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Abstract
Nudge-style interventions are popular but are often criticized for be-
ing atheoretical. We present a model of information nudges (i.e., in-
terventions that provide useful but imperfect information about the
utility of taking an action) based on Bayesian updating in a setting of
binary choice. The model makes two main predictions: One, the prob-
ability of a positive treatment effect should be increasing in the base-
line take-up rate. Two, across studies, as baseline rates increase from
0 to 1, the expected treatment effect has a “down–up–down’’ shape. A
surprising corollary of both predictions is that treatment effects are
expected to be negative for low baseline rates. We use reduced-form
and structural methods to conduct a meta-analysis of 75 information
nudges and corroborate both predictions. Both the meta-analysis and
a novel survey of nudge experts suggest the intuition in the model is
not currently known. Finally, we provide guidance for practitioners
about the environments in which information nudges will positively
affect a desired behavior and those in which they may backfire.
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1 Introduction
Over the past two decades, a large and growing body of empirical work
has investigated the impact of “nudges” on behavior.1 Researchers have
investigated the efficacy of a number of prominent nudges across a wide va-
riety of settings. One finding from the broad application of these interven-
tions is that some of the most regularly effective and behaviorally intuitive
nudges often fail to influence behavior (DellaVigna and Linos 2022) and
sometimes influence behavior in the opposite direction than expected (i.e.,
they backfire). These failures and backfires surprise many researchers and
practitioners who explicitly or implicitly assume that a nudge that works in
one context will work in other, similar contexts. Such an assumption may
be perfectly natural in the absence of a formal theory of how the nudge af-
fects behavior. This paper introduces such a theory for a popular nudge:
providing individuals with information about a choice they face. We call
such interventions information nudges.

Information nudges have successfully changed behavior in a wide vari-
ety of contexts.2 However, prominent empirical papers have found null re-
sults from providing information that might have been expected to increase
a desired behavior (e.g., Allcott and Taubinsky 2015 and Avitabile and de
Hoyos 2018) or have found that the nudge backfires, generating treatment
effects in the opposite direction than expected, for at least some groups
(e.g., Fellner, Sausgruber, and Traxler 2013, Bhargava and Manoli 2013, and
Beshears, Choi, Laibson, Madrian, and Milkman 2015).

These null and negative results are deemed surprising because many
practitioners only test information nudges that they view as likely to be suc-
cessful based on two standard intuitions. The first intuition is that informa-

1. See Sunstein and Thaler (2008) for a detailed discussion of nudges. This work has
been influential in the policy domain, spawning nudge units in the Uk (called the Behavioral
Insights Team), US (called the Social and Behavioral Sciences Team), and around the world.
See Whitehead et al. (2014).

2. We say “successfully changed behavior” when it moves behavior in a direction hypothe-
sized by the researcher and desired by practitioners. Information about others’ decisions has
affected decisions to donate money (see, e.g., Frey andMeier 2004, Martin and Randal 2008,
Croson and Shang 2008, and Shang and Croson 2009), rate movies (Chen et al. 2010), order
certain entrées (Cai, Chen, and Fang 2009), save energy (Allcott 2011), reuse towels (Gold-
stein, Cialdini, and Griskevicius 2008), pay taxes (Hallsworth et al. 2014), like certain songs
(Salganik, Dodds, andWatts 2006), steal petrifiedwood (Cialdini et al. 2006), intend to vote
(Gerber and Rogers 2009), litter (Cialdini, Reno, and Kallgren 1990), take a job (Coffman,
Featherstone, and Kessler 2017), give money in a laboratory public goods games (Keser and
Van Winden 2000), (Fischbacher, Gächter, and Fehr 2001), (Potters, Sefton, and Vesterlund
2005). Information about the costs or benefits of different actions has been shown to af-
fect school choice (Hastings and Weinstein 2007), standardized test scores (Nguyen 2008),
graduation rates (Jensen 2010), claiming tax benefits (Bhargava and Manoli 2013), tax com-
pliance (Pomeranz 2015), 401(k) contribution levels (Clark, Maki, and Morrill 2014), eating
fewer calories (Bollinger, Leslie, and Sorensen 2011), responding to energy price changes
(Jessoe and Rapson 2014), and purchasing fluorescent light bulbs (Allcott and Taubinsky
2015).
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tion nudges will be effective when the nudge is “good news” relative to the
average belief in the population of agents (see, e.g., Schultz et al. 2007).3
The second intuition is that nudges—including information nudges—are
likely to be effective when there are many agents who might potentially be
nudged from not taking the action to taking the action.4

We develop a model of information nudges to explain when they will be
effective and when they will backfire. In doing so, we are able to reconcile
existing results from the literature and provide guidance to practitioners
of information nudges about when a treatment effect is likely to be in the
desired direction and when it is likely to be large. Our model is one in
which rational agents treat the information provided by a nudge as a signal
that leads them to update their beliefs about the relative utility of options
in a binary choice.5 Our model shows that, under rather general assump-
tions, the two standard intuitions about when information nudges will be
effective are wrong.

The first key insight from our model is that what matters for how an
information nudge affects a binary choice is how the information contained
in the nudge affects agents at the margin. Consequently, in contrast to the
first intuition, an information nudge that is “good news” relative to the
belief of the average agent can still backfire if the belief of the marginal agent
(i.e., one who might change her behavior in response to being nudged) is
different from the belief of the average agent.

The second key insight from our model is that the belief of the marginal
agents is negatively correlated with the rate at which agents make choices
in the absence of the nudge, which we call “baseline take-up,” or simply
the baseline, for short.6 Formalizing these two insights, in contrast to the

3. Before writing this paper, we counted ourselves among the researchers who operated
under this first intuition. In Coffman, Featherstone, and Kessler (2017), we ran a large
field experiment with an information intervention and highlighted in the paper that our
nudge was good news to the majority. We wrote: “note that in the control condition, the
median belief is consistently 71 percent, well below 84 percent (the number provided in the
treatment).”

4. When we perform a meta-analysis of information nudges that appear in the literature,
we find that the median rate of take-up in the absence of the nudge is 0.34 and that roughly
a third of information nudges are attempted in environments with take-up below 0.23, sug-
gesting that practitioners explicitly or implicitly rely on this second intuition.

5. This information could be direct information about the costs or benefits of the outcomes
(e.g., information about the returns to graduating high school) or indirect information that
leads agents to infer that something about the costs and benefits of the actions (e.g., infor-
mation that the majority of other people donate to a charity). See Vesterlund (2003) for a
model of how sequential fund-raising can allow potential donors to provide information to
one another about the quality of a charity. Our model is in this spirit, and inspired by this
work, but considers a general information structure.

6. While fully fleshed out in Section 3, to see why there is a negative relationship between
baseline take-up and the belief of the marginal agent, consider that when 90% of agents take
an action, an agent at themargin (i.e., whomight be induced to respondwhen nudged) likely
has a relatively low prior (e.g., near the 10th percentile of agents’ priors). Alternatively,
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second intuition, the model demonstrates that a nudge will be more likely
to backfire in settings when baseline take-up is low and will be more likely
to generate a positive treatment effect when baseline take-up is high.

.
Combining these new insights about the direction of a treatment effect

with assumptions of the density of agents’ beliefs, the model generates ad-
ditional predictions about when treatment effects will be smaller and larger
inmagnitude. In particular, themodel suggests a specific ‘’down–up–down”
shape of the relationship between baseline take-up and the sign and size of
the treatment effect. As baseline take-up increases from zero to one, the
treatment effect will start out at zero when the baseline is zero, become
negative (decreasing from zero and then increasing back to zero), reach an in-
termediate zero at the baseline where the belief of the marginal agents is
identical to the information provided in the nudge, and then become posi-
tive (increasing from zero and then decreasing back to zero), again reaching 0
when the baseline is one.7

To assess if our theoretical environment reflects contexts in which
academics use information interventions, we test the predictions of our
theory—about how baseline relates to the sign and magnitude of treat-
ment effects—with a meta-analysis of 75 experiments across 22 papers
that use information nudges to affect a binary outcome.8 We present
reduced-form results showing the relationship between baseline take-up
and the probability of a positive treatment effect and between baseline
take-up and the magnitude of the treatment effect. Our reduced-form
meta-analysis finds that, even across very different experimental settings,
these relationships appear as our model predicts. First, the probability
of a positive treatment effect increases as the baseline rate of taking the
action increases. For example, the likelihood of a negative treatment effect
is 46.2 when the baseline is below 0.25 but only 12.2 when the baseline
is above 0.25. Second, the observed relationship between the baseline
and treatment effects across experiments in the literature suggests a
down–up–down shape (though the estimates are not all significant in
every test), as predicted by the model.

We additionally pioneer a new method of “structural meta-analysis” in
which we assume a data generating process for experiments in the literature
and then fit its key parameters (i.e., those parameters that are identified as
important by the model) using the data. Our structural estimates suggest
that the average information nudge in the literature falls at the 63rd per-

when 10% of agents take the action, an agent at the margin likely has a relatively high prior
(e.g., near the 90th percentile of agents’ priors).

7. For a graphical representation of this relationship, see Figure 1h
8. As described in Section 4, papers were collected by researchers initially and supple-

mented with papers provided to us in response to a request email sent to the discussion
e-mail list of the Economic Science Association in December of 2015.
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centile of agents’ prior belief distributions and that two thirds of nudges
fall between the 53rd and 72nd percentiles. These results are supportive
of our initial assumption that experimenters generally pick nudges that are
good news to the average agent.9

We also present survey evidence that awareness of the intuition within
our model is low or nonexistent. The meta-analysis provides the first evi-
dence of this as a majority of experiments in the data set are run in contexts
with low baseline rates, which according to our model, is where one would
expect backfires or null effects. Further, in reading the extant literature
of information interventions, either those that use them or guides for run-
ning them (e.g. see Haaland, Roth, and Wohlfart 2023 for a recent, helpful,
thorough guide), we never find any mention of any intuition or prescription
consistent with those from our model.

We attempt to provide more direct evidence of the novelty of our model
by surveying both academics and policymakers who run nudge-like inter-
ventions in the field. We find that over 80% of the sample revealed in-
tuitions inconsistent with our theory, and no respondents explain their
choices using any reasoning related to that in our model. Taken together
with the meta-analysis, we show that the mechanics in our model are first
order in their impact on behavior, yet the insights currently seem to be
missing among experts.

Our paper makes four main contributions. The first is providing a
tractable model of how populations update beliefs that in the presence
of a noisy but informative signal. Our model of how an individual agent
responds to a given information signal is captured by just three numbers.
This simplicity is crucial when it comes to aggregating the behavior of
individual into the behavior of populations. Our model threads the needle
by being simple enough to be tractable, while also capturing nuance
like the fact that a signal can be good news to the average member of a
population and still lead to a backfire.

The second is testing a model for an important class of nudges—
information nudges—that have been a focus of researchers and have been
used by practitioners in myriad settings. A first wave of work on nudges fo-
cused on documenting how (sometimes large) changes in behavior can be
induced by (often subtle) interventions. A second wave has deepened our
understanding of nudges. Work has focused on exploring the robustness of

9. Specifically, we estimate that a nudge one standard deviation below the mean nudge is
at the 53rd percentile and a nudge one standard deviation above the mean nudge is at the
72nd percentile. As is discussed in Section 4.4, an additional key parameter describing the
literature is the relative size of the standard deviation of agents’ prior beliefs and the stan-
dard deviation of their “thresholds,” where a threshold is how high an agent’s belief would
have to be for her to take the action. We estimate that the standard deviation of thresholds
is 3.5 times the standard deviation of prior beliefs, suggesting that agents prior beliefs are
more similar to one another than their outside options, which seems quite sensible in most
empirical settings.
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nudges to broader settings of interest and has found that nudges assumed
to work well by academics often do not work at scale (DellaVigna and Linos
2022). Other work has focused on exploring the welfare effects of common
nudges (see, e.g., Carroll et al. 2009, Allcott and Kessler 2019, Bernheim,
Fradkin, and Popov 2015, and Butera et al. 2022), and has emphasized
that just because something impacts behavior does not necessarily imply
it is welfare enhancing.10 We aim to contribute to this second wave of
work by modeling how an important class of nudges affects behavior. The
key insights of our model of information nudges are straightforward ex
post, but were not readily apparent ex ante (and, indeed, they seem to
have been overlooked by practitioners running experiments).11 Our model
rationalizes diverse findings in the extant literature and does so while
assuming rational, Bayesian agents, suggesting that information nudges
need not rely on “behavioral” agents to be effective at influencing behavior
and that null and negative treatment effects to information nudges can
also arise absent behavioral explanations.

The third contribution is pioneering a structural approach for conduct-
ing meta-analyses. In contrast to reduced-formmethods (such as analyzing
data combined from multiple studies or running statistical tests with re-
sults from various studies as observations), our structural approach allows
us to combine our model and the available data to estimate key parameters
of the data generating process in the literature. These parameter estimates
serve two purposes. First, whether or not the estimates seem sensible given
our understanding of how experiments are run in practice helps to directly
assess our model (e.g., we might have become skeptical of our model if we
estimated that practitioners weremostly testing nudges that were bad news
to the average agent). Second, the estimates are useful to understand the
features of a literature and can be used as benchmarks for practitioners de-
ciding whether to implement a particular information nudge in the future.
We view our structural meta-analysis as a potentially useful tool for other
researchers who have a theory driven explanation for a pattern of results in
an empirical literature.

10. In our context, in which nudges provide truthful signals—and under our assumption
of rational, Bayesian agents—the welfare effects of the nudges we study are unambiguously
weakly positive, since they can only aid in agents making better decisions.
11. When null or negative results arose previously, many papers documenting them did

not give an explanation for why the nudge did not work as expected. Those that did offer
explanations generally proposed alternative stories, not based on information updating (e.g.,
suggesting instead the possibility of backlash in response to social information or suggesting
complexity in how information was provided). The two papers that offer explanations in the
direction of our theory are Fellner, Sausgruber, and Traxler (2013) and Hastings, Neilson,
and Zimmerman (2015). Fellner, Sausgruber, and Traxler (2013) states: “Concerning the
social information, this observation is not conclusive for a final evaluation of the treatment,
as its effect is expected to depend on individuals’ (heterogeneous) prior beliefs”. Hastings,
Neilson, and Zimmerman (2015) states: “[I]t may be the case that...the remaining students
have parents who are not responsive to information on academic outcomes.”
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The fourth contribution is providing guidance to practitioners—
including academics, firms, and policy makers—who are considering using
information nudges to influence agents in practice. For these readers, we
offer a number of insights in Section 6. We highlight two of the most
(ex-ante) counter-intuitive insights here. First, in settings where baseline
take-up is low, information nudges may backfire (particularly if they are
similar to the nudges that have previously been tested in the literature
in how their information content relates to agents’ prior beliefs). Our
estimates suggest that information nudges are likely to backfire for baseline
rates below roughly 0.10, and are only quite likely to succeed for baseline
rates above 0.50. Second, settings in which many agents are expected to
take-up at baseline may be particularly ripe for information nudges to have
big positive impacts. Given our parameter estimates, the treatment effect
of the “typical” nudge is expected to have the largest positive treatment
effect at a baseline of 0.75.

The rest of this paper proceeds as follows (and it is admittedly some-
what unusual in its structure). Since we expect and hope that some of our
readers will be interested in the intuition of the model and its implications
for implementing information nudges, Section 2 presents the intuition un-
derlying information nudges without presenting much in the way of tech-
nical details. The next section, Section 3 presents a formal model. While
some might skip this level of detail, we have included this theory section
to provide a level of detail for theorists who are interested in how we for-
mally model information nudges. To keep the manuscript manageable in
length, many of the technical details, proofs, and extensions are omitted
from the main text and instead appear in the Appendix. Section 4 presents
the meta-analysis of information nudges and describes our novel method of
conducting a structural meta analysis. Section 5 discusses survey measures
of awareness among academics and policymakers of the intuition provided
in our model. Section 6 provides guidance to practitioners. Section 7 con-
cludes.

2 Intuition
In the next section, we will introduce a formal model, but before doing
so, it will prove useful to illustrate the underlying idea with an intuitive
example. This is best broken into two parts. The first describes how a single
experiment works, while the second describes how a literature consisting
of such experiments works.

2.1 A Prototypical Information Experiment
Most information experiments closely resemble to the following example.
A stack of envelopes, each of which contain the same, unknown amount
of cash, are being sold for $10 each. If a risk-neutral agent’s prior belief
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probability 
density

prior mean

price = $10

baseline 
purchasers

(those who purchase without 
seeing the rumor)

(a)When the price is $10, the baseline purchase rate
is the fraction of agents whose prior exceeds $10.

probability 
density

prior mean

price = $10

baseline 
purchasers

$11 = rumor

agents talked 
into purchasing 

by the $11 rumor

(b)When the price is $10, marginal agents are talked
into purchasing by the $11 rumor.

probability 
density

prior mean

rumor = $11

baseline 
purchasers

$12 = price

agents talked 
out of purchasing 
by the $11 rumor

(c) When the price is $12, marginal agents are talked
out of purchasing by the $11 rumor.

probability 
density

prior mean

price = $10

baseline 
purchasers

$11 = rumor

density of 
priors at 

the margin

agents talked into 
purchasing by the 

$11 rumor
(approximately)

size of update 
at the margin

(d) When updates are small, the treatment effect—
here at a $10 price—can be approximated by
multiplying—among marginal agents—the density
of priors and the average update.

Figure 1: The envelope example, illustrated

NOTES: In the subfigures above, the bell-shaped curve is the density of prior means in the
population. Solid shading represents agents who purchase without being exposed to the $11
rumor, while hatching represents agents whose purchasing decisions change in response to
the rumor. Vertical dashed lines represent prices or rumors.

7



marginal 
update

(posterior minus 
prior among agents 

for whom prior 
equals price)

price

$11 = rumor

(e) An agent updates more when her her prior is
further from the rumor. Hence, a marginal agent—
whose whose prior is near the price—updates more
when the price is further from the rumor.

price

$11 = rumor
marginal 
density

(density of agents’ 
priors when prior 

equals price)

(f) Since the price is themarginal prior, themarginal
density as a function of price simply traces out the
density of priors in the population.

treatment 
effect

price

$11 = rumor

(g) The product of parts (e) and (f) yields the
treatment effect as a function of price.

treatment 
effect

baseline 
purchase rate

40% = baseline when price is $11

100%

(h) The law of demand dictates that baseline in-
creases as the price decreases. Hence, treatment ef-
fect as a function of baseline is a (rescaled) mirror
image of part (g).

Figure 1: The envelope example, illustrated (continued)
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about this amount of cash has a mean greater than $10, that agent will
choose to purchase; otherwise, she doesn’t. In other words, the price is the
threshold prior that separates purchasers from non-purchasers. Across the
population of agents, the prior mean varies according a belief distribution,
or equivalently, a demand curve.12 Part (a) of Figure 1 shows how the
baseline purchase rate relates to the prior distribution and the price.

Compare this baseline scenario to one in which agents are all treated
with a rumor that the amount of cash in each envelope is actually $11. No
agent puts great credence in the rumor, but each slightly updates her be-
liefs in its direction. In other words, the rumor is a signal being used as
an information nudge. Small updates mean that only agents with prior
means just below $10 will have their purchasing behavior changed by the
rumor. The price is essentially the prior of such marginal agents. Hence
the sign of the treatment effect on the purchase rate is positive because
the rumor is “good news” to the marginal agent. Part (b) of Figure 1 shows
this graphically.

