only need an additional instrument for Wy.

We will later provide some possible instruments for Wy. But for now, just consider what

properties any such matrix of instruments Z must satisfy. Z must be an n-by-L matrix with

L≥K + 1 such that E(Z ′v) = 0 and the following rank condition holds:

(IV-R) E(Z ′R) and E(Z ′Z) have full column rank.

Let Π≡ [E(Z ′Z)]
−1
E(Z ′R). By (6) and Lemma 1,

Π′E(Z ′y) = Π′E(Z ′R)(λ,β′)′ +Π′E(Z ′v)

⇒ (λ,β′)′ =
[
Π′E(Z ′R)

]−1 [
Π′E(Z ′y)

]
. (8)

PROPOSITION 1: Suppose (A1), (A2), and (A3) hold, and that (IV-R) holds for instru-

ments Z . The two-stage least-squares estimand using Z for (6) is (λ,β′)′.

Using Wy instead of Hy as the first regressor in R is crucial for consistency in Propo-

sition 1. To see why, suppose one applies 2SLS to (1) using Hy, so the regressors are

Ř ≡ (Hy,X) and the resulting model errors are u as defined in (7). Then the 2SLS es-

timand would be (λ,β′)′ + [Π̌′E(Z ′Ř)]−1[Π̌E(Z ′u)], where Π̌ is similar to Π only with

9Under (A1) and (A2), E(W ′G|G,X) =G′G, but E(W ′W |G,X) ̸=G′G in general. This is because the i-th

diagonal entry in W ′W is
∑

kW
2
ki while its (i, j)-th off-diagonal entry is

∑
kWkiWkj . It then follows from

(A3) and the law of iterated expectation that E
(
y′W ′Wy

)
̸=E(y′W ′Gy) in general.
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R replaced by Ř. Endogeneity bias arises as E(Z ′u) ̸= 0 in general. This is because u is

correlated with the latter two terms on the right-hand side of (7) through y.

In the special case with one-sided misclassification (i.e., p0 = 0 and p1 > 0 so that actual

links are missing at random, but the sample never reports links that do not exist), such

endogeneity bias takes a simple analytical form. By plugging in the expression of u from

(7) and setting p0 = 0, we can show E(Z ′u) =
(

p1
1−p1

)
E[Z ′Ř(λ,0)′], where 0 is a row-

vector of K zeros. Consequently, the 2SLS estimand in this case is ( λ
1−p1

, β′)′, indicating

an “augmentation” bias in the peer effect estimator.

Based on Proposition 1, we have two main requirements for estimating the model. First,

we need to construct a valid instrument for Wy. One possibility, based on Lemma 1, is that

nonlinear functions of regressors X could serve as instruments, provided they satisfy the

rank condition in (IV-R), possibly by correlating with the unknown process by which links

are formed in G. However, nonlinear functions of X may be weak instruments since the

structural model is linear in X . So instead in Section 3.3 we show how to construct valid

instruments using H and X .

The second remaining requirement for estimating the model is that we need to identify

and estimate the unknown misclassification rates p0 and p1 in order to construct the adjusted

measure W . We address this question in Section 3.4.

3.3. Constructing instruments from network measures

We now focus on the question about how to construct instruments using noisy network

measures in the sample and subject to misclassification errors. We propose two options for

constructing IVs, depending on the number of measures available and whether the measures

are symmetrized.

3.3.1. Instruments using a single unsymmetrized measure

First, consider a setting in which the sample reports a single, unsymmetrized network

measure H . Assume:

(A4) Conditional on (G,X), Hij and Hkl are independent whenever i ̸= k or j ̸= l.

This condition states that different links are misclassified independently conditional on the

actual link status. It is important to note that this condition does not restrict whether the
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actual network G is symmetric or not. For example, H may be an unsymmetrized measure

of G as defined in the first scenario under (A1)-(A2) in Section 3.1). In this case, (A4)

holds when Hij and Hji are independent measures of Gij and Gji respectively, regardless

of whether Gij =Gji in the actual G.

On the other hand, (A4) fails when H is a symmetrized measure, because in this case Hij

and Hji are identical by construction and hence cannot be independent. To deal with this

case of symmetrized measures, we give an alternative method for constructing instruments

in Section 3.3.2.

We propose to construct instruments using H and X in the following proposition.

PROPOSITION 2: Suppose (A1), (A2), (A3), and (A4) hold. Then E(Z ′v) = 0 for Z ≡
(H ′X,X) or Z ≡ (W ′X,X).

Proposition 2 suggests using H ′X or W ′X as instruments for Wy. There is a simple

interpretation of these instruments: the i-th component (row) of H ′X is the sum of charac-

teristics of all individuals who report links with i in the sample.

Recall that GX would be valid instruments for Gy if G were perfectly observed in the

sample. Therefore, one may wonder why we use H ′X instead of HX as instruments here.

The reason is that H ′X are valid instruments while HX are not. To give some intuition

why, observe that the composite error v in (6) contains λ(G −W ) and so includes H

through W . The covariance of this error with HX contains the conditional variance of H ,

which can’t be zero. Therefore the error v is correlated with HX . In contrast, the corre-

sponding terms in the covariance of v with H ′X are conditional covariances of Hij with

Hji, which by (A4) are zero. And condition p0 + p1 < 1 in (A2) ensures the relevance

of instrument. Hence H ′X satisfies instrument exogeneity while HX does not. The same

logic holds for using W ′X but not WX as instruments.

In addition to validity, the set of instruments Z needs to also satisfy the rank condition

(IV-R). The next proposition specifies sufficient conditions for Z ≡ (W ′X,X) to satisfy

(IV-R). These conditions are primitive, i.e., they are expressed just in terms of moments of

functions of (X,G).10

10We can use the same steps as in the proof of Proposition 3 to derive similar conditions for (IV-R) when the

instruments are H ′X . Those conditions are omitted from the text for brevity.
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PROPOSITION 3: Suppose (A1), (A2), (A3), and (A4) hold, andE(X ′X) is non-singular.

Let M ≡ (I − λG)−1. Then (IV-R) holds for Z ≡ (W ′X,X) if

(
E(X ′X) E(X ′M−1X)

E(X ′MX) E(X ′X)

)
and

(
E(X ′G2X)E(X ′GX)

E(X ′GX) E(X ′X)

)
are non-singular. (9)

These primitive conditions are weak restrictions on the distribution of (G,X); they only

serve to rule out “knife-edge” cases where the link formation process is aligned with the

regressor distribution in such a pathological way that the rank of moments above is reduced.

Our simulation shows (9) holds even for restrictive cases where dyadic links are formed

as i.i.d. Bernoulli, and independent from X . On the other hand, (9) fails in some other

special cases. One example is the linear-in-means social interactions model, where G is

proportional to a linear combination of I and a square matrix of ones. Note this linear-

in-means model would not be identified even if G were correctly observed, due to the

“reflection” problem as defined in Manski (1993). See, e.g., Bramoullé et al. (2009), who

require that I , G, and G2 be perfectly observed and linearly independent.

3.3.2. Instruments using multiple measures

The method for constructing instruments in Section 3.3.1 assumes the sample reports

a single unsymmetrized network measure H . In this section, we provide an alternative,

complementary method for constructing instruments when the sample provides two (or

more) measures of G, regardless of whether the measures are symmetrized or not.

For example, Banerjee et al. (2013) provide multiple measures of symmetrized links be-

tween households in rural villages across the State of Karnataka, India. Two such measures

involve visiting between households. For each pair of households, the survey asks which

households you visited, and which ones visited you. Banerjee et al. (2013) symmetrize each

of these two measures, yielding symmetric matrices we call H(1) and H(2). These two ma-

trices are both measures of the same underlying symmetric network G (where Gij is one if

either i visited j or j visited i, and zero otherwise). However, as we show later, these two

matrices empirically differ substantially, indicating that they are different noisy measures

of G.
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Suppose we observe two measures of the adjacency matrix,H(1) andH(2), which satisfy

(A1), (A2), (A3), and

(A4’) Conditional on (G,X), H(1)
ij and H(2)

kl are independent for all i ̸= k or j ̸= l.

These two measures H(1) and H(2) have their own misclassification rates, denoted

(p
(t)
0 , p

(t)
1 ) for t = 1,2 respectively. Condition (A4’) is plausible when these distinct mea-

sures are constructed independently using responses from separate survey questions.

Define

W (t) ≡W
(t)
(H,p0,p1)

≡
H(t) − p

(t)
0 (ιι′ − I)

1− p
(t)
0 − p

(t)
1

.

Using either W (1) or W (2), we can construct a structural form. That is, for t= 1,2,

y = λW (t)y +Xβ + v(t), where v(t) = ε+ λ
[
G−W (t)

]
y. (10)

Under (A1)-(A3) and (A4’) and by an argument similar to Proposition 2, we can show that

W (2)X and H(2)X satisfy instrument exogeneity with regard to v(1):

E
[
(W (2)X)′v(1)

]
=

1

1− p
(2)
0 − p

(2)
1

E
[
(H(2)X)′v(1)

]
= 0,

and likewise with W (2) replaced by H(2). A symmetric result holds by swapping the in-

dexes t= 1,2 in the display above. (See the Online Appendix for details.) We can therefore

use either H(1)X or W (1)X as instruments for W (2)y or use either W (2)X or H(2)X as

instruments for W (1)y. In Section 4, we discuss how to construct 2SLS estimators that

combine these multiple network measures.

Note that unlike the instruments in Section 3.3.1 that required an asymmetric H , the

use of multiple H(t) matrices described here works regardless of whether each H(t) is

symmetric or not.

3.4. Recovering misclassification rates

To construct W and apply 2SLS, we still need to identify and estimate the unknown mis-

classification rates p0 and p1. We will show how to recover these rates from the observation
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of noisy network measures. The main idea is to leverage variation in X that affects true

link formation.

3.4.1. Using two conditionally independent measures

We start with the case where the sample reports two independent measures H(1) and

H(2) with misclassification rates
(
p
(t)
0 , p

(t)
1

)
for t = 1,2 respectively, and satisfy (A1),

(A2), (A3), and (A4’) as before. 11 Our goal is to estimate these misclassification rates.

Assume that we can construct some function of X that is correlated with network for-

mation. Specifically, assume we can define a function ϕij(X) that is related in some way

to the probability that Gij equals zero vs one. In the simplest case ϕij(X) would be binary

valued, with Gij having a different unknown probability of equalling one when ϕij(X) = 0

than when ϕij(X) = 1.

Note this construction imposes no restriction on the true link formation process other

than being correlated in some way with X . For example, we can accommodate polar ex-

treme cases, such as endogenous network formation based on pairwise stability, where Gij

depends on the demographics of all group members X , vs dyadic link formation models

where Gij depends only on pair-specific demographics (Xi,Xj).

To illustrate, in our empirical application in Section 7 we define ϕij(X) ≡ 1{Xi,1 =

Xj,1}, where 1{·} is the indicator function and Xi,1 is i’s caste. So ϕij(X) = 1 if i and j

are from the same caste, otherwise ϕij(X) = 0. In this example the required assumption is

that two people of the same caste have a different probability of forming a link than two

people from different castes.

The intuition for our identification is as follows. Let π1 denote the unknown average

probability that a cell Gij equals one, conditional on ϕij(X) = 1. If we then consider the

average probability (which we can estimate) that a cell H(t)
ij equals one, conditional on

ϕij(X) = 1, this probability will be a known function of π1, p(t)0 , and p(t)1 for t= 1,2. This

provides two equations (one for each value of t) in the unknown misclassification probabili-

ties and in π1. The same construction conditioning on ϕij(X) = 0 gives two more equations

11It is worth emphasizing that this case is flexible enough to accommodate both scenarios in Section 3.1. That

is, the two independent measures H(1),H(2) may either be unsymmetrized or symmetrized, as introduced in

Section 3.1. Recall that in the first scenario researchers do not know whether the actual adjacency G is symmetric

or not, while in the second scenario researchers do know the actual G is symmetric with undirected links.
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in the unknown misclassification probabilities and in π0. Finally, looking at the conditional

average probability that the product H(1)
ij H

(2)
ij equals one gives two more equations for

identification.

Making this logic precise, define π1 ≡ 1
n(n−1)

∑
i̸=j Pr{Gij = 1|ϕij(X) = 1}. Consider

the following set of three conditional moments of H(1)
ij and H(2)

ij :

1

n(n− 1)

∑
i ̸=j

E
[
H

(1)
ij H

(2)
ij

∣∣∣ϕij(X) = 1
]
=
(
1− p

(1)
1

)(
1− p

(2)
1

)
π1 + p

(1)
0 p

(2)
0 (1− π1);

1

n(n− 1)

∑
i ̸=j

E
[
H

(t)
ij

∣∣∣ϕij(X) = 1
]
=
(
1− p

(t)
1

)
π1 + p

(t)
0 (1− π1) for t= 1,2. (11)

Note these are three distinct equations because the second applies for both t= 1 and t= 2.