Of course, the rumor can also be “bad news” to the marginal agent. For
instance, if the price were $12 instead of $10, the set of marginal agents
would be those whose beliefs are just above $12, and hence the treatment
effect would be negative. Part (c) of Figure 1 illustrates this reversal. To
be clear: the treatment effect of the same rumor, on the same population of
agents, can vary with the price (i.e., the threshold). This is because the price
dictates the prior of the marginal agent.

Mathematically, when updates are small, the treatment effect is approx-
imately equal to the product—among marginal agents—of the density of
priors, which is non-negative, and the average update, which can be posi-
tive or negative. This approximation, applied to part (b) of Figure 1, is illus-
trated in part (d). Hence, the sign of the treatment effect is determined by
whether the price (i.e., the threshold)—and hence the prior of the marginal
agent—is above or below the rumor (i.e., the signal).

2.2 A Literature of Information Experiments
Imagine a literature generated by versions of the envelope experiment de-
scribed in the previous subsection. Different baselines and treatment ef-
fects are generated by variation in belief distribution, rumor (i.e., signal),
and price (i.e., marginal prior). To develop intuition for this process, one
must understand the relative importance of these sources of variation.

A key insight is that the reasoning of the previous section hinges only
on where the rumor (signal) and price (marginal prior) lie relative to the belief
distribution. Variation in the belief distribution itself isn’t important. Then,
it is only variation in the price and rumor (threshold/marginal prior and

12. The number of purchasers at a given price—the quantity demanded—is simply the
number of agents with priors above that price.
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signal) relative to the belief distribution that matters.
Of those two sources of variation, it makes sense to think of price

(marginal prior) as the primary driver of variation in baseline and treatment
effect. The reason for this is simple: selection bias. Those who run
information-nudge experiments tend to do so in environments where their
nudge is “good news” to most agents. In terms of the envelope example,
this means we should not expect the rumor (signal) to vary much. Instead
it will generally stay in the right shoulder of belief distribution. There is
no such intuition limiting the variation in price (marginal prior).

So how are treatment effect and baseline related when their variation
is driven primarily by variation in marginal prior? Imagine running the
envelope experiment repeatedly with different prices (marginal priors), but
holding the $11 rumor (signal) and the belief distribution fixed. The sign
of the rumor’s treatment effect would be negative when the price is above
the $11 rumor and positive otherwise.

By using the demand curve, we can also phrase this regularity in terms
of the baseline purchase rate. Assume that $11 is at (for instance) the 60th
percentile of the belief distribution, so that the baseline purchase rate at
that price is 40%. Under this assumption, when the price (marginal prior)
is above $11, the baseline is lower than 40%; otherwise, it is higher. Hence,
when the baseline is below 40%, the treatment effect is negative; otherwise,
it is positive. This might seem too stark to be realistic; however, if we
introduced a bit of randomness in the rumor and belief distribution, we
would see a softer regularity: the probability of a positive treatment
effect would be increasing with the baseline purchase rate.

In fact, we can push this intuition even further to find another regularity
concerning, not just the sign, but the magnitude of the treatment effect. To
do so, we need only assume that the amount by which an agent updates
(i.e., the difference between her prior and posterior) is larger when the
rumor is further away from her prior.13 For example, other things equal,
it is reasonable to assume an agent who believes the envelope contains $5
will update more in response to the $11 rumor than an agent who believes
the envelope contains $10. Since it is the price that determines who is
marginal, this assumption basically says that the update of marginal agents
varies with price in the way illustrated by part (e) of Figure 1. What’s more,
the density of priors among marginal agents will vary with price in the way
illustrated by part (f) of Figure 1.

Then, looking back to the approximation mentioned at the end of the
previous subsection, we see that treatment effect as a function of price (i.e.,
marginal prior) should look like the product of parts (e) and (f) of Figure 1,
that is, like part (g). And finally, since the baseline purchase rate is mono-
13. This is the case, for instance, when the posterior is a fixed convex combination of the

prior and the signal, as is true for Bayesian updating with a wide array of prior and conjugate
signal distributions (Diaconis and Ylvisaker 1979).
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tonically decreasing in the price (this is just the law of demand), we should
expect the treatment effect as a function of the baseline purchase rate to
look like part (h) of Figure 1.

That is, the conditional-on-baseline expected treatment effect
should have a “down–up–down” shape. Intuitively, there are zeros at
baselines zero and one because there are no marginal agents when literally
everyone or no one purchases. The other, interior zero corresponds to the
baseline that makes the prior of the marginal agent exactly equal to the
signal. Such a marginal agent simply doesn’t update.

For baselines lower than that interior zero, the treatment effect is nega-
tive because low baselines correspond to prices (marginal priors) above the
rumor (signal), and hence marginal agents who update down in response.
Similarly, for baselines higher than that interior zero, the treatment effect is
positive because high baselines correspond to prices (marginal priors) below
the rumor (signal), and hence marginal agents who update up in response.
To summarize, intuitively, we expect two main results. First, we expect
the probability of a positive treatment effect to be increasing in the baseline.
Second, we expect the conditional-on-baseline expected treatment effect to
have a “down–up–down” shape like that in part (h) of Figure 1.

3 Theory
Now, we flesh out the intuition of the previous section with a formal model.
We will consider three hierarchical levels: the behavior of the agent, the
behavior of a population of agents (i.e., an experiment), and the behavior
of a population of experiments (i.e., a literature). In the main text, we will
discuss the simplest versions of these models, but the interested reader can
find the full model with proofs in Appendix C.

3.1 Agent-Level Model
An agent must make a binary choice based on her beliefs about an unknown
scalar state. The agent may change her choice if she is exposed to the
realization of a scalar nudge signal that is essentially the state plus noise.
We define take-up to be the choice encouraged by higher state values.14

We capture the agent’s uncertainty about the state and nudge signal by
treating them as the respective components of a random vector, (X , N ). Un-
nudged, the agent makes her take-up decision based solely on her beliefs
about X (i.e., with her beliefs about N integrated out). If nudged by being
told the signal realization is N = ν, she instead makes the take-up decision
based on her updated beliefs about X , which are codified by the conditional

14. Sometimes this definition means that take-up is not doing something. For example, if
the experimenter is trying to nudge whether the agent smokes by sending a signal about
how much smoking increases cancer risk, then take-up is not smoking.
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distribution evaluated at N = ν. We assume this distribution is well defined
(i.e., the support of N includes ν).

The agent is endowed with a strictly increasing and continuous net-
utility function, u. If the agent is certain that X = x, the value u(x) repre-
sents how much more utility she expects to get from taking up than from
not taking up. To keep things on the same scale as the state, we trans-
form expected net-utility values into state certainty equivalents. Let µ≡
u−1

(
E
[
u(X )

]) be the agent’s state certainty equivalent of being un-nudged,
and similarly, let µ′ ≡ u−1

(
E
[
u(X )

∣∣N = ν
]) be her state certainty equivalent

of being nudged. We refer to µ and µ′ as the agent’s prior and posterior.
Note that, for the risk-neutral agent, the prior and posterior are simply
the agent’s expected state when un-nudged and nudged, respectively. Of
course, the nudge signal itself, ν, can be interpreted as the state certainty
equivalent of being sure that X = ν.

To model the idea that the nudge is a straightforward signal about the
state, we assume the agent updates towards the signal realization, but not
all the way to it, so that the posterior is a convex combination of the prior
and the signal.15 Define the agent’s update strength, ε, to be the weight
on the signal in this convex combination, which, if ν 6= µ, is equal to (µ′−
µ)

/
(ν−µ).16 By definition then, µ′ =µ+ε (ν−µ), with ε on the unit interval.

In what follows, we will consider the limit as agent update strengths get
small.17

Finally, we assume the agent takes up when her expected net-utility is
weakly positive. To put this in terms of the prior and posterior, we define the
agent’s threshold, θ, to be the certain value of the state that would make
her indifferent between taking up and not taking up, that is, θ ≡ u−1(0).18
Then, the un-nudged agent takes up if and only if µ≥ θ, while the nudged
agent takes up if and only if µ+ε (ν−µ) ≥ θ.

To summarize, an agents’s potential take-up choices in a given experi-
ment can be characterized by four numbers: her prior, µ; her threshold, θ;
her update strength, ε; and the signal realization, ν. Making the connection
to the envelope example, the prior is the expected amount of money in the
envelopes without hearing the rumor, the signal realization is the rumor,
and the threshold is the price. The update strength can be combined with
the first two of these to yield the posterior, which is the expected amount

15. To be clear, we don’t require the posterior to be the same convex combination of prior
and signal, regardless of the signal, like in the paper mentioned in Footnote 13. Our as-
sumption is essentially the more general updating towards the signal concept of Chambers
and Healy (2012).
16. If an agent has µ = ν, any update strength works; we choose ε = 0. Ultimately, this

won’t matter, as we will assume the set of such agents is measure zero in the population.
17. To be clear, we don’t require all agents to have small update strengths, we simply as-

sume they are small in expectation across the population. For a much more precise treatment
of this idea, see Section C.2 of the appendix.
18. We assume θ exists, so that the agent’s take-up decision is nontrivial.
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of money in the envelopes once the rumor is heard.

In the Appendix. In the main text, we have confined ourselves to a
model where the agent only cares about the realization of one scalar
variable, X . Section C.1 shows how a richer model with utility-relevant
random variables in addition to X can still be reduced to the model dis-
cussed above.

3.2 Experiment-Level Model
An experiment is a population of agents being potentially exposed to a
common information nudge, ν. To model this, we consider a random vec-
tor, (Θ, M ,E), that represents the respective threshold, prior, and update
strength of an agent that is uniformly and randomly selected from the pop-
ulation.

The fraction of agents who take-up without being nudged—i.e., the
baseline, β—is defined by

β ≡ Pr{Θ≤ M
}
,

while the fraction who take-up when nudged equals Pr{Θ≤ M +E (ν−M)
}.

(The inequalities are weak because we assume the agent takes-up when her
belief equals her threshold.) We define the exact treatment effect, τe , to
be the change in the take-up rate caused by the nudge, that is

τe ≡ Pr{M <Θ≤ M +E (ν−M)
} − Pr{M +E (ν−M) <Θ≤ M

}
. (1)

The two probabilities represent agents who are nudged into and out of take-
up, respectively. Note that the realization of the signal, ν, must exceed the
realization of the prior, M , for those nudged into take-up and must be ex-
ceeded by the realization of M for those nudged out of take-up.

Looking at Equation 1, if the update strength, E , is usually small, then
among those whose take-up decision is affected by the nudge, the prior
and threshold, M and Θ, are usually close to each other. It will prove useful
to think in terms of this closeness. Define the deficit, ∆ ≡ Θ− M , to be
the amount by which an un-nudged agent’s prior would need to change to
make her indifferent about whether to take-up. The nudge signal changes
an agent’s take-up decision if and only if ∆ is between 0 and E (ν− M).19
Hence, the treatment effect depends mainly on agents with deficits near
zero. We call such agents marginal.

In terms of this change of variables, we can equivalently write our model
of the experiment in terms of the random vector (∆, M ,E). In this trans-
formed model, the baseline is given by β = Pr{∆ ≤ 0

}, and the treatment

19. More precisely, ∆must be on one of the two ranges in Equation 2. Which one depends
on whether ν exceeds or is exceeded by M .
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effect is given by

τe = Pr{0 <∆≤ E (ν−M)
} − Pr{E (ν−M) <∆≤ 0

}
. (2)

Since these probabilities are generated by narrow deficit ranges, we can
approximate them with the product of the probability density of marginal
deficits and the width of the ranges.

To operationalize this idea, we begin by using the law of iterated expec-
tations to re-write Equation 2 as

τe = E

[
Pr

{
0 <∆≤ E (ν−M)

∣∣ M ,E
}
− Pr

{
E (ν−M) <∆≤ 0

∣∣ M ,E
} ]

,

where the probabilities are captured by the conditional-on-(M ,E) distribu-
tion of ∆, whose density we will write as f ∆|ME . We can approximate both
conditional probabilities with a single expression: f ∆|ME (0 |M ,E) E (ν−M).
Doing so leads us to our approximate treatment effect, τ, given by

τ ≡ E
[

f ∆|ME (0 |M ,E) E (ν−M)
]

. (3)

The density in the expectation embodies the intuition that only marginal
agents can contribute, since it is only they that can be persuaded to change
their take-up decisions by a weak intervention (i.e., a nudge). We can
sharpen this intuition with a bit of algebra by rewriting the previous ex-
pectation as

τ = f ∆(0) E
[

E (ν−M)
∣∣ ∆= 0

]
,

where f ∆(0) ≡ E
[

f ∆|ME (0 |M ,E)
] is the unconditional deficit density among

marginal agents.20 We can further decompose the factors that drive the
20. In Section C.2, we show the general equivalence of the two expressions for τ men-

tioned above. Here, we limit ourselves to showing the equivalence when the random vector
(∆, M ,E) has a joint density, f ∆ME , whose marginals are always non-zero. Then,

f ∆|ME (
0
∣∣µ,ε

)= f ∆ME (0,µ,ε)

f ME (µ,ε)
, and

f ME |∆ (
µ,ε

∣∣0
)= f ∆ME (0,µ,ε)

f ∆(0)
.

where f ME (µ,ε) ≡∫
f ∆ME (δ,µ,ε)dδ. These expressions mean that the original expectation

we used to define the approximate treatment effect can be written as the integral

τ=
Ï

ε (ν−µ)
f ∆ME (0,µ,ε)

f ME (µ,ε)
f ME (µ,ε)dµdε,

while the second expectation can be written as the integral

τ= f ∆(0)
Ï

ε (ν−µ)
f ∆ME (0,µ,ε)

f ∆(0)
dµdε.

The equivalence of the two expressions for τ follows immediately.
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expectation by writing 21

τ = f ∆(0) E
[

E
∣∣ ∆= 0

] {
ν − E

[
E M

∣∣ ∆= 0
]

E
[

E
∣∣ ∆= 0

] }
. (4)

Intuitively then, τ is driven by three forces. First, it is driven by how many
marginal agents there are, captured by the density f ∆(0). More marginal
agents means larger treatment effects. Second, it is driven by how strongly
the marginal agents update, captured by E

[
E

∣∣∆= 0
]. Nudges that—ceteris

paribus—cause larger updates drive larger treatment effects. And third, it is
driven by the difference between the signal, ν, and the quantity

E
[

E M
∣∣ ∆= 0

]
E
[

E
∣∣ ∆= 0

] . (5)

When priors and update strengths are statistically independent, this is just
the expected prior among marginal agents, E[

M
∣∣∆= 0

]. When they aren’t,
Expression 5 can be thought of as an expected prior among marginal agents
where agents with larger update strengths are more heavily weighted.22

Note that this third factor is the only one that can be negative; hence,
any backfire (as described in the introduction) must be driven by a nudge
signal that is, on average, bad news to marginal agents. Here, the math high-
lights an important subtlety: on average, a nudge could simultaneously be
bad news to marginal agents while being good news to the population as a
whole. For a binary choice though, it’s the marginal agents that matter.

In the Appendix. In the main text, we confine ourselves to deriving our
approximation quite heuristically. In Section C.2 we formally bound the
error introduced by approximating τe with τ. This bound only requires
that the density f ∆|ME exist for agents whose deficits are in some neigh-
borhood of zero. It is also robust to “poorly behaved” densities that
have discontinuities, that asymptote to infinity, or that have slopes that
asymptote to infinity. Such robustness is crucial when modeling social-
information interventions that have priors, posteriors, and thresholds
that share the unit interval as their outcome space. On the unit inter-
val, even common densities, like that of the beta distribution, are often
“poorly behaved.”

21. Tacitly, we are assuming that E[
E

∣∣∆= 0
]> 0. To assume otherwise would be to assume

that marginal agents ignore the nudge, a case which our model is not designed to handle.
22. Using the law of iterated expectations, the ratio in Expression 5 can be written

E

[
E

E
[
E

∣∣∆= 0
] E

[
M

∣∣∆= 0,E
] ∣∣∣∣ ∆= 0

]
.

Intuitively, among marginal agents, we look at the mean prior for each constant update-
strength population and then average across populations, placing greater weight on those
with larger update strengths. Among marginal agents, the expectation of the weights is 1.
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In addition, we formalize the idea that the bound mentioned in the
previous paragraph is tight by considering an asymptotic sequence of
experiments in which the expected update strength converges to zero.
Given such a sequence, the approximate treatment effect, τ, is asymp-
totically equivalent to the exact treatment effect, τe , if the ratio τe /τ
converges to one. We show this to be true under two conditions.

First, the ratio ∣∣E[
E (ν−M)

∣∣∆= 0
]/

E
[
E (ν−M)

]∣∣ must be bounded.
This ensures that the updates of the the marginal agents aren’t too differ-
ent from those in the general population, even asymptotically. Second,
the ratio E

[
E 2 (ν−M)2

]/
E
[
E (ν−M)

] must converge to zero. Intuitively,
this says that the error from a first-order Taylor approximation in E (ν−M)
is asymptotically dominated by the approximation itself. While it might
seem like this is simply true, it must be assumed. The assumption rules
out having the treatment effect be largely driven by agents with large
updates, even though the expected update approaches zero.23

3.3 Literature-Level Model
In the previous two subsections, we introduced the agent- and experiment-
level models. They were intended to hold quite generally, with relatively
few assumptions. Our literature-level model must necessarily deviate from
such an approach. Why? Looking back to the literature-level intuition dis-
cussion of Section 2, our results followed from the assumption that varia-
tion in thresholds is the primary driver of variation in baseline and treat-
ment effect across the literature. Formalizing this logic will obviously re-
quire making assumptions that could potentially be incorrect. Of course,
whether this is the case is ultimately an empirical question—one we will
address later on in the paper.
3.3.a Modeling variation across the literature
The big idea of our literature-level model is that variation in the baseline
and treatment effect is driven by variation in the nudge signal and the distri-
bution of (Θ, M ,E). To capture the first idea, at the literature level, wemodel
the nudge signal as the realization of a random variable, N . To capture the
second idea, we assume the distribution of (Θ, M ,E) is changed by some ran-
dom vector of literature-level parameters, Π. Concatenating our sources
of variation, we are essentially assuming that the literature is generated by
drawing experiments as realizations of the random vector (N ,Π).

Before elaborating on this idea, however, it will first prove helpful to
introduce two modifications to the experiment-level model. The first aids
comparison across experiments which could ostensibly be from very dif-
ferent contexts; the second is merely a simplifying assumption that makes

23. For instance, consider a situation where E (ν− M) equals 1 with probability α and 0
otherwise, and let α approach 0. Then, E[

E (ν−M)
] = α, but so does E

[
E 2 (ν−M)2]. It

makes sense that our approximation wouldn’t work in this situation as the treatment effect
is driven entirely by agents with large updates—those with update 0 don’t contribute at all.
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what follows tractable.
3.3.b Simplifying the experiment-level model
Across a literature, there are many experiments in many different settings.
Ultimately, we will need such different experiments to be directly compa-
rable. How can we do this? Recall Section 2, where we discussed how,
intuitively, what drives variation in a literature is the variation of thresh-
olds and the signal relative to the prior distribution. To take advantage of this
intuition then, we will transform our model so that the prior distribution
in all experiments is the same. Doing so unifies the interpretation of priors,
posteriors, thresholds, and nudge signals.

To accomplish this goal, we begin by considering what would happen if
we took an experiment and applied the same strictly increasing function—
call it H—to µ, µ′, ν, and θ. Then, H(µ′) would still be a convex combination
of H(ν) and H(µ),24 the un-nudged agent would take up if and only if H(µ) ≥
H(θ), and the nudged agent would take up if and only if H(µ′) ≥ H(θ). Hence,
if we defined a new prior, posterior, and threshold by H(µ), H(µ′), and H(θ),
we would have new version of the Section 3.1 model that makes the same
behavioral predictions. In other words, the agent-level model is invariant
under strictly increasing transformations.

Using the freedom this invariance grants us, we can transform any ex-
periment to have any distribution of priors by simply mapping quantiles of
the original prior distribution to quantiles of the desired reference distri-
bution. Going forward then, we will assume that the prior distribution
in all experiments is the standard normal.25 Given this change, the µ,
µ′, ν, and θ values for a given agent in a given experiment should now be
interpreted as z-scores against the original prior distribution from that ex-
periment.

So, the first change to the experiment-level model is essentially without
loss of generality: by thinking in terms of prior-distribution z-scores, we
make it possible to compare more readily across experiments. Our second
change is more substantive. Intuitively, thresholds summarize preferences,
while the prior and update strength summarize information processing. Go-
ing forward,we will assume, for any given experiment, that thresholds
are independent of priors and update strengths.

Given the two, just-discussed modifications to the experiment-level
model, for a given experiment, we can now write the density of the (Θ, M ,E)
vector, f ΘME , in a particular way: as the product of a threshold density,
f Θ, a conditional-on-prior update-strength density, f E |M , and the prior

24. And hence, there would be a new update strength on the unit interval, ε̃ such that
H(µ′) = H(µ)+ ε̃

(
H(ν)−H(µ)

).
25. If F M is the original prior distribution in the experiment, this is accomplished by set-

ting the H of the previous paragraph to Φ−1 ◦F M , where Φ−1 is the inverse distribution
function of the standard normal.
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density, which is always that of the unit normal, φ. In other words, we are
assuming that f ΘME (θ,µ,ε) = f Θ(θ) f E |M (

ε
∣∣µ)

φ(µ).
3.3.c The literature’s data-generating process
We are modeling a randomly drawn experiment in the literature as a real-
ization of the random vector (N ,Π). The realization of N is the nudge signal
for the experiment, while the realization of Π moves the densities underly-
ing (Θ, M ,E). We denote this with subscripts: when the realization of Π is
π, the densities that describe (Θ, M ,E) are f Θ

π and f E |M
π .26

Without loss of generality, we assume one of the literature-level param-
eters is B , the baseline of the experiment represented by Π.27 We then
denote the rest of the literature-level parameters by Λ, calling them the
literature-level noise. So, the random vector Π can be written as the con-
catenation of the random variable, B , which represents the baseline of the
drawn experiment, and the random vector Λ, that is, Π= (B ,Λ).

In Section C.3 of the theory appendix, we will consider the model with
literature-level noise, but for the sake of simplicity, we will ignore it in the
main text, so that B is the only parameter driving variation in the distribu-
tion of (Θ, M ,E). Going forward then, we will consider a literature modeled
by the random vector (N ,B). A realization, (ν,β) of (N ,B), represents an
experiment whose nudge signal is ν and whose (Θ, M ,E) vector is described
by the density f ΘME

β
(θ,µ,ε) = f Θ

β
(θ) f E |M

β

(
ε
∣∣µ)

φ(µ).

3.3.d Baseline
If the realization of B is β, the baseline of the associated experiment must
be β, that is, the equation

β=
∫∞

−∞
F Θ
β (µ) φ(µ)dµ (6)

must hold (where F Θ
β

(θ) ≡ ∫θ
−∞ f Θ

β
(θ̃)d θ̃ is the distribution associated with

the density f Θ
β
).28

Looking at Equation 6, two things become clear. First, an increase in
baseline must somehow increase the distribution function F Θ

β
. (Recall that

increasing this distribution function makes lower values of Θ more likely.)
A shift down in the likelihood-ratio sense is a natural way to model this.
Going forward,we will assume that increasing β shifts the distribution
of Θ down in the likelihood-ratio sense. Formally this means that, for
26. Per the previous subsection, regardless of π, the prior density is that of the standard

normal, φ.
27. It could be that, while B is one of the components of Π, the distribution of (Θ, M ,E) is

independent of that particular component.
28. To see that the integral in Equation 6 must represent the baseline, note that the mass

of agents with priors between µ and µ+dµ is φ(µ)dµ, and that of those agents, the fraction
whose threshold is less than µ is F Θ

β
(µ).
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any two baselines, β and β′, and any two thresholds, θ and θ′, if β′ >β and
θ′ > θ, then

f Θ
β′ (θ′)

f Θ
β′ (θ)

<
f Θ
β

(θ′)

f Θ
β

(θ)
.

Since the likelihood-ratio reflects the likelihood of a higher threshold rela-
tive to that of a lower one, this inequality simply says that higher thresh-
olds are relatively more likely at lower baselines. To see how this feeds
back to Equation 6, recall the well-known fact that if increasing β shifts Θ

down in the likelihood-ratio sense, then it also shifts Θ down in the first-
order stochastic sense, so that F Θ

β
is increasing in β. Then, the integrand in

Equation 6 increases when β increases, and our decreasing-likelihood-ratio
assumption is indeed internally consistent.

The other thing that becomes clear upon looking at Equation 6 is that
the expected threshold approaches +∞ as the baseline approaches zero. To
see this, note that for the baseline to approach zero, the distribution F Θ

β
(µ)

must approach zero almost everywhere. But since F Θ
β

(µ) must also go from
zero to one as µ goes from −∞ to +∞, it must be that the mass in the thresh-
old distribution gets pushed to larger and larger values (where the density
φ is small) as the baseline approaches zero. A similar argument establishes
that the expected threshold approaches −∞ as the baseline approaches one.
To summarize, as the baseline goes from zero to one, the expected
threshold goes from positive to negative infinity.29

3.3.e The conditional-on-baseline probability of a positive treatment effect
Looking to Equation 4, we see the conditional-on-baseline treatment effect
is positive if the realization, ν, of the signal, N , exceeds

Eβ
[

E M
∣∣ ∆= 0

]
Eβ

[
E

∣∣ ∆= 0
] , (7)

where the expectations have β subscripts to remind us of that dependence.
Hence, if we let GN |B represent the conditional-on-baseline distribution of
N , we can write the conditional-on-baseline probability of a positive treat-
ment effect as

Pr
{
τB ,N > 0 | B =β

} = 1−GN |B
(
Eβ

[
E M

∣∣∆= 0
]

Eβ
[
E

∣∣∆= 0
] ∣∣∣∣∣ β

)
, (8)

where the (B , N ) subscripts on τ remind us of that dependence. Whether
this is increasing in baseline depends on how Expression 7 and GN |B (

ν
∣∣β)

change with β. We will consider these two comparative statics in turn. To
29. Making this argument more rigorous involves concepts like vague convergence, the

monotone convergence theorem, and the integrated tail-probability expectation formula
(Lo 2019). We defer these more esoteric details to the theory appendix.
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address the first, it will prove helpful to write Expression 7 in a particular
form.

Result. Expression 7 can be written

Eβ
[

E M
∣∣ ∆= 0

]
Eβ

[
E

∣∣ ∆= 0
] =

∫∞

−∞
µψβ(µ)dµ,

where ψβ is a density defined by

ψβ(µ) ≡
Eβ

[
E

∣∣M =µ
]

f Θ
β

(µ) φ(µ)∫∞
−∞ Eβ

[
E

∣∣M = µ̃
]

f Θ
β

(µ̃) φ(µ̃)d µ̃
.

Proof. We will begin by deriving the conditional-on-∆ density of (M ,E),
as the expectations in Expression 7 will require it. Note that because
∆ = Θ − M , the density of ∆ conditional on (M ,E) = (µ,ε) is just the
threshold density shifted over by µ, that is, f ∆|ME

β

(
δ

∣∣µ,ε
) = f Θ

β
(δ+ µ).

Then by the definition of conditional densities, the joint density of
(∆, M ,E) must be f ∆ME

β
(δ,µ,ε) = f ∆|ME

β

(
δ

∣∣µ,ε
)

f ME
β

(µ,ε), which is equal
to f Θ

β
(δ+µ) f ME

β
(µ,ε), which is equal to f Θ

β
(δ+µ) f E |M

β

(
ε
∣∣µ)

φ(µ). Finally
then, we see that the conditional-on-∆ density of (M ,E) can be written
f ME |∆
β

(
µ,ε

∣∣δ)= f ∆ME
β

(δ,µ,ε)
/

f ∆
β

(δ), where f ∆
β
is the marginal density of ∆.

Hence, we can compute f ME |∆
β

(
µ,ε

∣∣0
) as f ∆ME

β
(0,µ,ε)

/
f ∆
β

(0), which yields

f ME |∆
β

(
µ,ε

∣∣0
)= f Θ

β
(µ) f E |M

β

(
ε
∣∣µ)

φ(µ)

f ∆
β

(0)
.

Fortunately, f ∆
β

(0) will cancel out of Expression 7, so there is no need to
explore it further.

Using the derivation of the previous paragraph, in terms of our
literature-level model, we can write Expression 7 as

Eβ
[

E M
∣∣ ∆= 0

]
Eβ

[
E

∣∣ ∆= 0
] =

∫∞
−∞

∫1
0 µ ε f Θ

β
(µ) f E |M

β

(
ε
∣∣µ)

φ(µ)dεdµ∫∞
−∞

∫1
0 ε f Θ

β
(µ) f E |M

β

(
ε
∣∣µ)

φ(µ)dεdµ
,

We can then simplify by writing the inner integrals as conditional-on-prior
expectations to get

Eβ
[

E M
∣∣ ∆= 0

]
Eβ

[
E

∣∣ ∆= 0
] =

∫∞
−∞ µ Eβ

[
E

∣∣M =µ
]

f Θ
β

(µ) φ(µ)dµ∫∞
−∞ Eβ

[
E

∣∣M =µ
]

f Θ
β

(µ) φ(µ)dµ
. (9)

From here, it is clear that
Eβ

[
E M

∣∣ ∆= 0
]

Eβ
[

E
∣∣ ∆= 0

] =
∫∞

−∞
µψβ(µ)dµ,

where ψβ is defined in the statement of the result. And ψβ is indeed a
density, as it is never negative and integrates out to one.
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So, why have we derived this expression? Note the likelihood ratio for ψβ

is
ψβ(µ′)
ψβ(µ )

= Eβ
[
E

∣∣M =µ′]
Eβ

[
E

∣∣M =µ
] f Θ

β
(µ′)

f Θ
β

(µ )

φ(µ′)
φ(µ )

.

The likelihood-ratio assumption from the previous subsection states that
the middle ratio on the right-hand side is decreasing in β. Clearly, the
rightmost ratio doesn’t change with β. Hence, the entire likelihood ratio for
ψβ is decreasing in β so long as Eβ

[
E

∣∣M =µ′]/
Eβ

[
E

∣∣M =µ
] doesn’t increase

too much with β. Intuitively, this simply says that increasing the baseline
doesn’t increase the update strengths of those with high priors too much
relative to those with low priors.

Going forward, we will assume this is the case: formally, for any two
baselines, β and β′, and any two thresholds, θ and θ′, if β′ > β and θ′ > θ,
then

ψΘ
β′(θ′)

ψΘ
β′(θ)

<
ψΘ

β
(θ′)

ψΘ
β

(θ)
.

Given this assumption, we then know that Eβ
[

E M
∣∣ ∆= 0

]/
Eβ

[
E

∣∣ ∆= 0
] is

decreasing in β.
Now, looking back to Equation 8, we see that the whole thing must be

increasing in β ifGN |B is decreasing in baseline. Intuitively, this assumption
means that increasing βweakly increases the signal distribution in the first-
order stochastic sense.

Prediction 1. If increasing β weakly increases the signal distribu-
tion in the first-order stochastic sense (i.e., if ∂GN |B /

∂β≤ 0), then
the conditional-on-baseline probability of a positive treatment ef-
fect is increasing in the baseline.

Of course, the assumption in Result 1 is stronger than is necessary. So
long as increasing the baseline doesn’t shift down the distribution of N too
much, the conditional-on-baseline probability of a positive treatment effect
will still be increasing in baseline.

Before moving on, it is worth heuristically describing the con-
ditions that give rise to Prediction 1. Essentially, we needed that
Eβ

[
E

∣∣M =µ′]/
Eβ

[
E

∣∣M =µ
] and GN |B not increase too much with baseline.

Intuitively, the first condition prevents increasing the baseline from
increasing too much the update strengths (and hence the contribution to
the treatment effect) of agents with high priors. Such agents are those who
view the signal as bad news about take-up. The second condition prevents
increasing baseline from pushing the signal down too much. Low signals
are obviously more likely to be perceived as bad news.
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3.3.f Conditional-on-baseline expected treatment effect
In terms of our literature-level model, we can take the conditional-on-
baseline expectation of Equation 3 and write it as

E
[
τB ,N

∣∣B =β
] =

∫∞

−∞

∫1

0

(
E
[
N

∣∣B =β
]−µ

)
ε f Θ

β (µ) f E |M
β

(
ε
∣∣µ)

φ(µ)dεdµ.

Through similar methods to those used in the previous subsection, we can
then write this in terms of ψβ as

E
[
τB ,N

∣∣B =β
] =

{∫∞

−∞
Eβ

[
E

∣∣M =µ
]

f Θ
β (µ) φ(µ)dµ

}
×

{∫∞

−∞
(
E
[
N

∣∣B =β
]−µ

)
ψβ(µ) dµ

}
. (10)

We now analyze the two terms of right-hand side of the equation in turn.
The first is clearly positive, and we expect it to be larger where there

is more overlap between the prior and threshold distributions, since the
integrand is determined by the product of those densities. Intuitively then,
our term should approach zero as the baseline approaches either zero or
one, since extreme baselines will shift thresholds to very high and very low
values, where the prior distribution, φ, is quite thin. (For a more in depth
discussion of why this is so, see Section 3.3.d above.) So, the first term
is positive, but approaches zero when the baseline approaches either
zero or one.

Moving on to the second term, it is helpful to consider changing the β

in the expectation and the β in the subscript independently. Increasing the
β in the subscript will clearly increase the second term, since E[

N
∣∣B = b

]−µ

is decreasing in µ and we are assuming that the density ψβ(µ) is decreasing
in the likelihood-ratio sense. Increasing the β in the expectation will also
increase the second term if we assume that E[

N
∣∣B = b

] is weakly increasing
in b.

So, putting together these two ideas, we find that the second term in
Equation 10 is weakly increasing in β if E

[
N

∣∣B ===β
] is increasing in

β. (As before, this last assumption is stronger than is needed; really, we
just need that E[

N
∣∣B =β

] doesn’t decrease too much in β.) In addition, the
second term gets negative as the baseline approaches zero and positive
as the baseline approaches one, for reasons that parallel the discussion
in Section 3.3.d above.30

Putting together the bolded points above, we find that the conditional-
on-baseline expected treatment effect has a specific “down–up–down”
shape to it. Formally,

30. See footnote 29.
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Prediction 2 (down–up–down). As baseline approaches zero or
one, E[

τB ,N
∣∣B =β

] approaches zero. E[
τB ,N

∣∣B =β
] also has an in-

terior zero at some baseline strictly greater than zero and strictly
less than one. Below this interior zero, E[

τB ,N
∣∣B =β

] is negative;
above it E

[
τB ,N

∣∣B =β
] is positive.

Note that, while this result lines up well with the shape in part (h) of Fig-
ure 1, the single-peakedness of the negative and positive parts of the curve
is not required. What is required is that as the baseline increases from zero
to one, the conditional-on-baseline expected treatment effect must 1) start
at zero, 2) decrease to negative values for lower baselines, 3) come back to
zero, 4) go up to positive values for higher baselines, and then 5) descend
back to zero as the baseline approaches one.

Before moving on, it is worth heuristically describing the con-
ditions that give rise to Prediction 2. Essentially, we needed that
Eβ

[
E

∣∣M =µ′]/
Eβ

[
E

∣∣M =µ
] not increase too much with baseline and

E
[
N

∣∣B =β
] not decrease too much. The intuition underlying these condi-

tions is essentially identical to that described at the end of the previous
subsection.

In the Appendix. In the main text, we simplify as much as possible and
keep most discussions to the heuristic. As mentioned at the beginning
of this section, a more formal treatment with proofs can be found in
Section C.3 of the appendix.

In addition, the appendix holds two extra classes of more technical
results for the interested reader. First, the treatment there allows for our
so-called literature-level noise, which is effectively variation in the dis-
tribution of (Θ, M ,E) that doesn’t affect the baseline. This is a significant
generalization to the model presented in the main text. Second, we deal
much more rigorously with the limits as baseline approaches zero and
one. Essentially, the difficulty is that for baselines to really get large or
small, threshold distributions must get very large or very small. Dealing
with the problem of probability mass escaping at infinity is a significant
technical challenge. (See footnote 29.)

4 Meta-Analysis
In this section, we test if the environment constructed in the theory is re-
flective of contexts where information interventions are common practice.
Specifically, we simultaneously test two empirical questions. First, are the
assumptions in the model (e.g., in Section 3.3 the model assumes, “that
thresholds are independent of priors and update strengths”) largely true for
the environments in previous information experiments? Second, is the im-
pact on behavior from the mechanisms in our theory meaningful in magni-
tude? Behavior in and across experiments may vary for hundreds of reasons.
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Is the specific impact from our theory of first order importance alongside
all of these other factors?

To test these questions, we will see if predictions from our theory hold
using a meta-analysis of 75 experiments across 22 papers that use informa-
tion nudges to affect a binary outcome in the extant literature. If we find
evidence to support our predictions across these experiments, then we will
conclude that both our assumptions largely hold in these studies, and that
our mechanism’s impact on behavior is important.

As described in Section 2 and Section 3, the model makes two predic-
tions about the relationship between baseline take-up and the treatment
effect. The first prediction (Result 1) is that the likelihood of a negative
treatment effect will be larger at lower baselines and smaller at higher base-
lines. The second prediction (Result 2) is that the treatment effect will
follow the down–up–down pattern shown in part (h) of Figure 1: as the
baseline increases from zero to one, the conditional-on-baseline expected
treatment effect must 1) start at zero, 2) decrease to negative values for
lower baselines, 3) come back to zero, 4) go up to positive values for higher
baselines, and then 5) descend back to zero as the baseline approaches one.

In addition to running reduced-form tests of these two predictions, we
also perform a structural meta-analysis that allows us to estimate param-
eters of the data generating process of the experiments we analyze. This
approach gives us additional results to assess our model. It additionally al-
lows us to providemore precise advice for practitioners who are considering
using information interventions in practice, as described in Section 6.