We obtain three more equations (six in total) by replacing ϕij(X) = 1 with ϕij(X) = 0 and

replacing π1 with π0. The left-hand side of each of these six equations can be estimated

from our observations of H(1), H(2), and X , while the right-hand sides are functions of six

unknown parameters: π1, π0 and p(t)1 , p
(t)
0 for t = 1,2. Assume that π1 ̸= π0, meaning that

ϕij(X) does affect the probability of true link formation. Then despite the nonlinearity of

these equations, we show that they can be uniquely solved for these six parameters, and in

particular we provide closed-form expressions for the misclassification rates p(t)1 , p
(t)
0 for

t= 1,2. See the proof in the Online Appendix for details.

This identification requires choosing a function ϕij(·) such that the probability of link

formation is different for the event {ϕij(X) = 1} than when {ϕij(X) = 0} so π1 ̸= π0. In

other words, these conditioning events provide exogenous variation in population moments

that assist in identifying the misclassification rates.

It should also be noted that our focus here is just on recovering the misclassification

rates. We treat π1, π0 as “nuisance” parameters that are identified as an intermediate step

in our constructive identification of p(t)1 , p
(t)
0 for t = 1,2. We do not exploit knowledge of

π1, π0 for estimation, or to infer anything about the link formation process.

We can generalize the identification argument above to broader settings with other

choices of ϕij(·). For instance, ϕij(X) may be a continuous measure of the difference

between demographic features of i and j. In this case, one can partition the support

of ϕij(X) into mutually exclusive subsets, denoted by ϕ0 and ϕ1. Then define π0 ≡
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1
n(n−1)

∑
i̸=j Pr{Gij = 1|ϕij(X) ∈ϕ0}; define π1 analogously conditioning on {ϕij(X) ∈

ϕ1}. The constructive identification strategy above applies with events {Xi,1 = Xj,1},

{Xi,1 ̸=Xj,1} replaced by {ϕij(X) ∈ϕ1}, {ϕij(X) ∈ϕ0} respectively.

3.4.2. Using a single, unsymmetrized measure

The identification method of the previous section can be readily modified to recover the

misclassification probabilities in the case with a single, unsymmetrized measure H when

the actual G is known to be symmetric with undirected links. Suppose H satisfies (A1),

(A2), (A3), and (A4) with misclassification rates p1, p0. For any unordered pair i ̸= j,

construct two noisy measures for Gij as H(1)
{i,j} ≡Hij and H(2)

{i,j} ≡Hji. (The adoption of

new subscripts for H(t), i.e., {i, j}, only serves as a reminder that these two measures are

symmetrized by construction.) We then obtain a system of equations similar to (11), only

with 1
n(n−1) ,

∑
i̸=j , H(t)

ij , ϕij replaced by 2
n(n−1) ,

∑
i>j , H(t)

{i,j}, ϕ{i,j} respectively, and

with identical rates across the measures, i.e. p(t)1 = p1 and p(t)0 = p0 for t= 1,2. The same

argument then identifies π1, π0, p1, p0 using variation in ϕ{i,j}(X).

3.5. Concluding remarks about identification

The methods proposed in Section 3 are flexible enough to accommodate various scenar-

ios regarding whetherG is symmetric or not, and whether the observed network measure(s)

is(are) symmetrized or not. The table below summarizes the solutions of adjusted 2SLS that

we propose for each one of those scenarios.
Reported Network Measures

Single, unsym’zed Multiple, sym’zed Multiple, unsym’zed

(IV) (MR) (IV) (MR) (IV) (MR)

Sym. G Sec 3.3.1 Sec 3.4.2 Sec 3.3.2 Sec 3.4.1 Sec 3.3 Sec 3.4

Asym. G Sec 3.3.1 see text violates (A1) Sec 3.3.2 Sec 3.4.1

Each one of the six cells in last two rows of the table represents a particular scenario,

defined by the (a)symmetry of the actual adjacency G as well as the number and property

of network measures H available. Solutions for estimating λ and β in each scenario consist

of two parts: construction of instruments (IV), and recovery of misclassification rates (MR).
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For instance, if the actualG is symmetric and the sample reports a single, unsymmetrized

measure, one can recover MRs using Section 3.4.2 and construct IVs using Section 3.3.1.

Likewise, if the actual G is asymmetric and the sample reports multiple, unsymmetrized

measures, one can recover MRs using Section 3.4.1 and construct IVs using Section 3.3.2.

If the actual G is symmetric and the sample reports multiple, unsymmetrized measures,

then one can recover MRs using either approach in Section 3.4, and construct IVs using

either approach in Section 3.3.

For the scenario with an asymmetric G and a single, unsymmetrized measure, our paper

presents a valid way to construct instruments, but does not propose a way to identify the

MRs. To perform the latter task, one might be able to adopt a method from Hausman et al.

(1998) to a dyadic link formation model. We do not elaborate on that method in this paper,

because it would require researchers to specify a link formation model, which we have

intentionally refrained from doing throughout this paper.

Some additional remarks about our use of multiple, noisy network measures in Section

3.3.2 and 3.4.1 are in order. There is a broad and growing econometrics literature that

uses repeated noisy measures to estimate nonlinear models with errors in variables, e.g.,

Li (2002), Chen et al. (2005) and Hu and Sasaki (2017) or unobserved heterogeneity, e.g.,

Hu (2008) and Bonhomme et al. (2016). Hu and Lin (2018) use repeated measurement

to estimate a binary choice model with misclassification and social interactions. These

papers typically apply mathematical tools such as deconvolution, and eigenvalue or LU

decomposition to the distribution of repeated measures.

In contrast, we use the repeated measures in a different way that does not require any

deconvolution or matrix decomposition. Focusing on linear social networks, we exploit the

identifying power from repeated measures by a standard 2SLS in Section 3.3.2, and apply

a closed-form algebraic argument to recover the misclassification rates in Section 3.4.1.

Finally, note that our 2SLS estimators are unlikely to suffer from weak instrument issues,

because Assumption (A2) ensures correlation between mismeasures H and G, and our

instruments are constructed from H .

4. TWO-STEP ESTIMATION

We now propose adjusted 2SLS estimators for the coefficients of structural effects

(λ,β′)′, which require an initial step for estimating the misclassification rates.
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Consider a sample of S independent groups. (In the Online Appendix we consider ex-

tensions to a single growing network instead of many independent groups.) For each group

s = 1, ..., S, the sample reports an ns-by-1 vector of outcomes ys, an ns-by-K matrix of

regressors Xs, and either an ns-by-ns unsymmetrized measure Hs, or two ns-by-ns con-

ditionally independent symmetrized measures H(1)
s and H(2)

s .

4.1. Closed-form estimation of misclassification rates

To estimate misclassification rates, we apply the analog principle to the constructive

proof of identification. We include closed-form estimates in the text for completeness; the

logic for these estimators is self-evident as presented in the Online Appendix.

First, consider the case in Section 3.4.1, where the sample reports two conditionally

independent measuresH(1)
s ,H

(2)
s . To exploit identifying power from their joint distribution,

let H(3)
s,ij ≡max

{
H

(1)
s,ij ,H

(2)
s,ij

}
for each (i, j)-th entry in H(t)

s . For t= 1,2,3, define ψ̂(t)
1 :

ψ̂
(t)
1 ≡

∑
s

 1

ns(ns − 1)

∑
i̸=j

H
(t)
s,ij1{ϕs,ij = 1}


∑
s

 1

ns(ns − 1)

∑
i̸=j

1{ϕs,ij = 1}

 , (12)

where ϕs,ij is short for ϕij(Xs). And define ψ̂(t)
0 by replacing {ϕs,ij = 1} with {ϕs,ij = 0}.

For instance, in our application, we define ϕij(Xs) as a simple function 1{Xs,i,k =

Xs,j,k}, where Xs,i,k is the k-th component in Xs,i that reports the individual i’s caste.

In this case, ψ̂(t)
1 and ψ̂(t)

0 ) are, respectively, the fraction of same caste and different caste

pairs that are linked according to the measures H(t)
s for t= 1,2,3. It is straightforward to

generalize this identification argument to broader settings with other choices of ϕij(·).
Using the sample moments, we define a vector of coefficients:

Ĉ2 ≡
ψ̂
(1)
0 − ψ̂

(1)
1

ψ̂
(2)
0 − ψ̂

(2)
1

, Ĉ1 ≡ ψ̂
(1)
1 − 1 +

ψ̂
(3)
0 − ψ̂

(3)
1

ψ̂
(2)
0 − ψ̂

(2)
1

− (1− ψ̂
(2)
1 )Ĉ2,

Ĉ0 ≡ ψ̂
(1)
1 + ψ̂

(2)
1 − ψ̂

(1)
1 ψ̂

(2)
1 − ψ̂

(3)
1 .
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Our closed-form estimators for misclassification rates are then:

p̂
(1)
0 ≡ ψ̂

(1)
1 − Ĉ2ξ̂, p̂(2)0 ≡ ψ̂

(2)
1 − ξ̂,

where

ξ̂ ≡ (2Ĉ2)−1

(
Ĉ1 +

√(
Ĉ1
)2

+ 4Ĉ2Ĉ0

)
;

and

p̂
(t)
1 ≡ 1− p̂

(t)
0 −

ψ̂
(t)
1 − p̂

(t)
0

π̂1
for t= 1,2,

where

π̂1 =

(
ψ̂
(1)
1 − p̂

(1)
0

)(
ψ̂
(2)
1 − p̂

(2)
0

)
(
1− p̂

(1)
0

)(
ψ̂
(2)
1 − p̂

(2)
0

)
+
(
1− p̂

(2)
0

)(
ψ̂
(1)
1 − p̂

(1)
0

)
−
(
ψ̂
(3)
1 − p̂

(3)
0

) ,

with p̂(3)0 ≡ p̂
(1)
0 + p̂

(2)
0 − p̂

(1)
0 p̂

(2)
0 by construction.

Next, consider the case in Section 3.4.2, where the sample reports a single, unsym-

metrized measure H with misclassification rates (p0, p1) while the actual G is known to be

symmetric. Estimation of (p0, p1) in this case follows from almost identical steps. For any

unordered pair {i, j}, define H(1)
s,{i,j} ≡Hs,ij and H(2)

s,{i,j} ≡Hs,ji. By construction, p(t)1 =

p1 and p(t)0 = p0 do not vary between t= 1,2. Construct H(3)
{i,j} =max{H(1)

{i,j},H
(2)
{i,j}}; de-

fine ψ̂(t)
1 and ψ̂(t)

0 in this case by replacing 1
ns(ns−1) ,

∑
i ̸=j and H(t)

s,ij in (12) with 2
ns(ns−1) ,∑

i>j , andH(t)
s,{i,j} respectively. Replace Ĉ2 with 1, and replace ψ̂(1)

1 , ψ̂
(2)
1 with their average

in Ĉ1, Ĉ0 and all subsequent expressions. These lead to a single pair of estimates (p̂0, p̂1).

We derive the limiting distribution of these estimators using a standard delta method.

Consider the case with a single unsymmetrized measure in Section 3.4.2. For each group s,

define υ1s,1 ≡ 2
ns(ns−1)

∑
i>jHs,{i,j}1{ϕs,{i,j} = 1} and υ2s,1 ≡ 2

ns(ns−1)

∑
i>j 1{ϕs,{i,j} =

1}; define υ1s,0, υ2s,0 analogously be replacing ϕs,{i,j} = 1 with ϕs,{i,j} = 0. Let υs ≡
(υ1s,1, υ2s,1, υ1s,0, υ2s,0)

′. The estimator p̂= (p̂0, p̂1) is a closed-form function of υs; it has

an asymptotic linear presentation:

√
S(p̂− p) = 1√

S

∑
s
J0 × [υs −E(υs)]︸ ︷︷ ︸

≡τs

+ op(1),
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where J0 denotes the Jacobian matrix of p̂ w.r.t. the sample averages of υs, evaluated at

population mean of vs. Thus
√
S(p̂− p) converges in distribution to a multivariate normal

distribution with zero means and a covariance matrix E(τsτ ′s). Limiting distribution for the

case with two measures in Section 3.4.1 follows from the same type of arguments.

4.2. Adjusted 2SLS using a single unsymmetrized measure

With estimates of misclassification rates, we can now construct adjusted 2SLS estima-

tors for the peer and individual effects λ and β. As noted in Section 3.3, construction of

instruments depends on the number and nature of network measures available.

First consider the setting in Section 3.3.1, where the sample reports a single unsym-

metrized measure Hs for each group. Let p≡ (p0, p1)
′. For each group s, define:

Rs(p)≡ (Ws(p)ys,Xs) and Zs ≡
(
H ′

sXs,Xs

)
,

where Ws(p) ≡ [Hs − p0(ιsι
′
s − Is)]/(1− p0 − p1). Let N ≡

∑S
s=1 ns, and Y be an N -

by-1 vector that stacks ys for s= 1, ..., S. Let R(p) be an N -by-(K +1) matrix that stacks

Rs(p) for all group s, and Z anN -by-2K matrix that stacks Zs for all s. Our adjusted 2SLS

estimator for θ ≡ (λ,β′)′ is:

θ̂ ≡
(
A′B−1A

)−1
A′B−1

(
Z′Y

)
, (13)

where A≡ Z′R(p̂) and B≡ Z′Z, with p̂≡ (p̂0, p̂1)
′.