Throughout this section, we highlight the challenges that arise from at-
tempting to test our model using data across existing experiments in the
literature. However, we see our meta-analysis as the best way to test our
model for two, related reasons. The first reason is that we wrote the model
in part to rationalize existing experimental results from the literature. Test-
ing the model on these data allows us to directly assess whether we have
succeeded on this front. The second reason is that we aim to provide in-
sights to practitioners whomaywant to deploy information interventions in
various settings. If ourmodel can successfully explain patterns of treatment
effects across settings as diverse as the ones included in this meta-analysis,
we can be more confident in its ability to guide practitioners in the diverse
settings they will face.

This section proceeds as follows. Section 4.1 describes our approach to
identifying papers and experiments to include in the meta-analysis. Sec-
tion 4.2 provides details on the selected experiments and visually presents
the data. Section 4.3.a presents reduced-form results assessing the first pre-
diction, that negative treatment effects are more likely at lower baselines.
Section 4.3.b reports on reduced-form results assessing our second predic-
tion about the shape of the relationship between baseline and the magni-
tude and sign of the treatment effect. Section 4.4 introduces our structural
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meta-analysis and presents estimates of key parameters in the literature.

4.1 Selecting Papers and Experiments for the Meta-Analysis
The first challenge in conducting a meta-analysis is identifying which stud-
ies to include. We developed a procedure to identify previously run exper-
iments that were the most appropriate fits to our model (i.e., the setting
was one modeled by the theory). Since our model made predictions about
when we would see negative treatment effects and null results, we aimed
to avoid selection based on “publication bias” or “file-drawer bias.” We
describe the procedure here.

First, we searched for papers that satisfied two criteria:
1. “At least one experimental treatment is attempting to influence a bi-

nary action by providing truthful information to subjects (e.g., telling
subjects the % of others who take an action, telling subjects the ben-
efits of taking a certain action, etc.).”31,32

2. “The paper reports the rate of taking the binary action in the control
group, the treatment effect, and the standard error of the treatment
effect (or these can be imputed).”

We found 18 papers (including working papers) that satisfied these cri-
teria and then asked the experimental economics community to provide us
with any additional papers that we had not identified.33 We solicited papers
with a request via email — with the subject line “Information Experiments
(including file drawer)”—that we sent to the “ESA-discuss” mailing list.34
The community sent us 25 papers in the period between when we sent
that email and when we first presented our paper publicly, at which point

31. We only considered cases of experimenter-observed costly actions and excluded any
experiments investigating hypothetical choices or self-reports, which ruled out papers such
as Card et al. (2012), Kuziemko et al. (2015), and Karadja, Mollerstrom, and Seim (2017).
32. Note that continuous outcomes can be made into binary outcomes (e.g., “Is willing-

ness to pay greater than $100?”), so the model can make predictions in such cases. However,
determining the cutoffwould provide a researcher degree of freedom that wewish to remove
from the analysis.
33. This initial search was conducted by the authors of this manuscript and research as-

sistants who were blind to the hypotheses for the meta-analysis that were generated by the
model.
34. The email can be found at the end of the Appendix. The two criteria listed above are

direct quotes from that email. ESA-discuss is the discussion e-mail list of the Economic
Science Association. Following the rules of that mailing list, we included all of the papers
we had found and invited individuals to send us any additional papers. Our email included
19 papers since we did not realize on a first read that Cialdini et al. (2006) did not provide
rates of taking the binary action in the control group and thus did not qualify for inclusion
in the meta-analysis.
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we stopped accepting papers to include in the meta-analysis.35 While we
received many papers in response to our request, the vast majority were
not appropriate fits of our theory (this may have been encouraged by the
appeal in our email: “If you are unsure about whether to send a paper,
please do so”), and we were only able to add 4 additional papers to our
meta-analysis.36

In the Appendix, we list all the papers that we initially considered, or
were sent to us in response to the solicitation and the main reason for ex-
clusion (often papers were excluded for multiple reasons). The two most
common reasons for a paper being excluded were that the treatment was
not an information treatment or did more than just provide information (10
papers)37 or the outcome reported by the authors was not binary (7 papers).
38 Papers were also excluded because they did not include a control group
(1 paper) or because they were theoretical rather than empirical (1 paper).
The final two papers were excluded because they violated the model for a
more subtle reason: the information fully revealed the optimal action (in
one case, the information was the value of an experimental asset, which
fully revealed whether it should be bought or sold; in the other case, the
information was that a mechanism was strategy proof, which fully revealed
that truth telling was optimal). The decision to include or exclude a paper
was made without looking at the paper’s results.

Many of the papers included in the meta-analysis include multiple ex-
periments that qualify based on our inclusion criteria (e.g., if multiple infor-
mation interventions are being tested in the same setting). Consequently,
we are able to analyze the results of 75 experiments from the 22 papers
we identify. Each experiment includes a baseline and a treatment effect,
and these are the data that we use to perform our statistical tests. Note
that when experimental treatments are run as separate arms in the same
intervention, they will have the same baseline in our data since they share
35. We first presented the paper publicly on August 22, 2016 at the Experimental Eco-

nomics session of the Stanford Institute of Theoretical Economics. At that point, we
stopped accepting papers to avoid any potential selection of papers into our meta-analysis.
For example, this could introduce positive selection whereby individuals who knew the
results of the model might send us papers that were consistent with its predictions.
36. We take this as a sign that we had successfully identified themajority of relevant papers

in our first pass of collecting relevant work.
37. For examples: if treatments provided information but also changed the strategic struc-

ture of the game, then we excluded that paper; if multiple interventions were run, and the
effect of information could only be estimated by assuming no interaction with other treat-
ments, then we excluded that paper; if the treatment was advice from another subject rather
than a nudge provided by the experimenter, we excluded the paper.
38. We included cases where the authors reported both a binary outcome (e.g., whether

a student graduated high school, whether a subject donated anything in a dictator game)
alongside a continuous outcome (e.g., the amount of schooling achieved, and the amount
donated). In cases where multiple binary outcomes were reported from the same informa-
tion intervention, we used whichever outcomewas the primary focus of the author(s). Note
that we exclude papers that only include continuous variables, such as Nguyen (2008).
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a control group.
Before we present the results of the meta-analysis, we highlight three

potential concerns with using papers collected from the literature to test
our theory. One concern is that we are aiming to explain experiments that
differ across many dimensions (i.e., they vary in terms of settings and in
terms of the information interventions provided).39 As described above,
we see this as a “feature” rather than a “bug” of our meta-analysis. In
addition, the variation works against us finding anything systematic and
so makes us more confident if we are able to succeed in rationalizing these
results.

A second concern is that we might not identify all relevant experiments
in the literature due to a “publication bias” (where certain experiments
never get published) or a “file-drawer bias” (where certain experiments are
never written up into shareable manuscripts). That is, despite specifically
asking for research “including file drawer” in our solicitation, it is possible
that certain experiments (e.g., experiments with insignificant or negative
treatment effects) were not readily available, perhaps never written up as
a manuscript. Missing these experiments, if they indeed exist, provides us
with less data, which would decrease our statistical power. A more trou-
bling concern, however, would arise if “missing” experiments displayed a
systematic relationship between treatment effect and baseline that might
bias our estimate of their relationship. However, we are unable to con-
struct any reasonable explanation for why publication bias or file-drawer
bias would lead disproportionately negative treatment effects to appear
missing from certain ranges of baselines (but not others).40 Finally, in our
data, a substantial portion of the effect sizes are negative and/or very small
in magnitude: For example, 24.0% of the treatment effects are negative,
and 50.7% have an absolute value less than or equal to 0.25.

Finally, as with all meta-analyses, any across-paper variation in our sam-
ple is not random. Specifically, there may be other features that covary
with baseline rates across papers. While finding support for the predic-
tions made by our model, especially the specific down–up–down pattern,
will be convincing, it is impossible for such an endeavor to be dispositive.

39. Our 75 experiments include lab experiments, field experiments, and framed field stud-
ies. Outcomes vary dramatically, with examples including: paying taxes, reusing a hotel
towel, continuing in secondary schooling, ordering a popular dish at a restaurant, and de-
ciding to join Teach For America as a teacher.
40. The only plausible concern we can envision in this regard is due to binary variables

having higher variance at intermediate values. If researchers do not properly respond to an
expected increase in variance with a proper increase in sample size, and choose not to write-
up papers with null results, we might expect to be missing experiments with intermediate
baselines (e.g., close to 0.5) with relatively small (positive or negative) treatment effects.
This would create a hump-shaped curve. It would not create an area with negative treatment
effects. We will keep this potential concern in mind when analyzing the results, below.
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4.2 Descriptive Statistics
Figure 2 presents an unstructured view of the data. Each experiment is
represented by a dot on the graph, where mean baseline take-up is shown
on the x-axis and the reported average treatment effect is shown on the y-
axis.41 In all the experiments we analyze, the information intervention was
designed to increase take-up of an action, so positive treatment effects indi-
cate a treatment effect in the intended direction, and all negative treatment
effects indicate a backfire.

Before testing predictions of the model, we document a few observa-
tions from the data. First, across all experiments in our meta-analysis, the
average treatment effect is 0.02, with a median of 0.01; the typical informa-
tion intervention has a modest positive effect on behavior. Second, most
experiments are done on low baseline rates: the median baseline take-up
across all experiments is 0.34, and 73.0% of all experiments have a baseline
of 0.25or less.42 These statistics are consistent with the folk intuition that
information interventions should be tried when baseline is low (so that a
large share of agents are available to be induced to take the desired action).
We provide further evidence of this folk intuition in Section 5.
4.2.a Naïve Analysis of Information Interventions
Before we test predictions of the model, we consider what the data would
suggest absent the insights in the theory. In short, if a researcher or policy-
maker, who was naive to our model, looked at our data, what might they
conclude about the effectiveness of information interventions?

Not taking into account the importance of baseline rate, across the ex-
periments in our metadata, the results are modest. There is almost a quar-
ter of a chance of the intervention backfiring: 24.0% of treatment effects
are negative. Most effects are small. 58.7%, have a treatment effect less
than or equal to 0.02. As mentioned above, the average treatment effect is
0.02. Further, few treatment effects are positive and large. Only 14.7% of
treatment effects are greater than or equal to 0.05.

A researcher or practitioner looking at such numbers might be discour-
aged. As a result, they might not utilize an information intervention for
their upcoming project. However, this analysis masks important hetero-
geneity.

In light of our model, we see that information can be a very effective pol-
icy tool. Indeed, in these experiments, information is working, and working
41. To avoid visually compressing the bulk of the data, 3 experiments with treatment ef-

fects greater than 20 percentage points are not included in the figure. This exclusion is for
the usefulness of the visual representation of the data only, and all experiments are included
in the analysis that follows.
42. Note that baseline rates are typically from control groups where contact has beenmade

(e.g., a letter was sent, but the experimental information was not provided). In that way,
the treatment effects are the effect of providing the information as opposed to, for example,
the effect of sending a letter and providing information.
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in the way predicted by our model.

4.3 Reduced-Form Analysis
Ourmodel makes two empirical predictions: that the probability of positive
treatment effects increases in baseline take-up rate, and that the expected
treatment effect as a function of baseline follows a “down–up–down” rela-
tionship. We will first consider these predictions in turn.
4.3.a Positive Treatment Effects Are More Likely at Higher Baselines
The relation between the probability of positive treatment effects and the
baseline is suggested visually in Figure 2. The negative treatment effects
are generally found at low baselines while the positive treatment effects are
more common at high baselines. For example, 45.8% of treatment effects
are negative when the baseline rate is below 0.25; however, only 12.2% are
negative for baselines above 0.25. Table 1 regresses whether a treatment
effect is positive on baseline, using a linear probability model (Column 1)
and a probit (Column 2). Standard errors are provided by a two-tier hier-
archical bootstrap.43 First, to weight by the precision of each experiment’s
results, the bootstrap resamples at the experimental treatment cell: In each
iteration of the bootstrap, we create new data for every individual treatment
and control cell by drawing, with replacement, from the original data in that
cell until the original sample size is reached. Second, to account for poten-
tial within-paper correlations, the bootstrap then resamples which papers
are included, again drawing with replacement, using the redrawn data from
the first step for each experiment within a paper.

Both specifications in Table 1 estimate a significant positive relationship
between baseline and the probability of a positive treatment effect (0.08 of
bootstrapped OLS estimates and 0.04 of bootstrapped probit estimates are
non-positive).44 The magnitudes of the estimate are quite large. In Col-
umn 1, every 0.1 increase in the baseline, implies a 6.8 percentage point
increase in the likelihood of a positive treatment effect. It is also worth
noting that the adjusted-R2 of the linear probability model is 0.08, with a
pseudo-R2 of 0.10 for the probit. That is, knowing only the baseline rate, the
linear model can predict 8–10% of the variation in the sign of the treatment
effect across papers in our sample.45 Noting that these papers vary in many

43. Most of our bootstrapped coefficient distributions are non-normal (with a thick right
tail), so for standard errors, we report half the width of the interval centered around the
median that contains 68.27% of the data. (For a normal distribution, 68.27% of the data
lies within one standard deviation of the median.)
44. The p-values implied by the frequency approach in the bootstrap differ from calculating

z-statistics from the point estimates and standard errors because the bootstrapped distri-
butions are both asymmetric, with thick right tails. Since the distributions are non-normal,
we do not rely on z-statistics for p-values.
45. As noted above, these papers vary dramatically with respect to context, population,

outcome, and information provided in the treatment. We find it striking that the model has
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Table 1: Predicting Likelihood of Positive
Treatment Effects with Baseline Rates

OLS Probit
(I) (II)

Baseline 0.68 0.86
s.e. (0.34) (0.47)
p-value [0.08] [0.04]

Constant 0.76 0.76
s.e. (0.10) (0.10)
p-value [0.00] [0.00]

Papers 22 22
Studies 75 75
Adjusted/pseudo-R2 0.08 0.10

NOTES. Table shows estimates regressing whether treatment ef-
fect is positive on baseline rate. Column (I) presents linear proba-
bility model and Column (II) Probit. Standard errors are the stan-
dard deviation of estimates from hierarchical bootstrap described
in Section 4.3.a. Note both boot-strapped distributions of esti-
mates are right-skewed. “p-value” reports the percentage of esti-
mates from the hierarchical bootstrap described in Section 4.3.a
that are non-positive. De-meaned baseline rates used, so constant
reports estimate at the average baseline rate.

important ways—lab or field, large stakes or small stakes, social informa-
tion or direct information—it is impressive that only the baseline rate can
predict so much of the variance in the outcomes.
4.3.b Treatment Effect Versus Baseline Has a “Down–Up–Down” Shape
The second prediction of our model that we test is the “down–up–down”
relationship between baseline rates and treatment effects: As baseline in-
creases from 0 to 1, treatment effects decrease from 0, increase through 0
(producing a small negative “nub”), increase past 0, and decrease back to 0
(producing a large positive “bump”). This theoretical relationship is shown
in Figure 1h.

One challenge to testing this prediction is that, while we expect any
given experiment to have a theoretical down–up–down curve, different ex-
periments are expected to have different curves. The baselines at which
the treatment effect curve hits its minimum and maximum, and the base-
line where the curve has its intermediate 0, will vary depending on the
context (e.g., the strength of agents’ priors, where the nudge falls relative

such predictive power while blind to all parameters other than baseline take-up.
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to those priors, and the distribution of priors relative to the distribution
of thresholds). Given this underlying variation, testing for this down–up–
down pattern is a challenge. We see this exercise as a stress test of how
well our model fits the data.

Similar to Simonsohn (2018), which proposes testing a hump-shaped
or U-shaped relationship using a piece-wise linear test of two lines, we test
for a down–up–down relationship using three lines: we test if the slope of
the leftmost line is negative, the second positive, and the third negative,
i.e., down–up–down.46 The challenge of this method is to choose the break
points between the three lines in a way that the analysis is well situated
to detect the proposed pattern if it exists, but it does not introduce a re-
searcher degree of freedom.

To these ends, it seems most natural to begin with break points at the
estimated local minimum and local maximum and to consider other break
points nearby as well. That is, from an OLS-fitted third-degree polynomial
(unreported), we will estimate the baselines where the local minimum and
local maximum occur, and use these as the thresholds separating our three
lines. These local extrema occur roughly at baseline rates of 0.119 and 0.609.
We consider these, and nearby, break points.

Figure 3 shows a scatter plot of studies in our sample with the three
fitted lines overlaid. First, note visually the break points appear reasonable.
If one were trying to find a down–up–down pattern, they would likely select
break points in the vicinity of those chosen by the cubic fit. Second, all three
lines are directionally consistent with predictions (Also see Table 2): the
first is downward-sloping with an estimated slope of −0.24 (p = 0.045).47
The second is upward with a 0.12 slope (p = 0.14). The third is downward-
sloping with an estimated 0.66 slope (p = 0.19); however, only the first line
is significant by conventional standards. We can get a better sense of the
veracity of the pattern in two ways. First, we can redo the analysis removing
any data that have outsize influence on the estimates, i.e. outliers. To find
such leveraged data, we estimate how much the coefficients change when
each data point is individually removed. We find one data point decreases
the estimates of the second line by almost a full standard error range (−0.98).
46. Following Simonsohn (2018), we allow for discontinuities at those break points. That

is, we estimate a separate regression for each of the three regions.
47. The p-values for all three lines in this section, and in Table 2 and Appendix Table A.1,

come from a bootstrap that re-samples both papers and experimental data. We utilize the
same hierarchical bootstrap used in Section 4.3.a making one accommodation for the three-
line analysis. When one of the three lines only has a handful of papers in its data set,
re-drawing papers often leaves only one or two papers for the analysis of that line. To
avoid these unhelpful estimations, we instead utilize a jackknife procedure for resampling
papers: We remove one paper, redo the analysis, re-include that paper, remove the next,
and so on. When each paper is removed, the data within each experimental cell is redrawn
i.i.d. with replacement, as we did in Section 4.3.a. We redraw the data 1,000 times for each
combination of break-points and paper removal. Each p-value is the percentage of estimates
inconsistent with the model’s prediction.
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Crosses each represent a study and its baseline rate - treatment effect pair. Blue lines show
fitted OLS estimates for baseline rates below 0.119, between 0.119 and 0.609, and above 0.609
respectively. 0.119 and 0.609 are the baseline rates where the fitted cubic is estimated to be
at its local minimum and maximum respectively. For visual simplicity treatment effects
over 0.1 excluded in the scatter plot, but they are included in the estimation of the lines.

Figure 3: Three-line fit predicting treatment effect with baseline rate
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Table 2: Estimating slopes for three lines

First Second Second Third
Line Line Line Line

All Excl.
Data Outlier†

(I) (II) (III) (IV)
Baseline −0.24 0.12 0.21 −0.66
s.e (0.10) (0.10) (0.14) (0.40)
p-value [0.05] [0.14] [0.02] [0.19]

Papers 5 12 12 6
Studies 12 54 53 9
Adjusted-R2 0.13 −0.00 0.06 0.20

NOTES. Table shows estimates regressing treatment effect on baseline rate.
First Line presents estimates for baseline rates less than 0.119. Second Line
presents estimates for baseline rates greater than 0.119 and less than 0.609.
Third Line presents estimates for baseline rates greater than 0.609. Standard
errors are the standard deviation of estimates from hierarchical bootstrap de-
scribed in Section 4.3.a modified as described in Section 4.3.b, footnote 47.
Note the boot-strapped distributions of estimates are skewed, left-skewed for
(I), (III), (IV), and (VI), and right-skewed for (II) and (V). “p-value” reports
the percentage of bootstrapped estimates that are inconsistent with themodel’s
prediction: i.e. non-negative for (I), (III), (IV), and (VI) and non-positive for
(II) and (V). †One extreme outlier removed as described in Section 4.3.b (Re-
moval only affects the second line’s estimate).

The second and third largest influence measures, in absolute terms, are 0.36
and 0.21. Though admittedly ex post, we redo the analysis removing the
most extreme outlier.48 Column (III) of Table 2 shows this new analysis.
The second line is upward-sloping with estimated 0.21 slope, with p = 0.02.
That is, once we remove a data point that has by far the largest effect on
our analysis, and look for a pattern in the rest of the data, the analysis is
more consistent with the model’s predictions.

Second, to further test the robustness of the findings, we redo the anal-
ysis using other break points, just above and below those already used. We
move the break points to the left and right, including or excluding at least
two more data points. We only use break points that include at least four
data points in the first and third lines. Altogether, we test four break points
between the first and second line and four break points between the second
and third lines. This provides four estimates for the first line, sixteen for

48. The data point removed comes from a laboratory experiment with a baseline rate of
0.23 and a treatment effect of 0.29 (Brown, Trautmann, and Vlahu 2017).
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the second line, and four for the third line. All sixteen regressions, and all
break points, can be found in Appendix Table A.1. For the first line, three
of the four estimates are negative. The lone positive estimate is the only
instance in which the extreme outlier discussed above is included in the
first line. The p-values for the three negative lines are 0.00, 0.045, and 0.045.
All sixteen estimates for the second line are positive, i.e. consistent with
the model, with an average estimate of 0.18, and an average p-value of 0.06.
Our meta dataset does not include a wealth of studies with high baseline
rates, and the third line is noisy as a result. Two of the four estimates are
negative, i.e. consistent with the model, though they are the two with the
most data. When only four or six data are used to estimate the third line,
estimates are positive and noisy.

Taken together, our reduced form results suggest that the experiments
in the data may follow the specific down–up–down pattern predicted by
the model. We find some evidence for this pattern despite significant varia-
tion in settings, outcomes, and information interventions across the exper-
iments in our meta-analysis, providing additional credibility of the explana-
tory power of our model.

4.4 Structural Meta-Analysis
The results above offer a reduced-form approach to testing two hypotheses
from the model: negative treatment effects will disproportionately appear
at low baselines and the treatment effect will follow a down–up–down pat-
tern with respect to baseline. However, the reduced-form approach leaves
open a few important questions. In this section, we will introduce a specific
instance of the more general model introduced in Section 3.3. We will then
structurally estimate key parameters of that model.

That so many experiments were attempted at low baselines allowed us
to claim that practitioners follow the intuition to use information nudges in
settings with a low baseline (since many people are available to be nudged).
The structural approach will allow us to assess whether practitioners also
follow the intuition to provide nudges that are good news on average by
providing an estimate of where these practitioner’s nudges fell in agents’
prior belief distributions.

In the reduced-form analysis above, we posited significant underlying
variation across experiments, but we had no way of quantifying this vari-
ation. The structural approach will identify the variation in two key pa-
rameters that differ across experiments: where a nudge falls in the agents’
prior belief distribution and the relative variation in agents’ thresholds and
beliefs in a given experimental setting. Once we perform the structural
analysis, we can investigate how much variation in treatment effect curves
we should expect across experimental settings in practice.

Finally, the structural approach provides guidance to practitioners as
they consider potential nudges by allowing them to assess their likely ef-
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fects by comparing their potential nudge to nudges used previously in the
literature.
4.4.a No literature-level noise
The literature-level model from Section 3.3 assumes that priors are drawn
from the standard normal and that thresholds are drawn independently
from some family of distributions indexed by β, the baseline. We choose
normal distributions with mean −Φ−1(β)

√
1+η2 and variance η2, i.e., Θ ∼

N
(−Φ−1(β)

√
1+η2 ,η2

). Intuitively, this means that thresholds are normally
distributed with a standard deviation η times larger than that of priors and
with a mean that makes the baseline equal to β.49 For now, we assume
the threshold width, η, remains constant across experiments. We will also
assume that within an experiment, the update strength is independent of
thresholds and priors. As with the threshold width, across experiments,
we assume that the expected update strength, E[

E
], remains constant. (In

subsequent sections, we will allow for cross-experiment heterogeneity in η

and E
[
E

].) We complete our model by assuming that the nudge signal is
distributed independently and normally across experiments, with mean ν̄

and variance σ2
ν, i.e., N ∼N

(
ν̄,σ2

ν

).
Broadly speaking, we identify an experiment in the literature as a real-

ization, (ν,β), of the random vector that represents the nudge signal and
baseline, (N ,B). In other words, using the terminology introduced in Sec-
tion 3.3.c, there is no literature-level noise.

Given this model, the treatment effect is positive when the nudge sig-
nal, ν, exceeds the expected prior among marginal agents, Eβ

[
M

∣∣∆= 0
].50

From here, we can do a bit of algebra and derive the conditional-on-baseline
distribution of the treatment effect.

Result. For the parametricmodel of this section, when the realization
of (N ,B) is (ν,β), the treatment effect is given by

τβ,ν =φ
(
Φ−1(β)

) {
E
[
E

]√
1+η2

ν + E
[
E

]
1+η2 Φ−1(β)

}
.

Since N is distributed normally with mean ν̄ and variance σ2
ν, this

means that, conditional on the baseline, B , having realization β, the
treatment effect is normally distributed, with mean and standard devi-

49. To see this, note that since ∆ = Θ−M , the rules of normal distributions dictate that
∆∼N

(
θ̄,1+η2), where θ̄ ≡−Φ−1(β)

√
1+η2 . Hence the fraction of agents that take up (i.e.,

the fraction with ∆≤ 0) is Φ
(− θ̄

/√
1+η2

), which is equal to β.
50. Here, Expression 7 simplifies because update strengths are independent of thresholds

and priors.
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ation given by

E
[
τB ,N

∣∣B =β
]=φ

(
Φ−1(β)

) {
E
[
E

]√
1+η2

ν̄ + E
[
E

]
1+η2 Φ−1(β)

}
,

√
Var

[
τB ,N

∣∣B =β
] =φ

(
Φ−1(β)

) E[
E

]
σν√

1+η2
. (11)

From this, it almost immediately follows that the conditional-on-
baseline probability of a positive treatment effect is given by

Pr
{
τB ,N > 0 | B =β

} = Φ

 E
[
τB ,N

∣∣B =β
]√

Var
[
τB ,N

∣∣B =β
]

 . (12)

The proofs for these results can be found in Section A.3.a of the appendix.
An immediate corollary shows how this model can be estimated: we

divide the treatment effect by φ
(
Φ−1(β)

) and regress on Φ−1(β). That is,

Corollary. If we regress τβ,N
/
φ

(
Φ−1(β)

) on Φ−1(β), assuming ho-
moskedastic errors, we are estimating the equation

τβ,N

φ
(
Φ−1(β)

) = a + b Φ−1(β) + ζ, (13)

where a and b are constants defined by

a ≡ E
[
E

]
ν̄√

1+η2
and b ≡ E

[
E

]
1+η2 ,

and ζ is a normally distributed error with mean zero and standard de-
viation defined by

σζ ≡
E
[
E

]
σν√

1+η2
.

The estimates for this regression in the full sample are listed in the “Full
sample” column of Table 3. Unfortunately, the estimate for parameter b
is negative, which is not theoretically possible in this section’s model. In
Figure 4, we show a scatter plot for the regression. The full sample includes
both the darker crosses and the lighter, labeled, circular points; the lighter,
negatively sloped, dashed line is the full-sample linear fit.

Clearly, the lighter points (whose source papers are labeled in Figure 4)
have much higher values of τ/

φ
(
Φ−1(β)

) than the rest of the sample. In
fact, the mean dependent-variable value of those four studies is about 19
times larger than that of the the other studies. Essentially, we seem to
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Table 3: Regression estimates for Equation 13

OLS Robust regression
Full sample Outliers excluded Stata rreg command

a ≡ E[E ] ν̄p
1+η2

0.0716 0.0935 0.0822
(0.0338) (0.0155) (0.0150)

b ≡ E[E ]
1+η2

– 0.0468 0.0998 0.0823
(0.0418) (0.0217) (0.0197)

σζ ≡ E[E ] σνp
1+η2

0.2274 0.1013 0.1002
(0.0186) (0.0085) (0.0083)

Papers 22 21 21
Studies 75 71 71
R2 0.02 0.23 0.19
Goodness-of- 0.273 0.00002 0.00008fit p-value

NOTES. The left and center columns correspond to the dashed and solid
lines in the figure below. The rightmost column reports the results of a
more sophisticated (but harder to interpret) approach to outliers that fol-
lows Li (1985), as described in footnote 51. Goodness-of-fit p-values are
assessed using F -tests. Standard errors are in parentheses.

Beshears et al. (2015)

Beshears et al. (2015)

Brown et al. (2015)
Krupka & Weber (2009)

-0.5

0.0

0.5

1.0

τ / φ( Φ-1(β) )

-3.0 -2.0 -1.0 0.0 1.0

Φ-1(β)

Figure 4: Linear fits for Equation 13
NOTES. Each study in the sample is given a darker cross or a lighter circle.
The circles are studies we throw out as outliers: their dependent-variable—
i.e., τ/

φ
(
Φ−1(β)

)—is, on average, 19 times larger than that of the other
studies. The outliers have their sources studies written next to them. The
light, dashed line is the best linear fit across the entire sample; the dark,
solid line is the best linear fit with outliers excluded.



have an outlier problem. In Section A.3.b of the appendix, we make a more
technical case that these four studies are indeed outliers, but in the main
text, we limit ourselves to a simple visual inspection of the data.

Estimates for our regression that exclude the four outliers are listed in
the “Outliers excluded” column of Table 3. Now, the parameter estimates
are all positive and the regression itself is highly significant. Its R2 is 0.23,
which means that across the wide variety of contexts present in our dataset,
the simple regression described by Equation 13 explains 23% of the variance
in the data, once outliers have been removed.

To provide some additional support for our rather simple outlier-
mitigation protocol, in Table 3, we also report “Robust regression”
estimates using the more sophisticated (but harder to interpret) methods
used by Stata’s rreg command.51 The rreg command throws out the same
four outliers and gives results that aren’t significantly different from the
simpler “Outliers excluded” results. As such, we will discuss the “Outliers
excluded” results in what follows.

Begin by noting that the ratio a/σζ, whose value is 0.92 (with a stan-
dard error of 0.17), is an estimate of ν̄/σν. That the ratio is significantly
positive tells us that the mean of the nudge-signal distribution is higher
than the mean of the prior distribution. This makes sense: experimenters
are trying to run information interventions where the signal is good news
to the target population as a whole. In fact, we can go a bit further: in our
model, Φ(ν̄/σν) is the probability that the nudge signal exceeds the mean
of the prior distribution. This probability computes out to 82.2% (with a
standard error of 4.5 percentage points). Again, this lines up well with our
intuition concerning the sorts of information interventions experimenters
like to run: more than 4/5 of studies have a nudge signal that exceeds the
mean of the prior distribution.

We can also look at the ratio a/b, which is an estimate of ν̄√
1+η2 . Its

estimated value is 0.93 (with a standard error of 0.16). Since √
1+η2 is

bounded below by one, we can then infer that ν̄ is bounded above by 0.93.
Interpreted against the distribution of priors, this tells us that the mean
signal is between the 50th percentile of the prior distribution (since its
estimate is positive) and the 83rd percentile of the prior distribution (since
0.93 is at the 83rd percentile of the standard normal). Again, this lines up
well with our intuition concerning the sorts of information interventions
experimenters like to run.

In addition to this sort of analysis, we can also use the formulas in Equa-
tions A.15 and A.16 to compute structural estimates of the expected treat-
ment effect and the probability of a positive treatment effect and as a func-

51. Essentially, rreg follows a procedure described in Li (1985) that involves screening
by Cook’s D (Cook 1977) and then computing a Huber M-estimator (Huber and Ronchetti
2011) via iteratively reweighted least squares, using Huber weights (Huber 1964) to find a
starting point and then Tukey biweights (Beaton and Tukey 1974) to converge from there.
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tion of the baseline. These predictions are plotted out in Figure 5.
Figure 5a plots out the probability of a positive treatment effect as a

function of baseline. More specifically, it is a plot of Equation A.16 with the
estimates from Table 3 plugged in. Looking at the plot, we see that there
is a roughly 75% chance of a backfire when the baseline is 5%. This drops
to a 50% chance of a backfire when the baseline increases to 17% and a
25% chance of a backfire when the baseline increases to 40%. It isn’t until
the baseline hits 64% that the chance of a backfire gets pushed below 10%.
Across all experiments in our outliers-excluded sample, the mean predicted
probability of a backfire is 34%. So, while backfires aren’t the most likely
outcome, they are far from uncommon.

Now, we move on to the predicted treatment effect as a function of the
baseline, which is plotted out as the solid line in Figure 5b. It is computed
by plugging the estimates from Table 3 into Equation A.15. The qualitative
shape of the curve is similar to that seen in part (h) of Figure 1. The dashed
lines in Figure 5b are plus/minus one standard deviation. (Again, this is
computed by plugging the estimates from Table 3 into Equation A.15.) That
is, the dashed lines do not indicate a standard error of measurement. Rather, they
indicate the spread around the expectation that is predicted by our model.
So, while we predict the expected treatment effect to vary in a certain way,
we should also expect a good deal of noise around the trend. This is unsur-
prising given the breadth of applications the model is designed to capture.

The expected treatment effect is negative for baselines below about 17%;
however, backfires are within one standard deviation of the expected out-
come for baselines all the way up to about 53%. This corroborates the
narrative we discussed concerning the predicted probability of a positive
treatment effect: while backfires might not be the most likely outcomes,
they are far from uncommon.

In addition to showing the prevalence of backfires, Figure 5b also shows
that there are “sweet spots” for big negative and big positive treatment
effects. When baselines are in the 60–85% range, the treatment effects the
most positive, and when baselines are in the 3–9% range, treatment effects
are the most negative.52

While the plots in Figure 5 are quite useful, we have not yet been able
to estimate the individual parameters in our model, as they are not iden-
tified by the likelihood defined in Equation 13.53 In the next section, we
solve this identification problem bymodeling cross-experiment heterogene-
ity in η and E

[
E

]. In other words, using the terminology introduced in Sec-

52. These ranges were computed by looking for the baseline ranges where the expected
treatment effect is greater than 90% of its maximum value or less than 90% of its minimum
value.
53. To see this, note the same values for a, b, and σζ are attained when either

(
ν̄, σν, η, E[E ]

)
or

(
ν̄
√

1+η2 , σν

√
1+η2 , 0, E[E ]

/(
1+η2)) is plugged into their definitions.
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Baseline

(a) The predicted probability of a positive treatment effect
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(b) The predicted treatment-effect expectation and standard deviation

Figure 5: Predictions from the Equation 13 regression
NOTES: In subfigure (a), the predicted probability of a positive treatment effect is
plotted by plugging the estimates from Table 3 into Equation A.16. In subfigure (b),
the solid line is a plot of the expected treatment effect, while the dashed lines are
plus/minus one standard deviation. All lines comes from plugging the estimates from
Table 3 into Equation A.15. To be clear, the dashed lines are not measurement error,
but rather the spread in outcomes predicted by our model fit.



tion 3.3.c, we will introduce some literature-level noise.
4.4.b Introducing literature-level noise
Themodel from Section 3.3 doesn’t incorporate literature-level noise: a ran-
dom experiment in the literature is determined entirely by the baseline and
the nudge signal drawn. This is how the model from the previous subsec-
tion works, since η2 and E

[
E

] are treated as constant across all experiments.
In this subsection, we will introduce literature-level noise by allowing cross-
experiment heterogeneity in η. Doing so will allow us to better identify the
individual parameters in our model.

Since η2 is a variance, it should have support on the positive real line;
hence, we model it as the realization of an independently drawn, gamma-
distributed random variable, H 2. Since E

[
E

] is a convex weight, it should
have support on the unit interval; hence, we model it as the realization of
an independently drawn, beta-distributed random variable, E . To summa-
rize then, for a given baseline, the experiment is now dependent on the
draw of (

N , H 2, E
), where all three random variables are independent and

distributed according to

N ∼ N
(
ν̄, σ2

ν

)
,

H 2 ∼ Gamma(k, t
)
,

E ∼ Beta(b, g
)
.

Note we are using the shape–scale parametrization of the gamma distri-
bution, whose mean and variance are k t and k t 2, and the modified PERT
parametrization of the beta distribution (Clark 1962), whosemean andmode
are (

1+b g
)/(

2+g
) and b.54 (In the large g limit, the expectation converges

to the mode, which intuitively suggests that 1/g is a proxy for variance.)
Further note that k, t , and g must be positive, while b must lie on the unit
interval.

Then, the likelihood of observing treatment effect τ when the baseline

54. The more common beta parametrization is in terms of the two parameters, α and
β, where the mean is α

/
(α+ β). In terms of this parametrization, the modified PERT

parametrization can be expressed as α = 1+b g and β = 1+ (1−b) g Note that the modified
PERT parametrization has the added benefit of ruling out beta distributions with both α

and β less than one. Such distributions are U-shaped (i.e., bimodal at zero and one), which
would be an odd choice for our particular application.

42



is β is given by

Pr{τ |B =β
}

=
∫1

0

{ ∫∞

0

1

E
[
E

]
σν

/√
1+η2

φ


τ

φ
(
Φ−1(β)

) − E
[

E
]
ν̄p

1+η2
− E

[
E

]
1+η2 Φ

−1(β)

E
[
E

]
σν

/√
1+η2


×

(
η2

)k−1 e−η
2/θ

Γ(k) θk
dη2

}
×

(
E
[
E

])b g (
1−E

[
E

])(1−b) g

B
(
1+b g , 1+ (1−b) g

) dE
[
E

]
, (14)

where the expression on the first line of the integrand is the normal density
implied by Equation 13, and the expression on the second line is the product
of the Gamma(k, θ

) and Beta(b, g
) densities. (Within these densities, Γ and

B represent the standard gamma and beta functions.)
Using quasi-Monte Carlo methods to evaluate integrals of this

sort, we found maximum-likelihood estimates of the parameter vector(
ν̄, σν, k, t , b, g

) for the dataset that excludes the outliers discussed in
the previous section. These are reported in Table 4. Of course, the raw
parameters can be a little difficult to parse directly. To aid in interpretation,
in Table 5, we transform the estimates in Table 4 to give a few more
intuitive quantities.

Before discussing these though, we first discuss how well the model
with literature noise fits. Begin by considering the limit where the param-
eter g approaches infinity, the parameter t approaches zero, the parameter
k is set to η2/2, and the parameter b is set to E

[
E

]. In this limit, there is no
literature level noise: E is always equal to a constant E[

E
] and H 2 is always

equal to a constant η2. In other words, we recover the no-literature-level-
noise model of the previous section.