We now present the limiting distribution of θ̂ as S→∞. Define

Σ0 ≡
(
A′
0B

−1
0 A0

)−1
A′
0B

−1
0 ,

where A0 ≡ limS→∞
1
S

∑S
s=1E [Z ′

sRs(p)] and B0 ≡ limS→∞
1
S

∑S
s=1E(Z

′
sZs). For each

group s and individual i ≤ ns, let Rs,i(p) denote the corresponding row in R(p), and

▽pRs,i(p) be the (K + 1)-by-2 Jacobian of Rs,i(p) with respect to p.12

Let ▽p [Rs(p)θ] denote an ns-by-2 matrix with each row i ≤ ns being θ′▽pRs,i(p);

let ▽p [R(p)θ] be an N -by-2 matrix formed by stacking these ns-by-2 matrices over

12The last K rows in ▽pRs,i(p) are zeros; its first row is the i-th row in(
Hs−(1−p1)(ιsι

′
s−Is)

(1−p0−p1)2
ys,

Hs−p0(ιsι
′
s−Is)

(1−p0−p1)2
ys
)

.
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s= 1,2, ..., S. Define

κs ≡ Z ′
svs − F0τs,

where vs is the ns-by-1 vector of composite errors in the feasible structural form (6), and

F0 ≡ lim
S→∞

S−1
∑S

s=1
E
{
Z ′
s▽ [Rs(p)θ]

}
.

Intuitively, F0 illustrates how the moment condition in this adjusted 2SLS depends on mis-

classification rates p, and the added term “−F0τs” in the influence function accounts for

the first-stage estimation error in p̂.

PROPOSITION 4: Suppose (A1), (A2), (A3), and (A4) hold, and (IV-R) is satisfied with

Z ≡ (H ′X,X). Then

√
S
(
θ̂− θ

)
d−→N (0,Σ0E(κsκ

′
s)Σ

′
0),

under the regularity conditions (REG) in the Online Appendix.

Note that this limiting distribution includes group level clustering. The conditions in

(REG), presented in the Online Appendix, are needed for applying the law of large num-

bers, the central limit theorem, and the delta method to observations from independent

groups with heterogeneous sizes.

Standard errors for θ̂ (which are clustered at the group level) are calculated by replacing

A0, B0, F0, and E(κsκ′s) with their sample analogs:

Â= 1
S

∑
s
Z ′
sRs(p̂), B̂ = 1

S

∑
s
Z ′
sZs, κ̂s = Z ′

s

(
ys −Rs(p̂)θ̂

)
− F̂ τ̂s.

Instead of the above limiting distribution, one could combine the two steps in Section 4.1

and 4.2 into a single GMM step by stacking the moments used in these two sections. This

would allow one to estimate θ jointly with (p0, p1) instead of sequentially, and standard

GMM limiting distribution theory could be applied. However, this GMM would require

numerically solving a nonlinear optimization problem. In contrast, the two-step method

we propose here yields a closed-form estimator that is straightforward to compute with no

numerical searching, thus providing a computational advantage over the GMM alternative

with numerical stability.
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4.3. Adjusted 2SLS using multiple measures

We now apply the same idea for estimation under the other setting in Section 3.3.2, where

the sample reports two conditionally independent measures H(t)
s for t= 1,2, with misclas-

sification rates p(t)0 , p
(t)
1 for t= 1,2 respectively. These measures may either be symmetrized

or unsymmetrized. To reiterate, when H(t)
s are unsymmetrized, our estimation method ap-

plies regardless of whether the actual adjacency G is symmetric or not; on the other hand,

when H(t)
s are symmetrized, (A1) holds only if G is symmetric.

As noted in Section 3.3.2, these measures lead to two feasible structural forms:

ys =R
(t)
s θ+ v

(t)
s for t= 1,2, (14)

where θ ≡ (λ,β′)′, R(t)
s ≡

(
W

(t)
s ys,Xs

)
and v(t)s ≡ εs + λ

(
Gs −W

(t)
s

)
ys, with W (t)

s ≡
H

(t)
s −p

(t)
0 (ιsι

′
s−Is)

1−p
(t)
0 −p

(t)
1

. This leads to two sets of moment conditions:

E
[
(H

(3−t)
s X,X)′(ys − λW

(t)
s ys −Xsβ)

]
=E

[
(H

(3−t)
s X,X)′v

(t)
s

]
= 0 for t= 1,2,

with instruments Z(t)
s ≡

(
H

(3−t)
s Xs,Xs

)
for t= 1,2. Stack the moments by defining:

Z̃s ≡

(
Z
(1)
s 0

0 Z
(2)
s

)
; ỹs ≡

(
ys

ys

)
; R̃s ≡

(
R

(1)
s

R
(2)
s

)
.

Instrument exogeneity then implies:

E
[
Z̃ ′
s(ỹs − R̃sθ)

]
= 0.

This moment condition identifies θ, provided E(Z̃ ′
sR̃s) has full rank. Using arguments

similar to Proposition 3 in Section 3.3.1, we can derive analogous sufficient conditions for

this rank condition. We omit the details here so as to avoid repetition.

We define a system, or stacked adjusted two-stage least squares (S2SLS) estimator as

follows. Let Z̃ denote a 2N -by-4K matrix that is constructed by vertically stacking S

matrices (Z̃s)s≤S . Likewise, construct a 2N -by-(K + 1) matrix R̃ by stacking (R̃s)s≤S ,

where p(t)0 and p(t)1 are replaced by estimates p̂(t)0 and p̂(t)1 , and construct a 2N -by-1 vector

ỹ by stacking (ỹs)s≤S . The S2SLS estimator is

θ̃ ≡ [R̃
′
Z̃(Z̃

′
Z̃)

−1
Z̃′R̃]

−1
R̃′Z̃(Z̃

′
Z̃)

−1
Z̃′ỹ. (15)
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This provides us with a single estimator that exploits both sets of instruments in the two

structural forms in (14). Similar to θ̂ in (13), we can construct the standard error for θ̃ that

accounts for estimation error in p̂(t)0 , p̂
(t)
1 for t= 1,2. We omit details here for brevity.

5. EXTENSIONS

We now extend the method in Section 3 and 4 to more general settings with contextual

effects, heterogeneous misclassification rates, or group fixed effects. In each case, we focus

on extending the ideas for constructive identification. Estimation in each case follows from

an analog principle and similar steps as in Section 4.

As in Section 3, to simplify exposition, we let group sizes ns = n be fixed throughout

the remainder of this section. This allows us to suppress group subscripts s in notation.

5.1. Contextual effects

Suppose the structural form, based on perfect observation of the actual adjacency G, is:

y = λGy +Xβ +GXγ + ε,

where γ are contextual effects showing how individual outcomes are directly influenced by

the characteristics of others linked to the individual. The feasible structural form, based on

H and subject to misclassification errors, is:

y = λWy +Xβ +WXγ + η,

where W ≡ [H − p0(ιι
′ − I)]/(1− p0 − p1) as before, and the composite error η is:

η ≡ ε− λ (W −G)y− (W −G)Xγ.

Under the same conditions and by the same arguments as in the case with no contextual

effects in Section 3.2, we can show that the new composite error η is mean-independent

from (X,G). Similarly, we can construct instruments using network measures H as before.

Our next proposition establishes these results. For generality, let ζ(X) ∈ Rn×L be any

generic function of X with L≥K .

PROPOSITION 5: Suppose (A1), (A2), and (A3) hold. ThenE(η|X,G) = 0. If in addition

(A4) holds, then E[ζ (X)′Wη] =E[ζ (X)′Hη] = 0.
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This proposition implies that H ′ζ(X) and W ′ζ(X) satisfy instrument exogeneity for

generic functions of X . In fact, a stronger result holds under (A1)-(A4): E(Wη|G,X) =

E(Hη|G,X) = 0. The intuition is the same as in Proposition 2. Thus we can apply 2SLS

as before to consistently estimate (λ,β′, γ′)′ using (H ′X,X,H ′ζ(X)) as instruments for

(Wy,X,WX), provided the appropriate rank conditions hold.

5.2. Heterogeneous misclassification rates

We now extend our methods to allow the misclassification rates p0, p1 to vary with in-

dividual characteristics X . To fix ideas, we return to the case with no contextual effects

as in (6). Generalization to include contextual effects, using the results from the preceding

sub-section, is immediate. Suppose we relax (A2) as follows:

(A2’) E(Hij |Gij = 1,X) = 1− pij,1(X) and E(Hij |Gij = 0,X) = pij,0(X) ∀i ̸= j.

Define

Wij(X)≡
Hij − pij,0(X)

1− pij,0(X)− pij,1(X)
if i ̸= j, and Wii(X) = 0.

Under (A2’), E[Wij(X)|G,X] = 1 for Gij = 1, and E[Wij(X)|G,X] = 0 for Gij = 0.

Hence E(W (X)|G,X) =G.

To recover misclassification rates pij,1(·) and pij,0(·), we can apply methods in Section

3.4 to pairwise links Gij and conditioning on X . In practice, we can mitigate the curse of

dimensionality by specifying the rates pij,1(X) and pij,0(X) as functions of Xi and Xj .

With knowledge of these heterogeneous misclassification rates, we can use adjusted

2SLS to consistently estimate (λ,β′)′ from a feasible structural form:

y = λW (X)y +Xβ + ε+ λ[G−W (X)]y︸ ︷︷ ︸
v∗

.

Under (A2’) and (A3),

E(v∗|G,X) = λ{GE(y|G,X)−E [W (X)y|G,X]}

= λ{GMXβ −E [W (X)|G,X]MXβ}= λ(G−G)MXβ = 0. (16)

LetR∗ ≡ (W (X)y,X) and Z∗ ≡ (ζ(X),X) where ζ(X) ∈Rn×L is a nonlinear function of

X with L≥K (e.g., ζ(X)≡X ◦X , where ◦ denotes the Hadamard product of matrices).



30

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Then (16) implies E(Z∗′v∗) = 0. If E(R∗′Z∗) and E(Z∗′Z∗) have full rank, we can use

this adjusted 2SLS to consistently estimate (λ,β′)′.

5.3. Group fixed effects

Suppose there is group-level unobserved heterogeneity α in the data-generating process:

y = λGy +Xβ + α+ ε.

We can implement the “with-in” transformation on the adjusted network measure W , as in

fixed-effect estimation of linear panel data models, to get:

Ẇ ≡
[
I − ιι′/n

]
W .

Essentially, this transformation just corresponds to demeaning W within groups. Similarly,

define with-in transformations on y, ε,X,G to obtain ẏ, ε̇, Ẋ, Ġ respectively. The resulting

demeaned version of the structural form is

ẏ = λẆy + Ẋβ + ε̇+ λ(Ġ− Ẇ)y︸ ︷︷ ︸
≡v̇

.

As Ġ and Ẇ are linear in G and H respectively, the same argument as Lemma 1 in Section

3 applies to show that E(v̇|X,G) = E(v̇|Ẋ, Ġ) = 0. Note that the presence of group fixed

effects does not affect our method for recovering the misclassification rates in Section 3.4.1.

With multiple network measuresH(t) for t= 1,2, we can apply adjusted 2SLS as in Section

3.3.2 to estimate (λ,β′)′, using Ḣ(2)X as instruments for Ẇ(1)y.

5.4. A single large network

We examine a setting where the sample is partitioned into approximate groups, a.k.a.

blocks. Sparse links (with diminishing formation rates) exist between these blocks, but

are not recorded in the sample; links within the blocks can be dense and are randomly

misclassified with constant rates. In this case, we show that our adjusted 2SLS estimator,

when pooled over all individuals in the sample, still converges to the intended estimand

without any endogeneity bias. Detailed setting and proofs are in the Online Appendix.
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6. SIMULATION

We now use monte carlo simulation to examine the finite-sample performance of the

adjusted 2SLS estimator proposed in Section 4.

For the data-generating process, we use a structural form with group-level fixed effects:

ys = λGsys +Xsβ + αs + εs,with s= 1, ..., S.

Each member i in group s has two individual characteristics Xs,i ≡ (Xs,i,1,Xs,i,2) ∈ R2,

drawn independently across i and s, from a Bernoulli with success probability 0.5 and

a standard normal N(0,1) respectively. The error term εs,i is also drawn from a standard

normalN(0,1) independently across i and s. The coefficients for social effects are λ= 0.05

and β = (β1, β2) = (1,2). The group-level fixed effect is αs = 5Xsβ − 1.5+ es, where Xs

is the group average of Xs and es is drawn from standard normal N(0,1) independently

across i and s. This construction allows the fixed effects αs to be correlated with group

demographics Xsβ. The dyadic link formation rates are

π1 =Pr{Gs,ij = 1|Xs,i,1 =Xs,j,1}= 0.2,

π0 =Pr{Gs,ij = 1|Xs,i,1 ̸=Xs,j,1}= 0.1.

For t= 1,2, we generate the following measure H(t)
s with link misclassification:

H
(t)
s,ij =m

(t)
ij,1 · 1{Gs,ij = 1}+ (1−m

(t)
ij,0) · 1{Gs,ij = 0},

where m(t)
ij,0 and m(t)

ij,1 are drawn independently across ordered pairs (i, j) from Bernoulli

distributions with success probabilities 1− p
(t)
0 and 1− p

(t)
1 respectively.

To see how various estimators behave in the presence of misclassified links, we use two

sets of misclassification rates. In the first set, the misclassification rates are small:

p
(1)
0 =Pr{H(1)

s,ij = 1|Gs,ij = 0,X}= 0.10, p
(1)
1 =Pr{H(1)

s,ij = 0|Gs,ij = 1,X}= 0.20;

p
(2)
0 =Pr{H(2)

s,ij = 1|Gs,ij = 0,X}= 0.08, p
(2)
1 =Pr{H(2)

s,ij = 0|Gs,ij = 1,X}= 0.16.

In the second set, we specify large misclassification rates that are twice as high:

p
(1)
0 =Pr{H(1)

s,ij = 1|Gs,ij = 0,X}= 0.20, p
(1)
1 =Pr{H(1)

s,ij = 0|Gs,ij = 1,X}= 0.40;

p
(2)
0 =Pr{H(2)

s,ij = 1|Gs,ij = 0,X}= 0.16, p
(2)
1 =Pr{H(2)

s,ij = 0|Gs,ij = 1,X}= 0.32.
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Each group has the same size ns = n. We experiment with group sizes n ∈ {25,50,100}
and the number of groups in the sample S ∈ {50,100}. The total sample size is nS.

For each combination of {n,S}, we generate Q = 100 samples. For each combination of

{n,S}, Table 1(a) reports the mean and the standard deviation (s.t.d.) of the estimates for

π0, π1, p
(1)
0 , p

(1)
1 , p

(2)
0 , p

(2)
1 based on their empirical distribution across these 100 samples.

From Table 1(a), we can see the misclassification rates (p(t)0 , p
(t)
1 ), as well as the network

parameters (π0, π1), are accurately estimated in all settings. For a fixed group number S,

the s.t.d. decreases at the rate n. For a fixed groups size n, the s.t.d. decreases at the rate
√
S. This is because the size of the sample used for estimation is S × n2. The standard

deviations of these estimates are also larger when the misclassification rates are higher.

Table 1(a): Estimates of Misclassification Rates and Network Parameters

Small π1 =0.2 π0 =0.1 p
(1)
0 =0.1 p

(1)
1 =0.2 p

(2)
0 =0.08 p

(2)
1 =0.16

S = 50 π̂1 π̂0 p̂
(1)
0 p̂

(1)
1 p̂

(2)
0 p̂

(2)
1

n = 25 0.2009 0.1015 0.0990 0.2020 0.0792 0.1638
(0.0123) (0.0081) (0.0061) (0.0301) (0.0059) (0.0349)

n = 50 0.1996 0.0998 0.1002 0.2000 0.0800 0.1573
(0.0063) (0.0042) (0.0031) (0.0150) (0.0031) (0.0186)

n = 100 0.2000 0.1002 0.1000 0.2007 0.0798 0.1573
(0.0030) (0.0021) (0.0014) (0.0075) (0.0015) (0.0086)

S = 100
n = 25 0.1994 0.0997 0.0996 0.1968 0.0804 0.1588

(0.0099) (0.0060) (0.0042) (0.0241) (0.0047) (0.0245)
n = 50 0.2006 0.1006 0.0997 0.2011 0.0798 0.1608

(0.0043) (0.0029) (0.0020) (0.0099) (0.0019) (0.0112)
n = 100 0.2002 0.1002 0.0999 0.2001 0.0800 0.1609

(0.0025) (0.0017) (0.0011) (0.0054) (0.0011) (0.0067)

Large π1 =0.2 π0 =0.1 p
(1)
0 =0.2 p

(1)
1 =0.4 p

(2)
0 =0.16 p

(2)
1 =0.32

S = 50 π̂1 π̂0 p̂
(1)
0 p̂

(1)
1 p̂

(2)
0 p̂

(2)
1

n = 25 0.2032 0.1039 0.1994 0.4012 0.1586 0.3191
(0.0370) (0.0260) (0.0092) (0.0442) (0.0112) (0.0654)

n = 50 0.1987 0.0994 0.2005 0.3990 0.1602 0.3137
(0.0174) (0.0122) (0.0045) (0.0224) (0.0052) (0.0330)

n = 100 0.2004 0.1006 0.1998 0.4004 0.1598 0.3206
(0.0084) (0.0059) (0.0023) (0.0100) (0.0025) (0.0155)

S = 100
n = 25 0.1987 0.0993 0.1995 0.3943 0.1604 0.3142

(0.0257) (0.0173) (0.0062) (0.0322) (0.0075) (0.0452)
n = 50 0.2011 0.1012 0.1998 0.4013 0.1594 0.3189

(0.0123) (0.0090) (0.0032) (0.0159) (0.0039) (0.0216)
n = 100 0.2004 0.1003 0.1999 0.4003 0.1599 0.3201

(0.0059) (0.0042) (0.0017) (0.0073) (0.0017) (0.0112)

Note: standard deviations based on 100 simulated samples are reported in parentheses.
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Then, we compare five estimators based on three versions of 2SLS estimation: naive,

adjusted, and oracle (infeasible). The naive 2SLS uses the noisy measure H in place of the

true network G, which means it uses Hsys as an endogenous regressor and HsXs as its

instrument. The adjusted 2SLS estimator is what we propose in Section 4. It requires two

steps. First, estimate the misclassification rates based on (H(1),H(2),X). Then, construct

W
(t)
s =

H
(t)
s −p̂

(t)
0 (ιnι

′
n−In)

1−p̂
(t)
0 −p̂

(t)
1

for t = 1,2, based on the first-step estimates p̂(t)0 and p̂
(t)
1 , and

apply 2SLS using W (t)
s y as an endogenous regressor and W (t′)

s X as its instrument where

t ̸= t′. The oracle (infeasible) 2SLS uses the peer outcomes based on the actual network,

i.e., Gsys, as an endogenous regressor, and uses GsXs as its instrument.

Table 1(b): Peer Effects Estimation: Small Misclassification
S = 50 S = 100

Naive Adjusted Oracle Naive Adjusted Oracle
Reg. H(1)y H(2)y W (1)y W (2)y Gy H(1)y H(2)y W (1)y W (2)y Gy

IV H(1)X H(2)X H(2)X H(1)X GX H(1)X H(2)X H(2)X H(1)X GX

n= 25 Expected # of peers 3.75

λ= 0.05 0.0259 0.0307 0.0490 0.0467 0.0508 0.0283 0.0324 0.0517 0.0511 0.0489
s.t.d (0.007) (0.006) (0.012) (0.014) (0.005) (0.005) (0.005) (0.008) (0.009) (0.007)
β1= 1 1.0613 1.0523 1.0113 1.0131 1.0108 1.0614 1.0540 1.0102 1.0117 1.0112

s.t.d (0.078) (0.081) (0.079) (0.086) (0.062) (0.064) (0.066) (0.062) (0.064) (0.078)
β2= 2 1.9978 1.9983 1.9950 1.9951 2.0018 2.0064 2.0058 2.0041 2.0027 1.9946

s.t.d (0.046) (0.046) (0.047) (0.047) (0.031) (0.032) (0.032) (0.034) (0.032) (0.046)

n= 50 Expected # of peers 7.5

λ= 0.05 0.0274 0.0312 0.0492 0.0497 0.0499 0.0274 0.0310 0.0495 0.0493 0.0499
s.t.d (0.003) (0.004) (0.006) (0.006) (0.003) (0.002) (0.003) (0.005) (0.004) (0.003)
β1= 1 1.1001 1.0836 1.0029 0.9971 1.0019 1.1021 1.0897 1.0010 1.0059 0.9988

s.t.d (0.068) (0.064) (0.067) (0.060) (0.043) (0.047) (0.047) (0.047) (0.046) (0.060)
β2= 2 2.0036 2.0032 2.0021 2.0008 1.9991 2.0017 2.0013 1.9990 1.9983 2.0010

s.t.d (0.032) (0.031) (0.035) (0.032) (0.020) (0.021) (0.020) (0.022) (0.021) (0.030)

n= 100 Expected # of peers 15

λ= 0.05 0.0277 0.0313 0.0504 0.0504 0.0500 0.0278 0.0313 0.0503 0.0500 0.0501
s.t.d (0.001) (0.001) (0.003) (0.003) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001)
β1= 1 1.2544 1.2210 0.9984 1.0039 1.0060 1.2589 1.2197 1.0051 0.9999 1.0008

s.t.d (0.072) (0.065) (0.070) (0.064) (0.026) (0.048) (0.041) (0.047) (0.045) (0.041)
β2= 2 2.0002 2.0004 1.9983 1.9988 1.9979 2.0017 2.0010 1.9983 1.9973 1.9993

s.t.d (0.026) (0.022) (0.035) (0.028) (0.013) (0.019) (0.017) (0.023) (0.019) (0.020)
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Across the simulated samples indexed by q = 1,2, ...,Q, we record the empirical dis-

tribution of these estimates of (λ,β1, β2). Tables 1(b) and (c) report the average estimates,

and sample s.t.d. based on this empirical distribution under different misclassification rates.

Results in Tables 1(b) and (c) demonstrate the following patterns. First, the naive method

that ignores the misclassification in H has serious bias in estimating the peer effects λ =

0.05. With lower misclassification rates, it estimates λ at around 0.028 using H(1) and

around 0.031 using H(2); with higher misclassification rates, it estimates λ at around 0.013

using H(1) and around 0.018 using H(2). When estimating β, the naive estimation also

shows bias, but not smaller than the bias in λ.

Table 1(c): Peer Effects Estimation: Large Misclassification

S = 50 S = 100

Naive Adjusted Oracle Naive Adjusted Oracle
Reg. H(1)y H(2)y W (1)y W (2)y Gy H(1)y H(2)y W (1)y W (2)y Gy

IV H(1)X H(2)X H(2)X H(1)X GX H(1)X H(2)X H(2)X H(1)X GX

n= 25 Expected # of peers 3.75

λ= 0.05 0.0118 0.0180 0.0460 0.0437 0.0489 0.0136 0.0195 0.0532 0.0500 0.0508
s.t.d (0.007) (0.007) (0.020) (0.027) (0.007) (0.005) (0.004) (0.019) (0.020) (0.005)
β1= 1 1.0813 1.0733 1.0117 1.0173 1.0112 1.0822 1.0722 1.0005 1.0189 1.0108

s.t.d (0.081) (0.081) (0.101) (0.095) (0.078) (0.068) (0.068) (0.085) (0.078) (0.062)
β2= 2 1.9967 1.9980 1.9951 1.9937 1.9946 2.0045 2.0059 2.0023 2.0027 2.0018

s.t.d (0.047) (0.046) (0.054) (0.054) (0.046) (0.033) (0.032) (0.042) (0.035) (0.031)

n= 50 Expected # of peers 7.5

λ= 0.05 0.0132 0.0188 0.0510 0.0510 0.0499 0.0133 0.0184 0.0491 0.0486 0.0499
s.t.d (0.003) (0.003) (0.014) (0.020) (0.003) (0.002) (0.002) (0.009) (0.011) (0.003)
β1= 1 1.1431 1.1273 0.9942 0.9865 0.9988 1.1458 1.1348 0.9956 1.0111 1.0019

s.t.d (0.072) (0.068) (0.097) (0.088) (0.060) (0.050) (0.051) (0.067) (0.071) (0.043)
β2= 2 2.0011 2.0027 1.9987 1.9995 2.0010 2.0000 2.0010 1.9967 1.9976 1.9991

s.t.d (0.030) (0.031) (0.046) (0.036) (0.030) (0.022) (0.021) (0.030) (0.022) (0.017)

n= 100 Expected # of peers 15

λ= 0.05 0.0133 0.0185 0.0504 0.0500 0.0501 0.0135 0.0185 0.0500 0.0506 0.0500
s.t.d (0.001) (0.001) (0.008) (0.008) (0.001) (0.001) (0.001) (0.005) (0.006) (0.001)
β1= 1 1.3679 1.3357 0.9936 1.0079 1.0008 1.3726 1.3358 1.0079 0.9860 1.0060

s.t.d (0.092) (0.086) (0.136) (0.115) (0.041) (0.060) (0.055) (0.096) (0.087) (0.026)
β2= 2 1.9983 1.9996 1.9982 1.9986 1.9993 2.0007 2.0015 1.9995 1.9988 1.9979

s.t.d (0.027) (0.026) (0.061) (0.045) (0.020) (0.210) (0.019) (0.046) (0.035) (0.014)

Second, our proposed adjusted 2SLS can estimate (λ,β1, β2) with high accuracy. The

average estimates are very close to the oracle estimates, albeit with larger standard devia-
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tions. This is of course due to the noise from link misclassification as well as estimation

errors in the initial estimates of the misclassification rates.

Third, when we fix the group size n, and increase the group number from S = 50 to 100,

the s.t.d. decreases by around 1/
√
2, consistent with our theory of

√
S asymptotics.

7. APPLICATION: MICROFINANCE PARTICIPATION IN INDIA

We apply our method to study how peer effects influence household decisions to par-

ticipate in a microfinance program in India. The sample was collected by Banerjee et al.

(2013) using survey questionnaires from the State of Karnataka, India between 2006-2007.