This means that we can effectively nest our no-literature-level-noise
model within our with-literature-level-noise model with two limiting con-
straints. Hence, we can conduct a likelihood-ratio test to compare our two
models: twice the difference in likelihood should be asymptotically dis-
tributed χ2 with two degrees of freedom. This allows us to test the null
hypothesis that the with-noise model fits equally as well as the without-
noise model. The data overwhelming reject this null; the p-value for this
test (0.004) is reported at the bottom of Table 4. Adding the noise leads to a
better fit, which suggests that there is indeed significant cross-experiment
heterogeneity in threshold width and update strength.

Now, we move on to Table 5. Looking to the upper portion, we learn
about where signals tend to lie relative to the prior distribution. The me-
dian experiment has a signal that lies around the 63rd percentile of the prior
distribution. Such a signal is bad news to about one-third of subjects. Since
one standard deviation below the mean signal corresponds to roughly the
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Table 4: Maximum-Likelihood Estimates of Raw Structural Parameters

Parameter Estimate
The signal, N , is distributed N

(
ν̄,σ2

ν

).
ν̄ 0.336

(0.047)
σν 0.259

(0.046)
The variance of the threshold distribution,
H 2, is distributed Gamma(k, t

).
k 1.352

(0.660)
t 10.820

(8.402)
The expected update strength, E ,
is distributed Beta(b, g

).
b 0.012

(0.043)
g 20.443

(66.138)
Papers 21
Studies 71
Model comparison LR test
With literature-level noise
(Section 4.4.b)
fits better than

No literature-level noise
(Section 4.4.a)

p-value 0.004

NOTES. These are the maximum-likelihood estimates for the likelihood in Equa-
tion 14. The outliers discussed in Section 4.4.a are omitted from the sample. In
the limit where g →∞, t → 0, and k = η2/t , the model with literature-level noise
becomes the model without literature-level noise. Since the models are nested,
we can conduct a likelihood-ratio test to compare the fits of our two models.
Standard errors are in parentheses.
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Table 5: Selected Transformations of the Estimates in Table 4

Transformed parameter Estimate
Key signal realizations as percentiles
of the prior distribution
Φ

(
ν̄−σν

) 0.531
(0.028)

Φ
(
ν̄
) 0.632

(0.017)
Φ

(
ν̄+σν

) 0.724
(0.020)

Moments of the threshold width, H

E
[
H

] 3.494
(0.663)p

Var[H ] 1.564
(0.560)

Moments of the expected update strength, E
E
[
E

] 0.055
(0.109)p

Var[E] 0.073
(0.152)

Papers 21
Studies 71

NOTES. A few notes elucidate where these numbers come from. In the top
section, recall that Φ(·) is the cumulative distribution function for the stan-
dard normal. In the middle section, E[

H
] = E

[p
H2

]
. The (1/2)th moment of

a Gamma(k, t ) distribution is p
t Γ(k + 1/2)

/
Γ(k). In the bottom section, the

first and second moments of a Beta(b, g ) distribution are (1 + b g )
/

(2 + g ) and
(1+b g )(2+b g )

/(
(2+g )(3+g )

). All standard errors (in parentheses) are computed
via the delta method.
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50th percentile of the prior distribution, we can conclude that only about
15% of experiments have a signal that is bad news to the median subject.
And, since one standard deviation above the mean signal sits around the
72nd percentile of the prior distribution, we can conclude that even in ex-
periments with very high signals, there are still about a quarter of subjects
who interpret the signal as bad news.

Moving on to the middle portion, we see that the threshold distribution
is about 3.5 times wider than the prior distribution, on average. This makes
sense, as thresholds are rooted in preferences, while priors are rooted in in-
formation acquisition. Assuming all subjects are getting information from
similar sources, it makes sense that priors would be less dispersed. Look-
ing to cross-experiment heterogeneity, holding the threshold distribution
width to within one standard deviation around its mean, it can vary from
from about 2 to 5 times as wide as the prior distribution. So, there is signif-
icant cross-experiment heterogeneity in threshold width, as the likelihood
ratio test mentioned above has already shown.

Finally, looking to the bottom section, we see that the cross-experiment
mean expected update is 5.5%. Of course, there is a good deal of cross-
experiment heterogeneity and noise in the estimates, but it is clear from
the numbers that most experiments have an expected update strength well
below 25%. Looking back to the theory underpinning this paper, most
of it hinges on the expected update strength being small enough for our
approximation of the treatment effect to be a good one. The fact that our
maximum-likelihood estimates of the expected update strength are indeed
small provides an important demonstration of internal validity.

5 Survey Evidence on Current Intuitions
As shown in Section 4, researchers regularly run information experiments
in settings with low baseline take-up rates. This is the opposite of what
our model prescribes for researchers seeking to maximize treatment effects.
Our model suggests that, generally speaking, treatment effects are maxi-
mized for high baseline rates. This disparity may suggest that our theory’s
intuition may not be ex-ante obvious. However, there are many factors
that determine where we run experiments. As a result, we cannot be sure
if the ideas in our model, even if they are unpublished, are already known
by experts.

To answer this question, we measured experts’ intuitions of how base-
line rates predict treatment effects in information provision experiments.
In 2018, we surveyed attendees at the Behavioral Science and Policy Asso-
ciation Annual (bSPA) Conference. Attendees of this conference consist
of both academics and policymakers interested in interventions for behav-
ioral change.55 Our survey asked participants to read a scenario and answer
55. See https://behavioralpolicy.org/bspa-events/bspa-annual-conference-2018/ for de-
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Figure 6: Expert Beliefs: Would You Expect Higher Treatment Effect with
Low or High Baseline Rate?

three questions.56
The hypothetical scenario was about a policymaker who wants to run

an information-provision intervention to increase the number of women
who get breast cancer screenings (a binary decision for each woman). The
policymaker only has enough money to run the intervention in one of two
sites. The two sites are identical other than the baseline rate of women who
already get mammograms. Her only objective is to increase the number of
mammograms received (i.e., the magnitude of the treatment effect). The
first question asks about the site at which the policymaker should run the
information intervention. The second question is a free response that asks
why the subject gave their answer to the first question. Third, the survey
asks whether the subject is a policymaker or an academic and, if they are
an academic, their field. The survey was done in private, with paper and
pen, and placed into an envelope to ensure anonymity of responses. The
full text of the survey distributed at the BSPA can be found in Appendix B.

A large majority of responses are inconsistent with the intuition of our
model. 72 subjects filled out our survey. Figure 6 shows responses to the
first question. Only 13 of 72 (18%) said the policymaker should choose the
high baseline site, the answer consistent with our theory. 64% said the low
baseline site would be optimal, and 18% believe the baseline is immaterial
to the treatment effect. No subgroup of respondents, not psychologists,
economists, or policymakers, provide answers consistent with our model
with any regularity.

Further, no respondent provides an explanation for their answer that is
in line with our theory. The modal explanation when a subject chooses the
high baseline site is that people like doing what a majority of other people

tails.
56. Potential participants were recruited by a research assistant during a coffee break be-

tween conference sessions. Potential participants were only told it was a “survey” that
would take “a few minutes”. Only clarifying questions were answered. The research assis-
tant did not know the correct answer at the time of the survey. Participants filled out the
survey individually.
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are doing.57 Meanwhile, the modal explanation when the low baseline site
is chosen is, as one respondent succinctly put it, “There’s more women to
’switch’ from ’no’ to ’yes’.”

Though Section 4 suggests our model is first order in predicting the
outcome of an information experiment, the model’s intuition has not been
a part of our collective intuition. Very few policymakers and academics
specifically interested in behavioral-change interventions give answers in
line with our model, and zero provide an explanation related to the theory’s
intuition.

6 Practitioner’s Guide
The results from the theory and meta-analysis provide a number of poten-
tially useful insights for practitioners who may be considering using infor-
mation interventions to nudge people deciding between taking an action or
not. This section aims to summarize these insights.

First, our paper highlights the importance of attempting to identify
what baseline take-up will be in the absence of an information intervention.
In many settings, previous choices of similar agents can provide a bench-
mark.58 Armed with this knowledge, a practitioner can use our results
(highlighted in the next two insights) to assess whether using an informa-
tion intervention will improve take-up.

Second, as described in the previous sections, low baseline take-up en-
vironments are more likely to generate backfires.59 If a potential nudge is
similar to those that have been tested in the literature (with regard to how
their information content compares to agents’ prior beliefs), we estimate
that a baseline of 0.10 or below is likely to generate a backfire. To decrease
the likelihood of a backfire below 10%, we estimate the baseline rate should
be roughly higher than 0.50.

Third, settings in which many agents are expected to take-up (i.e., set-
tings with a high baseline) may be particularly ripe for information nudges
to have big positive impacts. Given our parameter estimates, the treatment
effect of the “typical” nudge is expected to have the largest positive treat-
ment effect at a baseline of 0.75.

57. These answers suggest some respondents might assume the information provided
would be social information (e.g., “X% of other women get mammograms”, though that
was not mentioned in the scenario). As a result, the number of people choosing the answer
consistent with our model might be an overestimate.
58. In Coffman, Featherstone, and Kessler (2017), we found the rate of accepting a job

offer at Teach For America is relatively stable year to year. Available data suggests the same
is true in many of the other outcomes analyzed by the experiments in our meta-analysis.
59. As mentioned previously, the baseline rate is the incidence rate of taking the desired

action absent the information that will be provided. This means that if the information is
provided through an email campaign, the correct baseline rate is from a control group who
would receive an email but not the information.
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These latter two results run counter to the standard intuitions revealed
by practitioners—they ran counter to our intuitions before writing this
paper—suggesting they may be the most important insights to heed. Im-
portantly, the failure of information interventions to encourage take-up of
an action in settings with low baselines does not imply that no nudge will
be effective there. It just indicates that information nudges are unlikely
to be helpful at encouraging a desired behavior. Consequently, practition-
ers may want to choose a different tool from their toolbox when in those
settings. Similarly, practitioners may want to think seriously about using
information nudges in settings with high baselines. While we did not ob-
serve many experiments with high baselines in the meta-analysis, our the-
ory and empirical results suggest that those settings may the perfect targets
for such information nudges.

Fourth, consistent with standard intuition, our model also predicts that
nudges that provide better news (i.e., nudges that provide information that
is higher in the agents’ prior belief distribution) will be less likely to have
a negative treatment effect (and any negative treatment effects will likely
be smaller in magnitude) and be more likely to have a positive treatment
effect (and any positive treatment effects will likely be larger in magnitude).
This means that a nudge that is exceedingly high in agents’ prior belief
distribution can be effective, even at low baselines. However, note that for
a nudge that provides truthful information to be that high in agents’ prior
belief distribution suggests the set of agents is incredibly pessimistic. Such
environments may be unlikely to arise in practice. Our structural analysis
estimated that the 95% confidence interval for the strength of the average
nudge in our data spanned from the 40th to the 95th percentile of agents’
priors, suggesting that nudges that are good news to everyone may be few
and far between.

Fifth, the previous result highlights the value of collecting belief infor-
mation from agents. While rarely done in practice, surveying agents about
their beliefs to assess where a particular nudge falls in the distribution of
agents’ priors would give the practitioner additional information about the
likelihood of success of that nudge.

Finally, our model can provide structure for considering results from
previous information interventions (e.g., all those performed by a “nudge
unit”). When faced with many null results or backfires, it could be natural
to assume information interventions do not work . But if these negative
and null effects are occurring at low baselines, our model would suggest
that the information may be working exactly how we would expect.

7 Conclusion
As nudges become more prominent in the academic literature and more
common as a policy tool, there is an enhanced interest in understanding
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why nudges work and when—or for whom—they will be successful (see,
e.g., Beshears, Choi, Laibson, Madrian, and Wang 2015). Central to this
exercise is developing models of these nudges that can give insight into the
underlyingmechanisms. In this paper, we introduce a theory of information
nudges that allows for Bayesian updating in a setting of binary choice.

Our model highlights that in these settings, the relevant question about
the sign and magnitude of the treatment effect is whether the information
nudge provides good news about taking the action to agents at the margin.
Our model additionally suggests that baseline take-up rate in the untreated
group can be a useful proxy for the beliefs of marginal agents. This al-
lows researchers and practitioners to infer the likely sign and magnitude of
a treatment effect arising from an information nudge even without infor-
mation on beliefs. In a meta-analysis of information experiments, we find
that the relationship between treatment effect size and baseline take-up
rate matched the pattern predicted by the theory, allowing us to rationalize
previously puzzling results from the literature.

Both the reduced-form and the structural meta-analysis provide insights
for practitioners. First, information nudges may backfire on populations
with low baseline take-up. Second, the positive effect of an information
intervention is maximized for baseline take-up around 0.75. Given that the
median baseline in the experiments we found for our meta-analysis is 0.34,
and given that about a third of baselines are below 0.23, these lessons do
not appear to have entered our collective wisdom yet.

Though our meta-analysis was sharply focused on a specific type of in-
formation intervention, other nudges may work partially through informa-
tion channels. For example, reminders, which are often assumed to work
through inattention (e.g., Taubinsky 2014), have been shown to affect be-
liefs about the probability others take a certain action (see, e.g., Del Carpio
2013) and so might also work through an information channel. To the ex-
tent that information is active, the main insights of our model would still
apply. We hope future work models other impactful nudges to understand
when they are helpful, how to maximize their efficacy, and when they may
backfire.60 Modeling these nudges can unleash their full potential.
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A Meta-Analysis Appendix
A.1 Selection of papers
At the end of this section of the appendix, we have included two large-form
figures. The first is a copy of the email we used to elicit suggested papers
for inclusion in our meta-analysis. The second is a table that goes through
our rationale for either including or excluding each paper we recieved.

A.2 Reduced-Form Meta-Analysis
To see all estimates of the three line analysis, with other break points, we
have included Table A.1 at the end of this section of the appendix.

A.3 The model of Section 4.4.a: no literature-level noise
A.3.a Theoretical derivation of the distribution of τ
Here, we restate and prove the result from Section 4.4.a.

Result. For the parametricmodel of this section, when the realization
of (N ,B) is (ν,β), the treatment effect is given by

τβ,ν =φ
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Since N is distributed normally with mean ν̄ and variance σ2
ν, this

means that, conditional on the baseline, B , having realization β, the
treatment effect is normally distributed, with mean and standard devi-
ation given by
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From this, it almost immediately follows that the conditional-on-
baseline probability of a positive treatment effect is given by
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Proof. Integrals 110 and 111 in Owen (1980) are equivalent to∫∞
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(These integrals can also be derived by the completing the square
in the exponents of the integrands.) Using the first integral (with
a =−Φ−1(β)

√
1+η2 and b = η), we can compute
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The treatment effect is given by
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Plugging in our integrals from above immediately yields the treatment ef-
fect, τβ,ν, in terms of the signal realization, ν.

Since ν is N
(
ν̄,σ2

ν

) and τ is a linear function of ν, we know τ

must be normally distributed. The expressions for E
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Finally, given the previous paragraph, the conditional-on-baseline

probability of a positive treatment effect can be written

Pr
{
τB ,N > 0

∣∣ B =β
} = 1−Φ

− E
[
τB ,N

∣∣B =β
]√

Var
[
τB ,N

∣∣B =β
]

 .

The symmetry of the normal distribution shows this is equivalent to the
expression in the statement of the result.

A.3.b Technical analysis of outliers
To diagnose which studies are causing the problem, we consider an ap-
proach inspired by Belsley, Kuh, and Welsch (2005), looking at the lever-
age that each data point has on parameter estimates. For each study in our
sample, we estimate the regression without it and compute how far such
leave-one-out estimates are from the full-sample estimates, normalizing by
the full-sample estimates’ standard errors. Using the parameter a as an
example then, our leverage measure for study i in the sample is

ℓi (a) ≡
∣∣â − â(−i )

∣∣
σ̂a

,

where â and σ̂a are the full-sample estimate of a and its standard error,
and â(−i ) is the estimate of a when study i is left out from the sample. The
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leverage measures ℓi (b) and ℓi (σζ) are defined analogously. From there, we
define each observation’s leverage, ℓi , to be the maximum of ℓi (a), ℓi (b),
and ℓi (σζ). For our regression, the four largest values of ℓi are 1.67, 1.14,
1.06, and 0.98. The next highest value is 0.37. The mean of the four largest
ℓi is 13 times larger than the mean of the rest. On the basis of these lever-
age numbers, we will treat the four studies with the largest ℓi values as
outliers. Essentially, if a study’s inclusion moves a parameter estimate by
more than about one standard error, we exclude it. Note that this more
sophisticated method chooses the same outliers as the visual-inspection
method discussed in the main text.

Oncewe have identified the outliers, it is worth testing the no-literature-
level-noise model’s assumption of homoskedasticity in the regression of
Equation 13. In the full sample, if we run a Breusch–Pagan test (Breusch and
Pagan 1979; Koenker 1981; Wooldridge 2019) on our full-sample regression,
the null hypothesis of homoskedasticity is overwhelmingly rejected (p =
0.003). If we remove the outliers, the same test fails to reject the null at any
conventional level of significance (p = 0.51).