Banerjee et al. (2013) impute a social network structure in the sample by aggregating sev-

eral network measures that were inferred from the survey responses. They study how the

dissemination of information about a microfinance program, Bharatha Swamukti Samsthe,

or BSS, depended on the network position of the households that were the first to be in-

formed about the program. Banerjee et al. (2013) use a binary response model with social

interactions to disentangle the effect of information diffusion from the peer effects, a.k.a.

endorsement effects. In contrast, we use two of the multiple measures in Banerjee et al.

(2013) as noisy measures for an actual network, and apply our method to estimate peer

effects in a linear social network model.

7.1. Institutional background and data

The sample was collected by Banerjee et al. (2013) through survey questionnaires from

S = 43 villages in the State of Karnataka, India.13 These villages are largely linguistically

homogeneous but heterogeneous in terms of caste. The sample contains information about

the socioeconomic status and some demographic characteristics of 9,598 households. On

average, there were about 223 households in each village, with a minimum of 114, a max-

imum of 356, and a standard deviation of 56.2.

We merge the information from a full-scale household census and an individual-level

survey in Banerjee et al. (2013). The household census gathered demographic information

and data on a variety of amenities, such as roofing material, type of latrine, and quality of

access to electric power. The individual survey was administered to a randomly selected

13The data are publicly available at: http://economics.mit.edu/faculty/eduflo/social.
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sub-sample of villagers, which covered 46% of all households in the census. Individual

questionnaires collected demographic information, such as age, caste and sub-caste, edu-

cation, language, and having a ration card or not, but does not include explicit financial

information. We merged the information about the head of household from the individ-

ual survey with the household information from the census. This yields a sample of 4,149

households.

Table 2(a): Summary of Dependent and Explanatory Variables
(Number of obs.: 4,149)

Variable definition mean s.d. min max

y dummy for participation 0.1894 0.3919 0 1
room number of rooms 2.4389 1.3686 0 19
bed number of beds 0.9229 1.3840 0 24
age age of household head 46.057 11.734 20 95
edu education of household head 4.8383 4.5255 0 15
lang whether to speak other language 0.6799 0.4666 0 1
male whether the hh head is male 0.9161 0.2772 0 1
leader whether it has a leader 0.1393 0.3463 0 1
shg whether in any saving group 0.0513 0.2207 0 1
sav whether to have a bank account 0.3840 0.4864 0 1

election whether to have an election card 0.9525 0.2127 0 1
ration whether to have a ration card 0.9012 0.2985 0 1

Table 2(a) reports summary statistics for the dependent variable (y = 1 if participates in

the microfinance program) as well as a few continuous and binary explanatory variables.

Summary statistics for additional categorical variables, such as religion, caste, property

ownership, access to electricity, etc, are reported in Table 2(b). The individual-level survey

in Banerjee et al. (2013) also collected information of social interactions between house-

holds, including (i) individuals whose homes the respondent visited, and (ii) individuals

who visited the respondent’s home. Banerjee et al. (2013) construct graphs with undirected

links by symmetrizing the data.14 In other words, the sample in Banerjee et al. (2013) con-

tains two symmetrized measures for the same latent network, based on the responses to (i)

and (ii) respectively. These two measures, reported as “visitGo” and “visitCome” matrices

14Two households i and j are considered connected by an undirected link if an individual from either house-

hold mentioned the name of someone from the other household in response to question (i). Likewise, a second

symmetric network measure is constructed based on responses to (ii).
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in the sample and denoted as H(1) and H(2) in our notation, lend themselves to application

of our method in Section 3.3.2.15

Table 2(b): Summary of Category Variables
Variable value obs. per. Variable value obs. per.

religion latrine

- Hinduism 3943 95.04 - Owned 1195 28.80
- Islam 198 4.77 - Common 20 0.48
- Christianity 7 0.19 - None 2934 70.72

roof property

- Thatch 82 1.98 - Owned 3727 89.83
- Tile 1388 33.45 - Owned & shared 32 0.77
- Stone 1172 28.25 - Rented 390 9.40
- Sheet 868 20.92
- RCC 475 11.45
- Other 164 3.95

electricity caste

- No power 243 5.86 - Scheduled caste 1139 27.54
- Private 2662 64.18 - Scheduled tribe 221 5.34
- Government 1243 29.97 - OBC 2253 54.47

- General 523 12.65

Table 3: Degree Distribution in Two Network Measures

Degree 0 1 2 3 4 5 6 7 8 9 10

H(1) 2 21 110 227 357 505 526 546 506 379 269
H(2) 4 24 112 245 384 522 534 577 491 386 255

Degree 11 12 13 14 15 16 17 18 19 20 ≥ 21

H(1) 224 145 90 74 54 33 27 15 9 6 24
H(2) 179 137 102 59 46 28 22 13 9 3 17

Table 3 reports the empirical distribution of the degrees of H(1) and H(2). As these mea-

sures are symmetric, there is no distinction between the degrees of in-bound or out-bound

15Banerjee et al. (2013) aggregate responses from 12 questions, including (i) and (ii), to construct a single

symmetric network, which is considered as the actual adjacency matrix G, in the absence of link misclassification.

In contrast, we take a different approach by interpreting responses to questions (1) and (2) as two noisy measures

of a single, actual adjacency matrix.
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links. We pool all households across 43 villages into a single, large network. There are no

links between households from different villages in the sample, so the observed network

structure is block-diagonal. Our estimator allows for the possibility that the unobserved

true structure may include links between blocks, using our results from section 5.4.

Each column of Table 3 reports the number of households in H(1) and in H(2) that report

the number of links given by the degree column heading. Table 3 shows large differences

between the two matrices in the number of reported connections between households. If

there were no misclassification of actual undirected links in these measures, we would ex-

pect the two matrices H(1) and H(2) to be identical, and therefore have the same degree

distribution. The fact that they differ substantially is indicative of substantial link misclas-

sification in the measures, possibly due to the respondents’ recall errors, or differences in

how they interpret the questions regarding visits.

7.2. Empirical strategy for estimating peer effects

We use the following specification for the adjusted feasible structural form:

y = λW (t)y +Xβ + villageFE + v(t) for t= 1,2, (17)

where y is a binary variable indicating whether the household participated in the micro-

finance program (BSS), X is a matrix of household characteristics, and villageFE are

village fixed effects. Definitions and summary statistics of regressors in X are listed in

Table 2. Note that (17) provides two different feasible structural forms (of the same actual

structural model), corresponding to t= 1,2 respectively.

To implement our adjusted 2SLS estimator, we define ϕij ≡ ϕij(X) = 1 if i and j have

the same caste, and 0 otherwise. Then, based on our two network matrices H(1) (visit-go)

and H(2) (visit-come), we get the following estimates:

π̂1 =E(Gij |ϕij = 1) = 0.0357, π̂0 =E(Gij |ϕij = 0) = 0.0144,

p̂
(1)
0 =Pr{H(1)

ij = 1|Gij = 0}= 0.0020, p̂
(1)
1 =Pr{H(1)

ij = 0|Gij = 1}= 0.1425,

p̂
(2)
0 =Pr{H(2)

ij = 1|Gij = 0}= 0.0001, p̂
(2)
1 =Pr{H(2)

ij = 0|Gij = 1}= 0.1079.
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Let ns be the group size of village s. We then construct the adjusted measures

W
(t)
s =

H
(t)
s − p̂

(t)
0 (ιnsι

′
ns

− Ins)

1− p̂
(t)
0 − p̂

(t)
1

, for s= 1,2, ..., S, and t= 1,2

and apply our adjusted 2SLS estimator. The estimation results are reported in Table 4,

whose columns are defined as follows:

• OLS: regression of a simple, linear model that ignores network effects by setting λ= 0.

• (a): naive 2SLS that uses H(1) in place of the actual G, by including H(1)y as an

endogenous regressor and using H(1)X as its instruments.

• (b): adjusted 2SLS for the structural form with t = 1 in (17), using H(2)X as instru-

ments for the adjusted endogenous regressor W (1)y.

• (c): naive 2SLS analogous to (a), only with H(1) replaced by H(2).

• (d): adjusted 2SLS analogous to (b), only swapping the roles of H(1) and H(2). That

is, using H(1)X as instruments for W (2)y in (17) with t= 2.

• (e): S2SLS as defined in (15). This is a “combined” estimator that stacks the moments

and associated IVs from both structural forms in (b) and (d).

In summary, columns (a) and (c) report estimators that a researcher would use if he or she

ignored the issue of link misclassification, and treated eitherH(1) orH(2), respectively, as if

it were the true adjacency matrix G, applying a standard 2SLS estimator in the literature. In

contrast, columns (b), (d) and (e) report the adjusted 2SLS estimators we propose to remove

the estimation bias due to link misclassification.16 Column (e) combines the information

used for the estimators in (b) and (d), and so is our preferred estimator.

7.3. Empirical results

Table 4 reports that our adjusted 2SLS estimates for the peer effect λ̂ are 0.0499 when

using W (1)y in the structural form (column (b)), 0.0542 using W (2)y (column (d)), and

0.0515 using both measures and S2SLS (column (e)). Standard errors are clustered at the

village level. These estimates are all significant at the 1% level, and the differences between

16We need two network measures in this particular context because the measures in the sample are symmetric.

As we noted in Section 3.3.1, we can also apply the adjusted 2SLS when the sample reports a single asymmetric

network measure.
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them are small relative to their standard errors. These estimates imply the likelihood of a

household to participate in the microfinance program is increased by about 5.15% when

the household is linked to one more participating household on the network (note for this

calculation that our model does not row-normalize the network measures). With the average

participation rate being 18.9% in the sample, these estimates suggest that peer effects, a.k.a.

“endorsement effects” in Banerjee et al. (2013), are substantial.

The signs of estimated marginal effects by individual or household characteristics are

plausible. Column (e) suggests the head of household being a “leader” (e.g. a teacher, a

leader of a self-help group, or a shopkeeper) increases the participation rate by around

3.8%. These households with “leaders” were the first ones to be informed about the pro-

gram, and were asked to forward information about the microfinance program to other

potentially interested villagers. These leaders had received first-hand, detailed information

about the program from its administrator, which could be conducive to higher participation

rates. Households with younger heads are more likely to participate, but the magnitude of

this age effect is less substantial. Being 10 years younger increases the participation rate

by 1.7%. Having a ration card increases the participation rate by around 4.2%. Compared

to households using private electricity, households using government-supplied electricity

have a 3.3% higher participation rate. These two factors indicate that, holding other factors

equal, households in poorer economic conditions are more inclined to participate in the

microfinance program.

Table 4 also shows that, if we had ignored the issue of misclassified links in network

measures, and had done 2SLS using H(t)X as instruments for the (un-adjusted) endoge-

nous peer outcomes H(t)y, then the estimator would have been biased. In (a), where we use

H(1)X as instruments for H(1)y, the estimate for λ is 0.0523. In comparison, in (b) where

we correct for misclassified link bias by using H(2)X as instruments for W (1)y, then the

estimated λ is 0.0499. The upward bias resulted from ignoring the misclassified links is

about 4.8% (as 0.0523/0.0499=1.048). Likewise, in (c) where we erroneously use H(2)X

as instruments for H(2)y, we get an upward bias about 1.5% in the peer effect estimate

compared with the correct estimate in (d) (as 0.0550/0.0542=1.015).
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Table 4: Adjusted Two-stage Least Square Estimates

OLS (a) (b) (c) (d) (e)

R.h.s. Endogeneity H(1)y W (1)y H(2)y W (2)y W (t)y

Instruments H(1)X H(2)X H(2)X H(1)X Combined

λ̂ 0.0523*** 0.0499*** 0.0550*** 0.0542*** 0.0515***
(0.0079) (0.0086) (0.0097) (0.0082) (0.0083)

leader 0.0515*** 0.0371** 0.0355** 0.0414** 0.0403** 0.0379**
(0.0175) (0.0187) (0.0188) (0.0184) (0.0184) (0.0185)

age -0.0012*** -0.0017*** -0.0017*** -0.0016*** -0.0017*** -0.0017***
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

ration 0.0502** 0.0438** 0.0430** 0.0420** 0.0412** 0.0422**
(0.0212) (0.0201) (0.0202) (0.0195) (0.0194) (0.0198)

electricity− gov 0.0441** 0.0338** 0.0326** 0.0349** 0.0339** 0.0333**
(0.0152) (0.0157) (0.0158) (0.0156) (0.0155) (0.0156)

electricity− no 0.0162 0.0226 0.0233 0.0240 0.0248 0.0240
(0.0275) (0.0296) (0.0296) (0.0300) (0.0298) (0.0297)

caste− tribe -0.0411 -0.0278 -0.0263 -0.0270 -0.0255 -0.0260
(0.0294) (0.0309) (0.0305) (0.0301) (0.0298) (0.0301)

caste− obc -0.0822*** -0.0505** -0.0468** -0.0472** -0.0435*** -0.0456***
(0.0163) (0.0217) (0.0214) (0.0218) (0.0210) (0.0212)

caste− gen -0.1142*** -0.0718*** -0.0669*** -0.0669*** -0.0620** -0.0650***
(0.0239) (0.0238) (0.0244) (0.0244) (0.0235) (0.0241)

religion− Islam 0.1225*** 0.0967*** 0.0938*** 0.0880*** 0.0843*** 0.0895***
(0.0332) (0.0325) (0.0325) (0.0346) (0.0349) (0.0335)

religion−Chri 0.1569 0.1427 0.1410 0.1462 0.1450 0.1431
(0.1440) (0.1295) (0.1279) (0.1310) (0.1299) (0.1287)

Controls
√ √ √ √ √ √

V illageFE
√ √ √ √ √ √

R2 0.0862 0.1339 0.1353 0.1356 0.1366 0.1358
Obs 4134 4134 4134 4134 4134 4134

Note: s.e. clustered at village level are in parentheses. ***, **, and * indicate 1%, 5% and 10% significant.
Controls include male, roof , room, bed, latrine, edu, lang, shg, sav, election, own.

As explained in Section 3.2, the bias in (a) and (c) is due to the correlation between

H(t)X and the composite errors ε + λ[G − H(t)]y. The magnitude of this bias is deter-

mined in part by the misclassification rates (p(t)0 , p
(t)
1 ), which affect the correlation between

the composite errors and the traditional instruments H(t)X for endogenous peer outcomes



42

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

H(t)y in a naive 2SLS. This is evident from (7): if both p0 and p1 were close to zero, then

the r.h.s. side of (7) would be almost reduced to v, which is mean independent from X

under Lemma 1. In that case, H(3−t)X and non-linear functions of X would function as

valid IVs for H(t)y even without making adjustments in W (t).

The fact that estimates in (a) and (c) are fairly close to those in (b), (d) and (e) indicate

the impact of link misclassification on peer effects is low in this application. However, our

Monte Carlo simulations sometimes showed much larger impacts from misclassification,

which suggests that in other empirical environments, we may expect larger bias when mis-

classification of links is not accounted for in estimation. The method we propose in this

paper provides an easy remedy for this issue.

We conclude this section with model validation results in Table 5, which shows how the

predicted values of E(y|X) fit with the sample data. The Probit and Logit models use the

same set of regressors as in Table 4. We report the summary statistics of the fitted values

Ê(y|X) under different models. Columns (a) through (d) of Table 5 are the fitted values of

the feasible structural models used in each of the corresponding columns in Table 4.

Table 5: Model Validation: Predicted Microfinance Participation

Ê(y|X) Probit Logit OLS (a) (b) (c) (d) (e)

mean 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894

s.t.d 0.1176 0.1181 0.1151 0.1357 0.1403 0.1372 0.1416 0.1405

min 0.0103 0.0166 -0.0953 -0.1062 -0.1107 -0.1282 -0.1316 -0.1314

max 0.7490 0.7673 0.6895 0.7911 0.8159 0.7370 0.7615 0.8286

< 0 0% 0% 2.95% 4.96% 5.32% 5.06% 5.56% 5.41%

I{Ê(y|X)> 0.5}
underpred. (1 to 0) 17.76% 17.66% 18.34% 17.27% 17.05% 17.30% 17.08% 17.10%

overpred. (0 to 1) 0.92% 1.11% 0.27% 0.94% 1.14% 0.87% 1.92% 1.04%

correct 81.33% 81.23% 81.40% 81.79% 81.81% 81.83% 81.91% 81.86%

In all but one of the models in Table 5, the sample mean of the predicted participa-

tion probability Ê(y|X) is 0.1894, which is equal to the sample mean of y in the 4,134

observations used in the regression. The standard deviation of the predicted participation

probability varies across different models. Predictions of linear probability models (LPM),

reported under the column of “OLS” and (a)-(e), are mostly within the unit interval [0,1].
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LPM predictions are strictly less than 1 for all observations in the sample; only 2.95% to

5.56% of the households in the sample end up with negative LPM predictions. That is,

about 95% all LPM predictions in the sample are indeed within the unit interval.

Based on Ê(y|X), we use the indicator 1{Ê(y|X)> 0.5} to predict whether an individ-

ual participates in the microfinance program, and calculate prediction rates. Predictions in

our linear social network models in columns (a)-(e) generally outperform the OLS, Probit

and Logit models in terms of the percentage of correct predictions.

8. CONCLUSION

This paper proposes adjusted-2SLS estimators that consistently estimate structural pa-

rameters, including peer effects, in social networks when the links reported in a sample are

subject to random misclassification errors. By adjusting the endogenous peer outcomes and

applying new instruments constructed from noisy network measures, our estimators resolve

the additional endogeneity issues caused by link misclassification. As an initial step of our

method, we propose simple, closed-form estimators for the misclassification rates in the

network measures.

We apply our method to analyze the peer (endorsement) effects in households’ decisions

to participate in a microfinance program in Indian villages, using the data collected by

Banerjee et al. (2013). Consistent with our theoretical results, our empirical estimates show

that ignoring the issue of misclassified links in 2SLS estimation of social network models

leads to an upward bias of up to 5% in the estimates of peer effects. A Monte Carlo analysis

shows that in other applications, the bias from failing to account for link misclassification

can be much larger.
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A. Proofs in Sections 3-4

A1. Proofs in Sections 3.1-3.5

Proof of Lemma 1. Under (A3), we have E(Gy|G,X) = E[GM(Xβ + ε)|G,X] = GMXβ,

and E(Wy|G,X) = E[WME (Xβ + ε|H,G,X) |G,X] = E(W |G,X)MXβ. Under (A1)

and (A2), E(W |G,X) = G. It follows from the definition of v in (6) that E(v|G,X) =

0.

Proof of Proposition 2. By (A1), (A2), (A4), conditional mean of (i, j)-th entry in W 2 is

E
[
(W 2)ij|G,X

]
= E

(∑
k ̸=i,j

WikWkj

∣∣∣G,X)
=

∑
k ̸=i,j

E (WikWkj|G,X)

=
∑

k ̸=i,j
E (Wik|Gik, X)E (Wkj|Gkj, X)

=
∑

k ̸=i,j
GikGkj =

(
G2

)
ij
. (1)

1



It then follows that

E[(W ′X)′v|G,X] = E(X ′Wε|G,X) + λE [X ′W (G−W ) y|G,X]

= λE [X ′W (G−W )MXβ|G,X]

= λX ′ [E(W |G,X)G− E(W 2|G,X)
]
MXβ

= λX ′ (G2 −G2
)
MXβ = 0, (2)

where the first two equalities are due to (A3) and the reduced form of y, and the last due

to (1) and the fact that E [W |G,X] = G under (A1) and (A2).

Next, note that H = (1− p0 − p1)W + p0(ιι
′ − I). Hence

E[(H ′X)′v|G,X] = 0 + E {X ′p0(ιι
′ − I)v|G,X} = 0

where the first equality is due to (2) and the second due to Lemma 1.

As noted in Section 3.3.2, we can construct instruments from multiple symmetrized

measures for G, denoted by H(1) and H(2). Suppose H(1) and H(2) both satisfy (A1), (A2),

(A3), and are independent in the sense of (A4’). Let W (t) be defined for t = 1, 2 as in the

text.

We can construct feasible structural forms as in (10) in the main text, and use W (2)X

(or H(2)X) as instruments for v(1). To see why, note that for all i and j (including the case

with i = j):

E
[
(W (2)W (1))ij|G,X

]
= E

(∑
k ̸=i,j

W
(2)
ik W

(1)
kj

∣∣∣G,X)
=

∑
k ̸=i,j

E
(
W

(2)
ik W

(1)
kj

∣∣∣G,X)
=

∑
k ̸=i,j

E
(
W

(2)
ik

∣∣∣Gik, X
)
E
(
W

(1)
kj

∣∣∣Gkj, X
)

=
∑

k ̸=i,j
GikGkj =

(
G2

)
ij
. (3)

Besides, under (A1) and (A2),

E
(
W (2)G|G,X

)
= E(W (2)|G,X)G = G2. (4)

2



It then follows that

E[(W (2)X)′v(1)|G,X] = E(X ′W (2)ε|G,X) + λE
{
X ′W (2)

[
G−W (1)

]
y
∣∣G,X}

= λE
[
X ′W (2)

(
G−W (1)

)
MXβ

∣∣G,X]
= λX ′ [E(W (2)G|G,X)− E(W (2)W (1)|G,X)

]
MXβ = 0,

where the first two equalities are due to (A3), and the last holds because of (3) and (4)

under (A1), (A2), and (A4’). Next, by an argument similar to the proof of Proposition 2,

E[(W (2)X)′v(1)|G,X] = 0 implies E[(H(2)X)′v(1)|G,X] = 0.

Proof of Proposition 3. Define some K-by-K moments involving (G,X):

B1 ≡ E(X ′G2MX), B2 ≡ E(X ′GMX), B3 ≡ E(X ′G2X),

B4 ≡ E(X ′GX), B5 ≡ E(X ′X).

Recall Z ≡ (W ′X,X) and R ≡ (Wy,X). Under (A1), (A2), (A3), and (A4),

E(Z ′R) =

 E(X ′W 2y) E(X ′WX)

E(X ′Wy) E(X ′X)

 =

 E[X ′W 2M(Xβ + ε)] E(X ′HX)

E[X ′WM(Xβ + ε)] E(X ′X)


=

 E(X ′G2MXβ) E(X ′GX)

E(X ′GMXβ) E(X ′X)

 ≡

 B1β B4

B2β B5

 .

Suppose the 2K-by-(1 + K) matrix E(Z ′R) does not have full rank. By definition this

implies the 2K-by-2K square matrix  B1 B4

B2 B5

 (5)

must be singular. It then follows that non-singularity of the square matrix in (5) implies

E(Z ′R) has full rank.

As M −λGM = I, we have GM = λ−1(M − I) and G2M = λ−1(GM −G) = λ−2(M −

3



I − λG). We can write

 B1 B4

B2 B5

 =

 λ−1E[X ′(GM −G)X] E(X ′GX)

E(X ′GMX) E(X ′X)

 .

Adding the product of the 2nd row and (− 1
λ
) to the 1st row, we get:

 − 1
λ
E(X ′GX) E(X ′GX)− 1

λ
E(X ′X)

E(X ′GMX) E(X ′X)

 .

Adding the product of the 2nd column and ( 1
λ
) to the 1st column, we get

 − 1
λ2E(X

′X) E(X ′GX)− 1
λ
E(X ′X)

E(X ′(GM + 1
λ
I)X) E(X ′X)

 =

 − 1
λ2E(X

′X) − 1
λ
E(X ′M−1X)

1
λ
E(X ′MX) E(X ′X)

 .

The determinant of the matrix on the right-hand side is the product of λ−2K and the

determinant of [E(X ′X), E(X ′M−1X);E(X ′MX), E(X ′X)]. Hence, the matrix in (5) is

non-singular iff [E(X ′X), E(X ′M−1X);E(X ′MX), E(X ′X)] is non-singular.

By the same token, (A1), (A2), and (A4) imply that

E(Z ′Z) =

 E(X ′W 2X) E(X ′WX)

E(X ′WX) E(X ′X)

 =

 E(X ′G2X) E(X ′GX)

E(X ′GX) E(X ′X)

 =

 B3 B4

B4 B5

 .

Therefore, E(Z ′Z) has full rank if and only if [B3, B4;B4, B5] is non-singular.

A2. Identifying misclassification rates in Section 3.4

Consider the case in Section 3.4.1 where the sample reports two measures H(1) and H(2)

with misclassification rates p
(t)
0 , p

(t)
1 for t = 1, 2 respectively. Assume these two measures

satisfy (A1), (A2), (A3), and (A4’). It is convenient to introduce a third measure whose

4



distribution is determined by the joint distribution of H
(1)
ij and H

(2)
ij :

H
(3)
ij ≡ max

{
H

(1)
ij , H

(2)
ij

}
.

By construction, for t = 1, 2, 3, the distribution of H
(t)
ij is related to p

(t)
0 , p

(t)
1 and link

formation probability π1 ≡ E(Gij|ϕij(X) = 1) as follows:

ψ
(t)
1 ≡ E

[
H

(t)
ij

∣∣∣ϕij(X) = 1
]
=

(
1− p

(t)
1

)
π1 + p

(t)
0 (1− π1) = p

(t)
0 +

(
1− p

(t)
1 − p

(t)
0

)
π1, (6)

where (A4’) implies:

p
(3)
0 = p

(1)
0 + p

(2)
0 − p

(1)
0 p

(2)
0 , (7)

p
(3)
1 = p

(1)
1 p

(2)
1 . (8)

Equations similar to (6) hold with “ϕij(X) = 1” and π1 replaced by “ϕij(X) = 0” and π0

respectively, thus defining ψ
(t)
0 accordingly.

[Identifying p
(1)
0 and p

(2)
0 .] For convenience, let ξ1 ≡

(
1− p

(2)
0 − p

(2)
1

)
π1 so that

ψ
(1)
1 = p

(1)
0 + r(12)ξ1; ψ

(2)
1 = p

(2)
0 + ξ1;

ψ
(3)
1 = p

(1)
0 + p

(2)
0 − p

(1)
0 p

(2)
0 + r(32)ξ1, (9)

where r(t′t) ≡ (ψ
(t′)
0 − ψ

(t′)
1 )/(ψ

(t)
0 − ψ

(t)
1 ) for t′, t ∈ {1, 2, 3}. This implies

p
(1)
0 = ψ

(1)
1 − r(12)ξ1 and p

(2)
0 = ψ

(2)
1 − ξ1. (10)

Substituting these into the expression for ψ
(3)
1 in (9) implies:

ψ
(3)
1 =

(
ψ

(1)
1 − r(12)ξ1 − 1

)(
1− ψ

(2)
1 + ξ1

)
+ 1 + r(32)ξ1.