A.4 Long-format figures and tables

Table A.1: Three-line regressions
Testing down-up-down relationship

Break points
Lower Upper β1 β2 β3 RSS†

0.07 0.50 -0.371 0.153 -0.053 0.243
s.e.: (0.339) (0.057) (0.136)

p-value: 0.00 0.01 0.41
Notes: Reports OLS estimates of three-line fits of the data, for var-
ious break points indicated in first two columns. Each set of two
rows is a new regression, reporting the estimates first, then the
p-values. β1 is the estimate for the first line, β2 for the second,
and β3 for the third. Standard errors are the standard deviation of
estimates from hierarchical bootstrap described in Section 4.3.a
modified as described in Section 4.3.b, footnote 47. Note the
boot-strapped distributions of estimates are skewed, left-skewed
for (I) and (III), and right-skewed for (II). “p-value” reports the
percentage of bootstrapped estimates that are inconsistent with
the model’s prediction: i.e. non-negative for (I) and (III) and
non-positive for (II). †Residual sum of squares is the average RSS
from the bootstrap procedure described in Section 4.3.b. When
values are equal to a break point, and are thus used to estimate
the line below and the line above, the RSS is adjusted such that,
for each datum on a break point, half of its squared residual for
each the lower line and the upper line is added to the sum.

continued on next page
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Table A.1 – continued from previous page
Break points

Lower Upper β1 β2 β3 RSS†

0.09 0.50 -0.167 0.204 -0.053 0.241
s.e.: (0.066) (0.096) (.136)

p-value: 0.04 0.03 0.41
0.12 0.50 -0.242 0.197 -0.053 0.241

s.e.: (0.101) (0.162) (0.136)
p-value: 0.05 0.16 0.41

0.23 0.50 0.502 0.392 -0.053 0.247
s.e.: (0.245) (0.207) (0.136)

p-value: 0.94 0.28 0.41
0.07 0.60 -0.371 0.124 -0.656 0.241

s.e.: (0.339) (0.044) (0.40)
p-value: 0.00 0.00 0.20

0.09 0.60 -0.167 0.145 -0.656 0.240
s.e.: (0.066) (0.066) (0.40)

p-value: 0.04 0.02 0.20
0.12 0.60 -0.242 0.116 -0.656 0.239

s.e.: (0.101) (0.095) (0.40)
p-value: 0.05 0.14 0.20

0.23 0.60 0.502 0.210 -0.656 0.245
s.e.: (0.245) (0.111) (0.40)

p-value: 0.94 0.25 0.20
0.07 0.70 -0.371 0.162 0.360 0.239

Notes: Reports OLS estimates of three-line fits of the data, for var-
ious break points indicated in first two columns. Each set of two
rows is a new regression, reporting the estimates first, then the
p-values. β1 is the estimate for the first line, β2 for the second,
and β3 for the third. Standard errors are the standard deviation of
estimates from hierarchical bootstrap described in Section 4.3.a
modified as described in Section 4.3.b, footnote 47. Note the
boot-strapped distributions of estimates are skewed, left-skewed
for (I) and (III), and right-skewed for (II). “p-value” reports the
percentage of bootstrapped estimates that are inconsistent with
the model’s prediction: i.e. non-negative for (I) and (III) and
non-positive for (II). †Residual sum of squares is the average RSS
from the bootstrap procedure described in Section 4.3.b. When
values are equal to a break point, and are thus used to estimate
the line below and the line above, the RSS is adjusted such that,
for each datum on a break point, half of its squared residual for
each the lower line and the upper line is added to the sum.

continued on next page
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Table A.1 – continued from previous page
Break points

Lower Upper β1 β2 β3 RSS†

s.e.: (0.339) (0.033) (0.541)
p-value: 0.00 0.00 0.58

0.09 0.70 -0.167 0.189 0.360 0.237
s.e.: (0.066) (0.046) (0.541)

p-value: 0.04 0.00 0.58
0.12 0.70 -0.242 0.184 0.360 0.238

s.e.: (0.101) (0.061) (0.541)
p-value: 0.05 0.01 0.58

0.23 0.70 0.502 0.245 0.360 0.243
s.e.: (0.245) (0.068) (0.541)

p-value: 0.94 0.02 0.58
0.07 0.73 -0.371 0.121 0.037 0.257

s.e.: (0.339) (0.026) (1.850)
p-value: 0.04 0.00 0.49

0.09 0.73 -0.167 0.130 0.037 0.256
s.e.: (0.066) (0.034) (1.850)

p-value: 0.04 0.00 0.49
0.12 0.73 -0.242 0.116 0.037 0.256

s.e.: (0.101) (0.042) (1.850)
p-value: 0.05 0.01 0.49

0.23 0.73 0.502 0.155 0.037 0.262
s.e.: (0.245) (0.045) (1.850)

Notes: Reports OLS estimates of three-line fits of the data, for var-
ious break points indicated in first two columns. Each set of two
rows is a new regression, reporting the estimates first, then the
p-values. β1 is the estimate for the first line, β2 for the second,
and β3 for the third. Standard errors are the standard deviation of
estimates from hierarchical bootstrap described in Section 4.3.a
modified as described in Section 4.3.b, footnote 47. Note the
boot-strapped distributions of estimates are skewed, left-skewed
for (I) and (III), and right-skewed for (II). “p-value” reports the
percentage of bootstrapped estimates that are inconsistent with
the model’s prediction: i.e. non-negative for (I) and (III) and
non-positive for (II). †Residual sum of squares is the average RSS
from the bootstrap procedure described in Section 4.3.b. When
values are equal to a break point, and are thus used to estimate
the line below and the line above, the RSS is adjusted such that,
for each datum on a break point, half of its squared residual for
each the lower line and the upper line is added to the sum.

continued on next page
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Table A.1 – continued from previous page
Break points

Lower Upper β1 β2 β3 RSS†

p-value: 0.94 0.02 0.49
Notes: Reports OLS estimates of three-line fits of the data, for var-
ious break points indicated in first two columns. Each set of two
rows is a new regression, reporting the estimates first, then the
p-values. β1 is the estimate for the first line, β2 for the second,
and β3 for the third. Standard errors are the standard deviation of
estimates from hierarchical bootstrap described in Section 4.3.a
modified as described in Section 4.3.b, footnote 47. Note the
boot-strapped distributions of estimates are skewed, left-skewed
for (I) and (III), and right-skewed for (II). “p-value” reports the
percentage of bootstrapped estimates that are inconsistent with
the model’s prediction: i.e. non-negative for (I) and (III) and
non-positive for (II). †Residual sum of squares is the average RSS
from the bootstrap procedure described in Section 4.3.b. When
values are equal to a break point, and are thus used to estimate
the line below and the line above, the RSS is adjusted such that,
for each datum on a break point, half of its squared residual for
each the lower line and the upper line is added to the sum.
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2/5/2018 Gmail - Information Experiments (including file drawer)

https://mail.google.com/mail/u/0/?ui=2&ik=9ed2992f11&jsver=RIdPbm7drEs.en.&view=pt&msg=1517d864979245db&q=in%3Asent%20%22Information%20Expe… 1/2

Judd Kessler <judd.kessler@gmail.com>

Information Experiments (including file drawer) 

Judd Kessler <judd.kessler@wharton.upenn.edu> Mon, Dec 7, 2015 at 12:38 PM
To: esa-discuss@googlegroups.com

Hello all,

Lucas Coffman, Clayton Featherstone and I are looking for experimental papers from the lab or field that meet the following
two criteria:

1. At least one experimental treatment is attempting to influence a binary action by providing truthful information to subjects
(e.g. telling subjects the % of others who take an action, telling subjects the benefits of taking a certain action, etc.). 

2. The paper reports the rate of taking the binary action in the control group, the treatment effect, and the standard error of
the treatment effect (or these can be imputed).

In particular, we are looking for papers that provide information as a “nudge” that might lead subjects to update their beliefs.
(Note: we are not looking for herding or cascade experiments.) The paper does not need to be published — in fact, we are
eager to see unpublished manuscripts and manuscripts with null results. If you are unsure about whether to send a paper,
please do so.

Papers we have already identified are listed below.

Thanks in advance,

Lucas Coffman, Clayton Featherstone and Judd Kessler

Papers already identified:

Allcott, Hunt and Dmitry Taubinsky. 2015. "Evaluating Behaviorally-Motivated Policy: Experimental Evidence from the
Lightbulb Market." American Economic Review, 105(8):2501-2538.

Avitabile, Ciro, and Rafael E. De Hoyos Navarro. 2015. "The Heterogeneous Effect of Information on Student Performance:
Evidence from a Randomized Control Trial in Mexico." Working Paper.

Beshears, John, James J. Choi, David Laibson, Brigitte C. Madrian, and Katherine L.  Milkman. 2015. "The effect of
providing peer information on retirement savings decisions.” The Journal of Finance, 70(3): 1161-1201.

Bettinger, Eric P, Bridget Terry Long, Philip Oreopoulos, and Lisa Sanbonmatsu. 2012. “The role of application assistance
and information in college decisions: Results from the H&R Block fafsa experiment.” The Quarterly Journal of Economics,
127(3): 1205–1242.

Bhargava, Saurabh, and Dayanand Manoli. 2015. "Psychological Frictions and the Incomplete Take-Up of Social Benefits:
Evidence from an IRS Field Experiment." American Economic Review, 105(11): 3489-3529.

Cai, Hongbin, Yuyu Chen, and Hanming Fan. 2009. "Observational Learning: Evidence from a Randomized Natural Field
Experiment." American Economic Review, 99(3): 864-82.

Clark, Robert L., Jennifer A. Maki, and Melinda Sandler Morrill. 2014. "Can Simple Informational Nudges Increase Employee
Participation in a 401 (k) Plan?" Southern Economic Journal, 80(3): 677-701.

Cialdini, Robert, Linda Demaine, Brad Sagarin, Daniel Barrett, Kelton Rhoads, and Patricia Winter. 2006. “Managing Social
Norms for Persuasive Impact.” Social Influence, 1(1): 3-15. 

Coffman, Lucas C., Clayton R. Featherstone, and Judd B. Kessler. 2014. “Can Social Information Affect What Job You
Choose and Keep?” Working Paper.

Del Carpio, Lucia. 2014. "Are the Neighbors Cheating? Evidence From a Social Norm Experiment on Property Taxes in
Peru.” Working Paper.
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Fellner, Gerlinde, Rupert Sausgruber, and Christian Traxler. 2013. “Testing enforcement strategies in the field: Threat, moral
appeal and social information.” Journal of the European Economic Association, 11(3): 634-660.

Frey, Bruno S, and Stephan Meier. 2004. “Social comparisons and pro-social behavior: Testing “conditional cooperation” in a
field experiment.” American Economic Review, 94 (5): 1717–1722.

Goldstein, Noah J, Robert B Cialdini, and Vladas Griskevicius. 2008. “A room with a viewpoint: Using social norms to
motivate environmental conservation in hotels.” Journal of Consumer Research, 35(3): 472–482.

Hallsworth, Michael, John A. List, Robert D. Metcalfe, Ivo Vlaev. 2014. “The Behavioralist As Tax Collector: Using Natural
Field Experiments to Enhance Tax Compliance.” Working Paper.

Hastings, Justine S., and Jeffrey M. Weinstein. 2008. "Information, School Choice, and Academic Achievement: Evidence
from Two Experiments." The Quarterly Journal of Economics 123(4): 1373-1414.

Hastings, Justine, Christopher A. Neilson, and Seth D. Zimmerman. 2015. “The effects of earnings disclosure on college
enrollment decisions.” Working Paper.

Jensen, Robert. 2010. “The (perceived) returns to education and the demand for schooling.” The Quarterly Journal of
Economics, 125(2): 515–548.

Krupka, Erin and Roberto A. Weber. 2009. “The Focusing and Informational Effects of Norms on Pro-Social Behavior.”
Journal of Economic Psychology, 30: 307-320.

Liebman, Jeffrey B., and Erzo FP Luttmer. 2015. “Would People Behave Differently If They Better Understood Social
Security? Evidence from a Field Experiment.” American Economic Journal: Economic Policy, 7(1): 275-99.

--
Judd Benjamin Kessler 
Assistant Professor, Department of Business Economics and Public Policy 
The Wharton School at the University of Pennsylvania 
http://assets.wharton.upenn.edu/~juddk/
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Paper Included
Reason for 
Exclusion Further Explanation Source

Allcott, H. and Taubinsky, D., 2015. 
Evaluating behaviorally motivated policy: 
experimental evidence from the lightbulb 
market. The American Economic Review , 
105(8), pp.2501-2538.

Yes Initial Search

Andreoni, J. and Mylovanov, T., 2012. 
Diverging opinions. American Economic 
Journal: Microeconomics , 4(1), pp.209-
232.

No Outcome is not 
binary

ESA 
Response

Avitabile, Ciro, and Rafael E. De Hoyos 
Navarro. 2015. The Heterogeneous Effect 
of Information on Student Performance: 
Evidence from a Randomized Control Trial 
in Mexico. World Bank Working Paper .

Yes Initial Search

Banerjee, R., 2016. Corruption, norm 
violation and decay in social capital. 
Journal of Public Economics , 137, pp.14-
27.

No Outcome is not 
binary

ESA 
Response

Bao, J. and Ho, B., 2015. Heterogeneous 
effects of informational nudges on pro-social 
behavior. The BE Journal of Economic 
Analysis & Policy, 15(4), pp.1619-1655.

No
Not an empirical 
paper, only 
theory.

ESA 
Response

Beshears, J., Choi, J.J., Laibson, D., 
Madrian, B.C. and Milkman, K.L., 2015. 
The effect of providing peer information on 
retirement savings decisions. The Journal 
of Finance, 70(3), pp.1161-1201.

Yes Initial Search

Bettinger, E.P., Long, B.T., Oreopoulos, 
P. and Sanbonmatsu, L., 2012. The role of 
application assistance and information in 
college decisions: Results from the H&R 
Block FAFSA experiment. The Quarterly 
Journal of Economics , 127 (3), pp.1205-
1242.

Yes Initial Search

Bhargava, S. and Manoli, D., 2015. 
Psychological frictions and the incomplete 
take-up of social benefits: Evidence from an 
IRS field experiment. The American 
Economic Review , 105 (11), pp.3489-3529.

Yes Initial Search

Brown, M., Trautmann, S.T. and Vlahu, 
R., 2016. Understanding bank-run 
contagion. Management Science.

Yes
ESA 
Response

Cai, H., Chen, Y. and Fang, H., 2009. 
Observational learning: Evidence from a 
randomized natural field experiment. The 
American Economic Review , 99 (3), pp.864-
882.

Yes Initial Search
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Caplin, A. and Martin, D.J., 
2012. Defaults and attention: The drop out 
effect  (No. w17988). National Bureau of 
Economic Research.

No

Not an 
information 
provision 
experiment

There is no zero 
information control group.

ESA 
Response

Card, D., Mas, A., Moretti, E. and Saez, 
E., 2012. Inequality at work: The effect of 
peer salaries on job satisfaction. The 
American Economic Review, 102(6), 
pp.2981-3003.

No
Outcomes are 
hypothetical Initial Search

Chen, Y., Harper, F.M., Konstan, J. and 
Xin Li, S., 2010. Social comparisons and 
contributions to online communities: A 
field experiment on movielens. The 
American economic review , 100 (4), 
pp.1358-1398.

No
No main 
outcome is 
binary.

ESA 
Response

Cialdini, R.B., Demaine, L.J., Sagarin, 
B.J., Barrett, D.W., Rhoads, K. and 
Winter, P.L., 2006. Managing social norms 
for persuasive impact. Social 
influence, 1 (1), pp.3-15.

No

Not an 
information 
provision 
experiment

There is no zero 
information control group. Initial Search

Clark, R.L., Maki, J.A. and Morrill, M.S., 
2014. Can Simple Informational Nudges 
Increase Employee Participation in a 401 (k) 
Plan?. Southern Economic Journal , 80 (3), 
pp.677-701.

Yes Initial Search

Coffman, L.C., Featherstone, C.R. and 
Kessler, J.B., 2017. Can Social Information 
Affect What Job You Choose and 
Keep?. American Economic Journal: 
Applied Economics , 9 (1), pp.96-117.

Yes Initial Search

Cooper, D.J. and Kagel, J.H., 2016. A 
failure to communicate: an experimental 
investigation of the effects of advice on 
strategic play. European Economic 
Review , 82 , pp.24-45.

No

Not an 
information 
provision 
experiment

Treatment is advice; might 
be interpreted differently by 
different subjects

ESA 
Response

d’Adda, G., Capraro, V. and Tavoni, M., 
2017. Push, don’t nudge: Behavioral 
spillovers and policy 
instruments. Economics Letters , 154 , pp.92-
95.

No

Not an 
information 
provision 
experiment

Behavior in second round 
could be result of 
information or first round.

ESA 
Response

Damgaard, M.T. and Gravert, C., 2017. 
Now or never! The effect of deadlines on 
charitable giving: Evidence from two natural 
field experiments. Journal of Behavioral 
and Experimental Economics , 66 , pp.78-
87.

No Not information 
intervention

ESA 
Response

Damgaard, M.T. and Gravert, C., 2016. The 
hidden costs of nudging: Experimental 
evidence from reminders in fundraising. 
Working paper .

No Not information 
intervention

ESA 
Response
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Del Carpio, L., 2013. Are the Neighbors 
Cheating? Evidence from a Social Norm 
Experiment on Property Taxes in Peru. 
Working paper .

Yes Initial Search

Dengler-Roscher, K., Estner, C. and 
Roscher, T., 2015. Nudging Academics to 
Didactic Training. Working paper .

Yes
ESA 
Response

Fellner, G., Sausgruber, R. and Traxler, C., 
2013. Testing enforcement strategies in the 
field: Threat, moral appeal and social 
information. Journal of the European 
Economic Association , 11 (3), pp.634-660.

Yes Initial Search

Frey, B.S. and Meier, S., 2004. Social 
comparisons and pro-social behavior: 
Testing" conditional cooperation" in a field 
experiment. The American Economic 
Review , 94 (5), pp.1717-1722.

Yes Initial Search

Frydman, C. and Camerer, C., 2016. Neural 
evidence of regret and its implications for 
investor behavior. The Review of Financial 
Studies , 29 (11), pp.3108-3139.

No
Information 
provided is too 
informative.

Information is the value of 
a tradeable asset

ESA 
Response

Frydman, C. and Rangel, A., 2014. 
Debiasing the disposition effect by reducing 
the saliency of information about a stock's 
purchase price. Journal of economic 
behavior & organization , 107 , pp.541-552.

No Not information 
intervention

Varies salience rather than 
information

ESA 
Response

Goldstein, N.J., Cialdini, R.B. and 
Griskevicius, V., 2008. A room with a 
viewpoint: Using social norms to motivate 
environmental conservation in 
hotels. Journal of consumer 
Research , 35 (3), pp.472-482.

Yes Initial Search

Guillén, P. and Hakimov, R., 2015. How 
to get truthful reporting in matching 
markets: A field experiment  (No. SP II 2015-
208). WZB Discussion Paper.

No
Information 
provided is too 
informative.

Provide information on 
dominant strategy

ESA 
Response

Guillen, P. and Hing, A., 2014. Lying 
through their teeth: Third party advice and 
truth telling in a strategy proof 
mechanism. European Economic 
Review , 70 , pp.178-185.

No
Not information 
intervention

ESA 
Response

Hallsworth, M., List, J.A., Metcalfe, R.D. 
and Vlaev, I., 2017. The behavioralist as tax 
collector: Using natural field experiments to 
enhance tax compliance. Journal of Public 
Economics , 148 , pp.14-31.

Yes Initial Search
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Hastings, J., Neilson, C.A. and 
Zimmerman, S.D., 2015. The effects of 
earnings disclosure on college enrollment 
decisions (No. w21300). National Bureau of 
Economic Research.

Yes Initial Search

Hastings, J.S. and Weinstein, J.M., 2008. 
Information, school choice, and academic 
achievement: Evidence from two 
experiments. The Quarterly journal of 
economics , 123 (4), pp.1373-1414.

Yes Initial Search

Ho, B., Taber, J., Poe, G. and Bento, A., 
2016. The effects of moral licensing and 
moral cleansing in contingent valuation and 
laboratory experiments on the demand to 
reduce externalities. Environmental and 
Resource Economics , 64 (2), pp.317-340.

No Outcome is not 
binary

ESA 
Response

Jensen, R., 2010. The (perceived) returns to 
education and the demand for 
schooling. The Quarterly Journal of 
Economics , 125 (2), pp.515-548.

Yes Initial Search

Karadja, M., Mollerstrom, J. and Seim, D., 
2017. Richer (and holier) than thou? The 
effect of relative income improvements on 
demand for redistribution. Review of 
Economics and Statistics .

No
Outcomes are 
hypothetical Initial Search

Klinowski, D., 2015. Reluctant donors and 
their reactions to social information. 
Working paper .

No
Not information 
intervention

The utility of taking the 
action is not monotonic in 
the signal; it is U-shaped.

ESA 
Response

Krupka, E. and Weber, R.A., 2009. The 
focusing and informational effects of norms 
on pro-social behavior. Journal of 
Economic Psychology, 30 (3), pp.307-320.

Yes Initial Search

Kuziemko, I., Norton, M.I., Saez, E. and 
Stantcheva, S., 2015. How elastic are 
preferences for redistribution? Evidence from 
randomized survey experiments. The 
American Economic Review , 105 (4), 
pp.1478-1508.

No Outcomes are 
hypothetical

Initial Search

Lefgren, L.J., Sims, D.P. and Stoddard, 
O.B., 2016. Effort, luck, and voting for 
redistribution. Journal of Public 
Economics , 143 , pp.89-97.