5



Rearranging terms, we write this quadratic equation in ξ1 as

C2ξ21 − C1ξ1 − C0 = 0, (11)

where

C2 ≡ r(12), (12)

C1 ≡ ψ
(1)
1 − 1 + r(32) − r(12)(1− ψ

(2)
1 ),

C0 ≡ ψ
(1)
1 + ψ

(2)
1 − ψ

(1)
1 ψ

(2)
1 − ψ

(3)
1 .

By definition, C2 = [1− p
(1)
0 − p

(1)
1 ]/[1− p

(2)
0 − p

(2)
1 ] > 0, and

C0 =
[
1− p

(1)
0 − p

(1)
1

] [
1− p

(2)
0 − p

(2)
1

]
π1(1− π1) > 0.

Hence ∆ ≡ (C1)2 + 4C2C0 > 0 and
√
∆ > C1. Then (11) admits two solutions in ξ1:

ξ1 =
1

2C2
(C1 ±

√
∆).

However, ξa ∈ (0, 1) by definition. Since 1
2C2

(
C1 −

√
∆
)
< 0, the only solution in (11) must

be ξ1 =
1

2C2

(
C1 +

√
∆
)
. Plugging in this solution of ξ1 into (10) identifies p

(1)
0 and p

(2)
0 .

[Identifying π1.] Note that (6) implies

p
(t)
1 = 1− p

(t)
0 − ψ

(t)
1 − p

(t)
0

π1
for t = 1, 2, 3. (13)

Plugging in (13) into (8) and using (7), we get

π1 =

(
ψ

(1)
1 − p

(1)
0

)(
ψ

(2)
1 − p

(2)
0

)
(
1− p

(1)
0

)(
ψ

(2)
1 − p

(2)
0

)
+
(
1− p

(2)
0

)(
ψ

(1)
1 − p

(1)
0

)
−

(
ψ

(3)
1 − p

(3)
0

) . (14)

Recall that ψ
(t)
1 for t = 1, 2, 3 are directly identified from the data. With p

(t)
0 identified for

t = 1, 2, we can recover p
(3)
0 from (7). This implies π1 is identified from (14).

6



[Identifying p
(1)
1 , p

(2)
1 and π0.] With p

(1)
0 , p

(2)
0 , and π1 identified above, we can use (13)

to recover p
(t)
1 from ψ

(t)
1 for t = 1, 2. It is worth mentioning that these parameters π1 and

p
(t)
0 , p

(t)
1 are over-identified because the argument above can also be applied to ψ

(t)
0 instead

of ψ
(t)
1 . The final step is to use to definition in (6) to (over-)identify π0 as:

π0 =
ψ

(t)
0 − p

(t)
0

ψ
(t)
1 − p

(t)
0

π1 for t = 1, 2, 3.

[Single, unsymmetrized measure.] The same identification argument applies for the

case in Section 3.4.2, in which the sample reports a single, unsymmetrized measure H

with misclassification rates p1, p0 when the actual G is known to be symmetric. For each

unordered pair {i, j}, define H(1)
{i,j} ≡ Hij, H

(2)
{i,j} ≡ Hji, and H

(3)
{i,j} ≡ max{Hij, Hji}. There

exists a system analogous to (6), with H
(t)
ij replaced by H

(t)
{i,j}. However, in this case, the

first two equations for t = 1, 2 coincide with each other, as p
(1)
d = p

(2)
d = pd for d ∈ {0, 1}

by construction. The remaining steps for identification are identical to the case above with

two measures H(1) and H(2), except that the closed-form expressions are further simplified

due to r(12) = 1, ψ
(1)
1 = ψ

(2)
1 , and p

(1)
d = p

(2)
d for d ∈ {0, 1}.

A3. Asymptotic property of the adjusted 2SLS estimator

We derive the limiting distribution of our adjusted 2SLS estimator for the structural effects

λ̂ and β̂ in Proposition 4 of Section 4.2.

Recall from Section 4.1 that we have defined for each group s,

υ1s,1 ≡ 2

ns(ns − 1)

∑
i>j

Hs,{i,j}1{ϕs,{i,j} = 1},

υ2s,1 ≡ 2

ns(ns − 1)

∑
i>j

1{ϕs,{i,j} = 1},

and defined υ1s,0, υ2s,0 analogously by replacing ϕs,{i,j} = 1 with ϕs,{i,j} = 0. Let υs ≡

(υ1s,1, υ2s,1, υ1s,0, υ2s.0)
′. We maintain the following regularity conditions:

(REG) (i) ∃δ > 0 s.t. limS→∞
∑S

s=1E
{
∥Z ′

sRs(p)∥1+δ
}
/(1 + δ) < ∞; similar conditions

7



hold for Z ′
sZs and Z

′
s▽ [Rs(p)θ]. (ii) Let τs, ζs be defined as in (15) and (17) below. ∃δ′ > 0

s.t. E(||τs||2+δ′) < ∞, and S × V ar
[
S−1

(∑S
s=1 τs

)]
> 0 is bounded away from zero by

some positive constants for S large enough; similar conditions hold for ζs.

Under these conditions, we can apply appropriate versions of the law of large numbers,

the central limit theorem, and the delta method to our sample which consists of observations

ys, Xs, Hs that are independent and potentially heterogeneously distributed (due to the

variation in group sizes ns).

First, note our estimator for misclassification rates p̂ is a closed-form function of the

sample averages of υs. Thus the asymptotic linear presentation of p̂ is

√
S(p̂− p) = 1√

S

∑
s
J0 × [υs − E(υs)]︸ ︷︷ ︸

≡τs

+ op(1), (15)

where J0 depends on the Jacobian matrix of p̂ w.r.t. the sample averages of υs, evaluated

at population counterparts.

Next, note that by construction,

√
S
(
θ̂ − θ

)
=

√
S
(
A′B−1A

)−1
A′B−1Z′ [Y −R(p̂)θ]

=
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0

1√
S
Z′ [Y −R(p̂)θ] + op(1), (16)

where the second equality holds as A/S
p→ A0, B/S

p→ B0, S
−1/2Z′ [Y −R(p̂)θ] = Op(1).

Recall the following definitions from the text:

F0 ≡ lim
S→∞

S−1
∑S

s=1
E {Z ′

s▽ [Rs(p)θ]} .

For each group s and individual i ≤ ns, let Rs,i(p) denote the corresponding row in R(p),

and ▽pRs,i(p) be the (K + 1)-by-2 Jacobian matrix of Rs,i(p) with respect to p. Let

▽p [Rs(p)θ] denote an ns-by-2 matrix with each row i being θ′▽pRs,i(p), and let ▽p [R(p)θ]

8



be an N -by-2 matrix that stacks them for s ≤ S. Then,

1√
S
Z′ [Y −R(p̂)θ] = 1√

S
Z′ [Y −R(p)θ]−

(
1
S
Z′▽p [R(p)θ]

)√
S(p̂− p) + op(1)

= 1√
S

∑
s
Z ′

s [ys −Rs(p)θ]− F0

(
1√
S

∑
s
τs

)
+ op(1)

= 1√
S

∑
s
Z ′

svs − F0τs︸ ︷︷ ︸
≡ζs

+ op(1). (17)

The first equality follows form a Taylor approximation around the actual misclassification

rates p = (p0, p1)
′; the second from 1

S
Z′▽p [R(p)θ]

p−→ limS→∞ S−1
∑

sE {Z ′
s▽p [Rs(p)θ]}

and from the asymptotic linear representation of the estimator p̂ = (p̂0, p̂1); the third from

ys = Rs(p)θ + vs. This proves the limiting distribution of
√
S(θ̂ − θ) in Proposition 4.

B. Proofs and Further Details for Section 5

B1. Proofs in Section 5.1

Proof of Proposition 5. Under (A3),

E(Gy|X,G) = E[GM(Xβ +GXγ + ε)|X,G] = GM (Xβ +GXγ) ,

E(Wy|X,G) = E[WME (Xβ +GXγ + ε|X,G,H) |X,G] = E(W |G,X)M(Xβ +GXγ).

Under (A1) and (A2), E(W |G,X) = G. It then follows that E(η|X,G) = 0.

Next, note

E [ζ(X)′WWy|G,X] = ζ (X)′E(W 2|G,X)M(Xβ +GXγ);

E[ζ (X)′WWX|G,X] = ζ (X)′E(W 2|G,X)X;

E [ζ(X)′WGy|G,X] = ζ (X)′E(W |G,X)GM(Xβ +GXγ);

E[ζ (X)′WGX|G,X] = ζ (X)′E(W |G,X)GX.

As shown in (1), under (A4), E(W 2|G,X) = G2. Because E(W |G,X) = G under (A1)

and (A2), this implies E
[
ζ (X)′Wη

]
= 0. Also, E[ζ(X)′Hη] = (1− p0− p1)E[ζ(X)′Wη] +

9



E[ζ(X)′p0(ιι
′ − I)η] = 0, where the second equality holds because E(η|X,G) = 0.

B2. The Setting of a single large network

In the main text, we focus on cases where the sample consists of many small, fixed-sized

groups, where no links exist between members of different groups.

We now show how the idea of an adjusted 2SLS also applies when there is interdepen-

dence between all individuals in a sample. Specifically, we consider a setting in which the

sample is partitioned into well-defined, approximate groups, which we henceforth refer to

as “blocks”. Formally, the individuals in the sample are partitioned into S blocks. Links

within each block s are dense (i.e., the probability of forming links between individuals

within the same block does not diminish as the sample size increases); links between dif-

ferent blocks are sparse, with the rate of formation diminishing as the number of blocks

increases.

The sample size is N ≡
∑S

s=1 ns. Let GN and HN denote the true and noisy measure

of N -by-N adjacency matrices respectively, which span the S blocks in the sample. Link

misclassification exists in HN in two ways. First, links within each block are randomly

misclassified in the sample at rate p0 and p1. Second, sparse cross-block links are never

reported in the sample. By definition, HN is block-diagonal, with each diagonal block

indexed as HN,s for s = 1, 2, ..., S.

To facilitate derivation of the asymptotic properties of our 2SLS estimator, let G̃N be a

hypothetical block-diagonal approximation of GN , which perfectly reports all within-block

links but drops all cross-block links. That is, for all individual i,

G̃N,ij = GN,ij if j ∈ s(i); G̃N,ij = 0 if j /∈ s(i),

where s(i) indicates the block that i belongs to. By construction, all elements outside the

diagonal blocks in G̃N are zeros. We maintain the following assumptions on the measure-

ment errors in HN :

(N1) E(HN,ij|G̃N , X) = E(HN,ij|G̃N,ij, X) ∀i ̸= j;

10



(N2) E(HN,ij|G̃N,ij = 1, X) = 1− p1, E(HN,ij|G̃N,ij = 0, X) = p0 ∀i and j ̸= i in s(i).

As before, assume p0 + p1 < 1. Furthermore, we maintain that the block-specific random

arrays, HN,s, G̃N,s, XN,s, ϵN,s (with HN,s, G̃N,s being ns-by-ns matrices), are drawn indepen-

dently across the blocks. Under these maintained conditions, we can consistently estimate

the misclassification rates following the same approach as in Section 4.1 and using linked

pairs within diagonal blocks only. For the rest of this section, we take (p0, p1) as given, and

focus on the asymptotic properties of an adjusted 2SLS that removes misclassification bias

by adjusting the diagonal block measures.

Let WN be a block-diagonal matrix, with each of its S diagonal blocks adjusted as

WN,s ≡ [HN,s − p0(ιnsι
′
ns

− Ins)]/(1 − p0 − p1). In the Web Appendix, we show that the

structural model

yN = λGNyN +XNβ + εN

can be written as

yN = λWNyN +XNβ + vN + uN , (18)

where uN ≡ (IN − λWN)
(
IN − λG̃N

)−1

λ∆NyN with ∆N ≡ GN − G̃N and

vN ≡ εN + λ
(
G̃N −WN

)
ỹN with ỹN ≡ (IN − λG̃N)

−1(XNβ + εN).

Note that we decompose composite errors in (18) into uN and vN , which are both vec-

torizations of block-specific vectors uN,s and vN,s. While vN,s are independent across the

blocks, uN,s are correlated across the blocks because of interdependence between yN,s due

to sparse links between the blocks in GN . This difference requires us to apply separate

tactics to characterize their contribution to the estimation errors.

This decomposition of the composite error is useful for illustrating two main steps for

deriving the asymptotic result. Let ZN denote the matrix of instruments, with ZN,s being

its sub-matrix specific to block s. Instrument exogeneity requires E(Z ′
N,svN,s) = 0 for

all s. Recall the 2SLS estimator that uses ZN as instruments for RN ≡ (WNyN , XN) is
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θ̂ =
(
A′

NB
−1
N AN

)−1
A′

NB
−1
N Z ′

NyN , where AN ≡ Z ′
NRN and BN ≡ Z ′

NZN . By definition,

θ̂ − θ =
(
A′

NB
−1
N AN

)−1
A′

NB
−1
N Z ′

N(vN + uN).

The asymptotic property of the estimator thus depends on that of Z ′
NvN and Z ′

NuN , which

we investigate sequentially.

First, we characterize the order of Z ′
NvN , using the fact that vN,s are independent

across blocks s. To see why such independence holds, recall that HN,s, G̃N,s, XN,s, ϵN,s are

assumed independent across blocks s. By construct, G̃N , HN , WN and (I −λG̃N)
−1 are all

block-diagonal. Hence ỹN,s = (Is − λG̃N,s)
−1(XN,sβ + εN,s) are independent across s.1 It

then follows that vN,s = εN,s + λ
(
G̃N,s −WN,s

)
ỹN,s, and are independent across s.

We maintain exogeneity and independence conditions which are analogous to (A3) and

(A4) for the case with small groups in Section 3:

(N3) E(εN,s|XN,s, GN,s, HN,s) = 0 for all s;

(N4) Conditional on (GN , XN), HN,ij⊥ HN,kl for all (i, j) ̸= (k, l).

Under these conditions, E(vN,s|XN,s, GN,s) = 0. The independence between vN,s mentioned

above then allows us to apply the law of large numbers to show that

1

S
Z ′

NvN =
1

S

∑
s
Z ′

N,svN,s = Op(S
−1/2).

Second, the order of 1
S
Z ′

NuN is bounded above by the expected number of misclassified

links across the blocks, which are assumed to be sparse in the following sense:

(S-LOB)
∑N

i=1

∑
j ̸∈s(i)

E (|∆N,ij|) = O(Sρ) for some ρ < 1.

This condition is the same as in Lewbel et al. (2023), who provide examples with primitive

conditions. Among other things, it requires the links outside these blocks, or approximate

1We refer to ỹN as a hypothetical reduced form, because it is based on the block-diagonal approximation
G̃N rather than the actual GN .
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groups, to be sparse with diminishing formation rates as S → ∞. Regularity conditions for

deriving asymptotic properties are collected in Condition (S-REG) in the Web Appendix.

Applying arguments similar to those in Proposition 3.1 and 3.2 of Lewbel et al. (2023), we

have the following proposition.

Proposition A Suppose (N1), (N2), (N3) and (N4) hold. If Assumptions (S-LOB)

and (S-REG) hold, then

θ̂ − θ = Op(S
−1/2 ∨ Sρ−1).

If in addition ρ < 1/2, then
√
S
(
θ̂ − θ

)
d−→ N (0,Ω),

where Ω ≡
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 ω0B

−1
0 A0

(
A′

0B
−1
0 A0

)−1
with A0, B0, ω0 being constant ar-

rays defined in Section B3.

B3. Proof of Proposition A in Section B2

In this section we derive the asymptotic property of adjusted 2SLS in the setting of a

single, large network that is near-block diagonal. Our objective is to show that, when the

order of magnitude of the misclassification errors outside the diagonal blocks, or approxi-

mate groups, are small enough in the sense of (S-LOB), a 2SLS that only adjusts the link

measure within each block while ignoring sparse, off-diagonal links is a root-n, consistent,

asymptotically normal estimator for social effects.

To focus on this main goal, we take the misclassification rates (p0, p1) as given and fixed

in the adjustment. (A proof that also accounts for estimation errors in the initial estimates

of (p0, p1) would follow from steps similar to Proposition 4 in Section 4.2, but do not add

any insight for the main goal.) Also, for conciseness, we only investigate the case with a

single, unsymmetrized measure as in Section 3.3.1; parallel results for the case of multiple,

symmetrized measure follow from analogous arguments and are omitted for brevity.

We begin by deriving the noisy, feasible structural form in (17). First off, note that the

13



reduced form of yN is:

yN = (IN − λGN)
−1(XNβ + εN)

= (IN − λG̃N)
−1(XNβ + εN)−

[
(IN − λG̃N)

−1 − (IN − λGN)
−1
]
(XNβ + εN) (19)

= (IN − λG̃N)
−1(XNβ + εN)︸ ︷︷ ︸
≡ỹN

+ (IN − λG̃N)
−1λ(GN − G̃N)︸ ︷︷ ︸

≡∆N

(IN − λGN)
−1(XNβ + εN)︸ ︷︷ ︸
=yN

.

where the third equality follows from the fact that A−1 − B−1 = A−1(B − A)B−1 for

invertible matrices A, B. Next, write (14) as

yN = WNyN +XNβ + εN + λ
(
G̃N −WN

)
yN + λ∆NyN

= WNyN +XNβ + εN + λ
(
G̃N −WN

)
ỹN︸ ︷︷ ︸+

≡vN

λ2
(
G̃N −WN

)
(IN − λG̃N)

−1∆NyN + λ∆NyN︸ ︷︷ ︸
≡uN

,

where the second equality holds because we substitute yN in λ
(
G̃N −WN

)
yN using the

r.h.s. of (19). Furthermore, we can write

uN =
[
λ
(
G̃N −WN

)
(IN − λG̃N)

−1 + IN

]
λ∆NyN = (IN − λWN)

(
IN − λG̃N

)−1

λ∆NyN .

This establishes equation (17) in the text.

Next, we introduce the regularity conditions for establishing the asymptotic properties

in Proposition 6. Suppose IN −λGN and IN −λG̃N are invertible almost surely, and denote

MN ≡ (IN − λGN)
−1, M̃N ≡ (IN − λG̃N)

−1. Let R̃N,s ≡ (WN,sM̃N,sXN,s, XN,s).

(S-REG) (i) For all i, supi

[∑
j |MN,ij|

]
<∞; supj E ( |XN,jβ|+ |εN,j||∆N) <∞;

supj

∣∣∣∣(X ′
NHNWNM̃N

)
ij

∣∣∣∣ <∞ and supj

∣∣∣∣(X ′
NWNM̃N

)
ij

∣∣∣∣ <∞ almost surely.

(ii) (HN,s, G̃N,s, XN,s, ϵN,s) are independent across blocks s = 1, 2, ..., S.

(iii) There exist δ > 0 s.t. for all s, E
[
||Z ′

N,sR̃N,s||1+δ
]
, E|

[
||Z ′

N,sWN,sM̃N,sεN,s||1+δ
]
,

and E
(∥∥Z ′

N,sZN,s

∥∥1+δ
)
are uniformly bounded.

(iv) For some δ > 0, E
∥∥Z ′

N,svN,s

∥∥2+δ
< ∆ < ∞ and S−1

∑S
s=1 V ar(Z

′
N,svN,s) > δ′ > 0

for S sufficiently large.

14



(v) supj

∣∣∣∣[(IN − λWN) M̃N

]
ij

∣∣∣∣ <∞ for all i almost surely.

(vi) limS→∞
1
S

∑
sE

(
Z ′

N,sZN,s

)
and limS→∞

1
S

∑
sE

(
Z ′

N,sR̃N,s

)
exist and are non-singular.

Assumption (S-REG) collects regularity conditions needed for deriving the asymptotic

properties of θ̂ − θ. Part (ii) implies that exogenous variables are drawn independently

across the blocks. Part (i) and (v) introduce bound conditions on exogenous arrays in

the model. These allow us to relate differences between yN and its near-block diagonal

approximation ỹN to the order of difference between GN and G̃N . Parts (iii) and (iv) are

boundedness conditions on population moments that ensure a law of large numbers and a

central limit theorem apply to components of the estimator.

Lemma A1. Let aN , bN be random vectors in RN . Suppose there exist constants C1, C2 <

∞ such that Pr{supi≤N E(|ai||∆N) ≤ C1} = 1 and Pr{supj≤N E (|bj||∆N) ≤ C2} = 1.

Then Assumption S-LOB implies 1
S
a′N∆NbN = Op(S

ρ−1).

Proof of Lemma A1. From Assumption S-LOB,
∑

i

∑
j E |∆N,ij| = O(Sρ) for some ρ < 1.

By construction,

E
(
| 1
S
a′N∆bN |

)
≤ 1

S
E
[
supi,j E (|aibj| | ∆N) ·

(∑
i

∑
j
|∆N,ij|

)]
≤ 1

S
E
[
C1C2

(∑
i

∑
j
|∆N,ij|

)]
= O(Sρ−1).

It then follows that 1
S
a′N∆NbN = Op(S

ρ−1).

Lemma A2. Under the conditions in (S-REG)-(i), there exists a constant C∗ < ∞ such

that Pr{supi≤N E(|yi||∆N) ≤ C∗} = 1 for all N .

Proof of Lemma A2. Let MN ≡ (IN − λGN)
−1. For any matrix A, let A(i) denote its i-th

row; and Aij denote its (i, j)-th component. It then follows from the reduced form that

sup
i≤N

E(|yN,i| | ∆N) = sup
i
E
(∣∣∣∑

j
MN,ij

(
XN,(j)β + εj

)∣∣∣∣∣∣∆N

)
≤ sup

i

[∑
j
|MN,ij|

]
× sup

j
E
(
|XN,(j)β|+ |εN,j|

∣∣∆N

)
.
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Hence, there exists some constant C∗ <∞ with Pr{supiE(|yi||∆N) ≤ C∗} = 1.

Lemma A3. Under the conditions in (S-REG), 1
S
R′

NZN = A0 + op(1),
1
S
Z ′

NZN = B0 +

op(1), and
1
S
Z ′

NvN = Op(S
−1/2).

Proof of Lemma A3. By definition, 1
S
Z ′

NZN = 1
S

∑S
s=1 Z

′
N,sZN,s, with ZN,s independent

across s due to (S-REG)-(ii). Then by (S-REG)-(iii) and the law of large numbers for

independent and heterogeneously distributed observations (e.g., Corollary 3.9 in White

(2001)), 1
S
Z ′

NZN = B0 + op(1) where B0 ≡ limS→∞
1
S

∑
sE

(
Z ′

N,sZN,s

)
. Next, note by

construction and (19),

1

S
Z ′

NRN =
1

S

 X ′
NHNWN ỹN X ′

NHNXN

X ′
NWN ỹN X ′

NXN

+
1

S
λ

 X ′
NHNWNM̃N∆NyN 0

X ′
NWNM̃N∆NyN 0

 . (20)

By (S-REG)-(i) and Lemma A2, yN satisfies the condition on bN in Lemma A1. It then

follows from Lemma A1 that the second term on the right-hand side of (20) is Op(S
ρ−1).

Besides, the first term on the r.h.s. of (20) is

1

S

∑S

s=1
Z ′

N,sR̃N,s +
1

S

∑S

s=1

(
Z ′

N,sWN,sM̃N,sεN,s,0
)
. (21)

By (N3), E
(
Z ′

N,sWN,sM̃N,sεN,s

)
= 0. It then follows from (S-REG)-(iii) that the expression

in (21) is A0 + op(1), with A0 ≡ limS→∞
1
S

∑
sE

(
Z ′

N,sR̃N,s

)
.

Next, note that by definition,

1

S
Z ′

NvN =
1

S

∑S

s=1
Z ′

N,sεN,s + λ
1

S

∑S

s=1
Z ′

N,s

(
G̃N,s −WN,s

)
ỹN,s. (22)

By construction, ZN,s, εN,s, G̃N,s and HN,s are independent across blocks s = 1, 2, ..., S.

Also, recall that ỹN,s is defined as ỹN,s ≡ (Is − λG̃N,s)
−1(XN,sβ + εN,s), Hence ỹN,s is also

independent across the blocks. Assumption (N3) implies E(Z ′
N,sεN,s) = 0; Assumptions

(N1) and (N2) imply

E
(
WN,s| G̃N,s, XN,s

)
= G̃N,s.
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Furthermore, the same argument as in the proof of Proposition 2 shows that under (N1),

(N2), (N3) and (N4)

E
(
HN,sWN,s| G̃N,s, XN,s

)
= E

(
HN,sG̃N,s

∣∣∣ G̃N,s, XN,s

)
,

so that

E
[
Z ′

N,s

(
G̃N,s −WN,s

)
ỹN,s

]
= 0.

It then follows from (S-REG)-(iv) and the Central Limit Theorem that 1
S
Z ′

NvN = Op(S
−1/2).

Proof of Proposition A. As shown in Lemma A3, 1
S
R′

NZN = A0 + op(1),
1
S
Z ′

NZN = B0 +

op(1), and
1
S
Z ′

NvN = Op(S
−1/2) under (N1)-(N4), (S-LOB) and (S-REG). Furthermore,

with (S-REG)-(v), Lemma A1 and Lemma A2 imply that 1
S
Z ′

NuN = Op(S
ρ−1). When

ρ < 1/2, we have
1√
S
Z ′

N(uN + vN)
d→ 1√

S
Z ′

NvN
d→ N (0, ω0),

where ω0 = limS→∞
1
S

∑
sE

(
Z ′

N,svN,sv
′
N,sZN,s

)
. Hence,

√
S(θ̂ − θ) =

(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0

1√
S
Z ′
NvN + op(1)

d→ N (0,
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 ω0B

−1
0 A0

(
A′

0B
−1
0 A0

)−1
).
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