No Outcome is not 
binary

ESA 
Response

Liebman, J.B. and Luttmer, E.F., 2015. 
Would people behave differently if they 
better understood social security? Evidence 
from a field experiment. American 
Economic Journal: Economic Policy, 7(1), 
pp.275-299.

Yes Initial Search

Lupia, A. and McCubbins, M.D., 1998. 
The democratic dilemma. No

Information 
provided is too 
informative.

ESA 
Response
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Moreno, Bernardo, Maria del Pino Ramos-
Rosa, and Ismael Rodriguez-Lara. 2015. 
Conformity, information and truthful 
voting. Working paper .

No Not information 
intervention

ESA 
Response

Nguyen, Trang. 2008. Information, Role 
Models, and Perceived Returns to 
Education: Experimental Evidence from 
Madagascar. Working paper

No Outcome is not 
binary

Initial Search

Preece, J. and Stoddard, O., 2015. Why 
women don’t run: Experimental evidence on 
gender differences in political competition 
aversion. Journal of Economic Behavior & 
Organization , 117 , pp.296-308.

No Not information 
intervention

ESA 
Response

Servátka, M., 2009. Separating reputation, 
social influence, and identification effects in 
a dictator game. European Economic 
Review , 53 (2), pp.197-209.

No Outcome is not 
binary

ESA 
Response

Tasoff, J. and Letzler, R., 2014. Everyone 
believes in redemption: Nudges and 
overoptimism in costly task 
completion. Journal of Economic Behavior 
& Organization , 107 , pp.107-122.

Yes
ESA 
Response

Wei, Shanshan, 2015. Social Influence in 
Charitable Giving. Working paper .

Yes ESA 
Response

Zhu, Min, 2015. Experience Transmission: 
Truth-telling Adoption in Matching. 
Working paper .

No Outcome is not 
binary

ESA 
Response

Notes: The Included column indicates whether the paper is one of the 22 papers that we include in our analysis. The 
Source column indicates whether the paper was one we found on our own "Initial Search" or one that was suggested to us 
in response to our email to the ESA listserve "ESA Response" (see details on the ESA listserve email below). There are 
five papers that we identified in our initial search that we ended up not including in our analysis. We initially considered 
including Card et al. (2012), Karadja et al. (2014), and Kuziemko et al. (2015) until we decided to limit our analysis to 
outcomes that were actions (e.g., rather than outcomes that were beliefs or responses to hypothetical questions). We had 
planned to include Nguyen (2008) until we recognized that the outcome variable was not binary. We had planned to 
include Cialdini et al. (2006) until we recognized that it did not have a no-information control group.
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B Survey on Current Intuitions Appendix
Here is a copy of the survey we gave at the BSPA.

1. A policymaker friend wants to encourage older women to get mammograms. To this end, she plans to run a campaign to 
give accurate, quantitative information on the value of breast cancer screenings. Her research suggests most women who 
learn this information will increase their perceived value of a mammogram. She has enough money to run the information 
campaign in one of two sites, which are identical other than the number of women who got a mammogram last year.  
 
If she simply wants to maximize the chance that her campaign increases the number of women getting a mammogram 
this year, what is her best approach? (select one) 
 

☐ Do the information campaign at Site 1 where 10% of women got a mammogram last year. 
☐ Do the information campaign at Site 2 where 75% of women got a mammogram last year. 
☐ Do the information campaign at either site; it is equally likely to work at both sites. 

 
2. (Optional) Why did you select the district you did? (free response) 

 
 

 
 
 

 
 

3. How would you describe yourself? (select all that apply) 
☐ Policymaker 
☐ Psychologist 
☐ Economist 
☐ Political Scientist 
☐ Sociologist 
☐ Other Academic: ________________________ 
☐ Other: ________________________ 

 
 

1. A policymaker friend wants to encourage older women to get mammograms. To this end, she plans to run a campaign to 
give accurate, quantitative information on the value of breast cancer screenings. Her research suggests most women who 
learn this information will increase their perceived value of a mammogram. She has enough money to run the information 
campaign in one of two sites, which are identical other than the number of women who got a mammogram last year.  
 
If she simply wants to maximize the chance that her campaign increases the number of women getting a mammogram 
this year, what is her best approach? (select one) 
 

☐ Do the information campaign at Site 1 where 10% of women got a mammogram last year. 
☐ Do the information campaign at Site 2 where 75% of women got a mammogram last year. 
☐ Do the information campaign at either site; it is equally likely to work at both sites. 

 
 

2. (Optional) Why did you select the district you did? (free response) 
 
 
 
 
 
 
 

3. How would you describe yourself? (select all that apply) 
☐ Policymaker 
☐ Psychologist 
☐ Economist 
☐ Political Scientist 
☐ Sociologist 
☐ Other Academic: ________________________ 
☐ Other: ________________________ 

Figure B.1: Survey distributed at Behavioral Science and Policy Association
Annual Conference 2018

Appendix 14



C Theory Appendix
C.1 Individual-level model
In this section, we will show how utility-relevant parameters besides the
one being signaled can be incorporated into the model from the main text.
C.1.a The general model
The agent has a net-utility function, u, that depends on the realization of a
random scalar, X , and a random vector, Z . It captures the utility of taking
up minus the utility of not taking up. Untreated, the agent’s net utility is
E
[
u(X , Z )

], and she takes up if and only if that prior expected utility weakly
exceeds zero. If the agent is exposed to the realization, ν, of the random
variable N—that is, treated—her net utility is updated to E

[
u(X , Z )

∣∣N = ν
],

and she takes up if and only if that posterior expected utility weakly exceeds
zero.

Nothing in the previous paragraph specifically captures the idea that N
is a noisy signal about X . The following convexity assumption captures part
of this intuition.

Assumption C.1. The posterior expected utility lies between the prior ex-
pected utility and the expected utility of an agent who believes that X is exactly
equal to the signal, ν. That is, for some γ ∈ [0,1],

E
[
u(X , Z )

∣∣N = ν
] = (1−γ) E

[
u(X , Z )

]+γ E
[
u(X , Z )

∣∣ X = ν
]

.

holds.

Note that γ need not be the same for every realization of the signal, ν. In
other words, we are not assuming the posterior expected utility is linear
in E

[
u(X , Z )

∣∣ X = ν
]. Our condition is closer to the updating towards the sig-

nal condition of Chambers and Healy (2012) than the posterior linearity of
Diaconis and Ylvisaker (1979). Intuitively, treatment causes the agent’s ex-
pected utility to update towards what it would be if the signal were simply
a revelation of X , but not all the way there.
C.1.b Excising the nuisance parameters
The vector Z contains things that are utility-relevant but not signaled by
N . In other words, Z can be thought of as a vector of nuisance parame-
ters. We can greatly limit the role of Z in our model through the following
conditional-independence assumption.

Assumption C.2. Conditional on X , the nuisance-parameter vector, Z , and
the signal, N , are independent. That is, Z ⊥ N | X .
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Intuitively, this simply means that to the agent who knows X with certainty,
the signal, N , contains no more utility-relevant information, which is sen-
sible is N is just a noisy signal of X . This assumption allows us to derive
the following effective net utility by marginalizing out Z :

v(x) ≡ E
[
u(X , Z )

∣∣ X = x
]

,

= E
[
u(X , Z )

∣∣ X = x, N = ν
]

.

The first line is a definition; the equivalence on the second is a direct con-
sequence of Assumption C.2. Now, we can write our posterior and prior
expected utilities as

E
[
u(X , Z )

∣∣N = ν
]= E

[
v(X )

∣∣N = ν
] and

E
[
u(X , Z )

]= E
[
v(X )

]
.

These expressions follow directly from the law of iterated expectations.
From here, we can develop the theory in the same way as Section 3.1.

C.2 Experiment-level model
C.2.a The formal setup
An experiment is a population of agents being potentially exposed to a com-
mon information nudge, ν. As such, we consider the threshold, belief, and
update strength of an agent that is uniformly and randomly selected from
the population. We model this agent with the random variable (Θ, M ,E).

Formally, we consider a random vector on the outcome space ΩΘME ≡
ΩΘ×ΩM ×ΩE , where ΩE = [0,1] and ΩΘ =ΩM = (a,b) for some (potentially
infinite) constants b > a.1a When we write Ω with two superscripts, we
mean the product of the corresponding outcome spaces; e.g., ΩME =ΩM ×
ΩE . The event space is B

(
ΩΘME

), the Borel algebra associated with ΩΘME .
On the measurable space (

ΩΘME , B
(
ΩΘME

)), the random vector (Θ, M ,E)—
whose components represent the threshold, prior, and update strength of a
randomly drawn member of the population—is the identity function.

Given this setup, we characterize an experiment by its nudge signal
realization, ν, and its joint measure, F ΘME . The probability of (Θ, M ,E)
lying in any C ∈B

(
ΩΘME

) is given by the Lebesgue integral

Pr{ (Θ, M ,E) ∈C
}=Ñ

C
dF ΘME .

The joint distribution function, F ΘME (θ,µ,ε), equals the probability that
(Θ, M ,E) lies in the set (a,θ]×(a,µ]×[0,ε]. Note the slight abuse of notation:
when the argument of F is a set, it should be treated as a measure; when its
argument is a point, it should be treated as the corresponding distribution
function.
1a. Setting ΩM and ΩΘ equal to the open set (a,b)—rather than the closed set [a,b]—

prevents the potential complication of infinite realizations of M and Θ. When a or b is
finite, it also prevents realizations of M and Θ from taking on those finite boundary values.
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C.2.b Baseline, treatment effect, and the random vector (Θ, M ,E)

The fraction of agents who take-up without being nudged—i.e., the base-
line—is defined by

β≡Pr{Θ≤ M
}
, (C.17)

while the fraction who take-up when nudged equals Pr{Θ≤ M +E (ν−M)
}.

(The inequalities are weak because we assume the agent takes-up when her
belief equals her threshold.) We define the exact treatment effect, τe , to
be the change in the take-up rate caused by the nudge, that is

τe ≡ Pr{M <Θ≤ M +E (ν−M)
} − Pr{M +E (ν−M) <Θ≤ M

}
. (C.18)

The two probabilities represent agents who are nudged into and out of take-
up, respectively. Note that ν must exceed the realization of M for those
nudged into take-up and must be exceeded by the realization of M for those
nudged out of take-up.

Given this setup, the exact treatment effect can be written in terms of
the conditional distribution function, F Θ|ME , as

τe =
Ï

ΩME

{
F Θ|ME (

µ+ε (ν−µ)
∣∣µ,ε

)−F Θ|ME (
µ

∣∣µ,ε
)}

dF ME (µ,ε). (C.19)

Note the integrand omits the probability that Θ is exactly equal to the
smaller of µ and µ+ ε(ν−µ), conditional on (M ,E) = (µ,ε). This lines up
with the strict and weak inequalities in Equation C.18. Figure C.2 shows
those who contribute to the treatment effect (for a fixed E).
C.2.c The approximation
From here, we hope to approximate Equation C.19 when most update
strengths are small. The following assumption will prove crucial to our
approach.

Assumption C.3. There is a strictly positive constant, δ̄> 0, such that for
any realization, (M ,E) = (µ,ε), the conditional distribution, F Θ|ME

(
θ

∣∣µ,ε
),

admits a density (with respect to Lebesgue measure), f Θ|ME
(
θ

∣∣µ,ε
), on the

intervalΩΘ|M (µ) defined by

ΩΘ|M (µ) ≡


(a,µ+ δ̄] if µ< a + δ̄,

[µ− δ̄,b) if µ> b − δ̄,

[µ− δ̄,µ+ δ̄] otherwise.

That is, for any (µ,ε) ∈ΩME and any A ∈B
(
ΩΘ|M (µ)

), it is true that∫
A

f Θ|ME (
θ

∣∣µ,ε
)

dθ =
∫

A
dF Θ|ME (

θ
∣∣µ,ε

)
. (C.20)

Further, assume
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𝑀
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𝑎
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𝑀

45∘

Figure C.2: Contributors to τe for a fixed E

NOTES: Agents in the hatched area are nudged into take up; agents in the
dotted area are nudged out of take up. Dark boundaries are included in their
adjacent regions; lighter ones are not. The hollow point at M = ν reflects
agents who don’t update and hence don’t contribute to the treatment effect.

1. the function f Θ|ME
(
θ

∣∣µ,ε
) is equal to zero for any θ ∉ΩΘ|M (µ), and

2. the family of conditional densities,
{

f Θ|ME
(
µ+δ

∣∣µ,ε
)}

(µ,ε)∈ΩME
, is

equicontinuous at δ= 0.

Figure C.3 illustrates the region within ΩΘM where f Θ|ME acts as a density
for the measure F Θ|ME . The first of the final two conditions in Assump-
tion C.3 sets f Θ|ME equal to zero outside of the range in the illustration,
which serves merely to simplify future formulas. The second condition se-
lects a particular, well-behaved version of the density which allows us to ap-
proximate the integrand in Equation C.19 with ε (ν−µ) f Θ|ME

(
µ

∣∣µ,ε
) when

updates are small.2a This leads us to define the approximate treatment
effect as

τ≡
Ï

ΩME
ε (ν−µ) f Θ|ME (

µ
∣∣µ,ε

)
dF ME (µ,ε). (C.21)

For now, we simply assume this definition is meaningful; later we will pro-
vide more intuition.

2a. Technically, we are ruling out a version of the density where we arbitrarily set the value
of f Θ|ME (

θ
∣∣µ,ε

) for all (µ,ε) when θ =µ.
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𝜇

Figure C.3: Realizations and conditional densities for Θ

NOTES: The dotted region shows where the density f Θ|ME represents the
measure F Θ|ME . Off of this area, f Θ|ME is a zero-valued function.

Assumption C.4. The integrand in Equation C.21 is F ME -integrable. That
is, the integral Ï

ΩME
ε |ν−µ| f Θ|ME (

µ
∣∣µ,ε

)
dF ME (µ,ε)

exists and is finite.
Going forward, we will show that the approximation in Equation C.21 is,
in fact, a good one by bounding |τe −τ|. To do so, we will rely on a simple
observation: each agent represented by the integrand in Equation C.21 has
equal prior and threshold. We call such agents marginal; understanding
them is key to what follows.
C.2.d Marginal agents
To formalize the idea of marginality, we define an auxiliary random variable,
the deficit, as ∆≡Θ−M . Marginal agents have deficits equal to zero. Across
the population, the deficit’s outcome can be anywhere on the interval (a −
b, b − a), which we will call Ω∆.3a Conditional on (M , E) = (µ,ε), however,
the deficit’s outcome is restricted to ∆ ∈ΩΘ−µ. Hence, the realization of

3a. The same caveats from Footnote 1a also hold with the boundaries of Ω∆.
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(∆, M) must be on the set{(
δ,µ

) ∈Ω∆M : δ ∈ΩΘ−µ
}

,

which is illustrated in Figure C.4. Note that this is a strict subset of Ω∆M .
Going forward, we will often characterize an experiment by the joint

measure F∆ME instead of F ΘME . So long as the measure F∆ME only places
weight on the set illustrated in Figure C.4, these two approaches are iso-
morphic since, for any sets A ∈B

(
Ω∆ME

) and B ∈B
(
ΩΘME

), we can write

F∆ME (A) = F ΘME ({(
δ+µ, µ, ε

) ∩ΩΘME :
(
δ, µ, ε

) ∈ A
})

, and
F ΘME (B) = F∆ME ({(

θ−µ, µ, ε
)

:
(
θ, µ, ε

) ∈ B
})

.

(The intersection in the first equation serves to ensure that points in Ω∆M ,
but outside the set illustrated in Figure C.4, are excluded.)

Un-nudged, an agent takes up if and only if ∆≤ 0; nudged, she takes up
if and only if ∆≤ E (ν−M). We can hence rewrite Equations C.17, C.18, and
C.19 as

β = Pr{∆≤ 0
}
, ( C.17′ )

τe = Pr{0 <∆≤ E(ν−M)
} − Pr{E(ν−M) <∆≤ 0

}
, and (C.18′ )

τe =
Ï

ΩME

{
F∆|ME (

ε (ν−µ)
∣∣µ,ε

)−F∆|ME (
0
∣∣µ,ε

)}
dF ME (µ,ε). (C.19′ )

We can also rewrite Assumption C.3 in terms of such agents.

Result C.1. For any (µ,ε) ∈ΩME , define

f ∆|ME (
δ

∣∣µ,ε
)≡ f Θ|ME (

µ+δ
∣∣µ,ε

)
,

and

Ω∆|M (µ) ≡


(a −µ, δ̄] if µ< a + δ̄,

[−δ̄,b −µ) if µ> b − δ̄,

[−δ̄, δ̄] otherwise.
Then, the function f ∆|ME

(
δ

∣∣µ,ε
) is a density for the conditional measure,

F∆|ME
( · ∣∣µ,ε

). That is, for any (µ,ε) ∈ΩME and A ∈B
(
Ω∆|M (µ)

), it is true
that ∫

A
f ∆|ME (

δ
∣∣µ,ε

)
dδ=

∫
A

dF ∆|ME (
δ

∣∣µ,ε
)

.

Further,
1. the function f ∆|ME

(
δ

∣∣µ,ε
) is equal to zero for any δ ∉Ω∆|M (µ), and

2. the family of conditional densities,
{

f ∆|ME
(
δ

∣∣µ,ε
)}

(µ,ε)∈ΩME
, is

equicontinuous at δ= 0.
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𝑀
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𝜇
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𝑏
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Figure C.4: Realizations and conditional densities for ∆
NOTES: The union of the dotted and the hatched regions shows where (∆, M) realizations
can occur; the dotted region showswhere the density f ∆|ME represents themeasure F ∆|ME .
Off of this area, f ∆|ME is a zero-valued function.
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Proof. For the main result, note that, conditional on (M ,E) = (µ,ε), the probability
that ∆ ∈ A is equal to the probability that Θ ∈ A+µ. That is,∫

A
dF ∆|ME (

δ
∣∣µ,ε

)=∫
A+µ

f Θ|ME (
θ

∣∣µ,ε
)

dθ.

A simple change of variables shows that∫
A+µ

f Θ|ME (
θ

∣∣µ,ε
)

dθ =
∫

A
f Θ|ME (

δ+µ
∣∣µ,ε

)
dδ.

Stringing together the two equations establishes the result. The final two results
follow immediately by definition.

Figure C.4 illustrates the region within Ω∆M where f ∆|ME is a density for
the measure F∆|ME . Given Result C.1, we can also rewrite Equation C.21 as

τ=
Ï

ΩME
ε (ν−µ) f ∆|ME (

0
∣∣µ,ε

)
dF ME (µ,ε) (C.21′ )

and Assumption C.4 as a statement about the integrability of the integrand
in Equation C.21′ .

So, Result C.1 gives a convenient expression for the measure F ∆|ME . It
also gives convenient expressions for the measures F ∆ and F ME |∆.

Result C.2. Define the function f ∆(δ) by

f ∆(δ) ≡
Ï

ΩME
f ∆|ME (

δ
∣∣µ,ε

)
dF ME (µ,ε),

Then f ∆ is a density for the marginal measure, F∆, onB
(
[−δ̄, δ̄]

). That is, for
any A ∈B

(
[−δ̄, δ̄]

), it is true that∫
A

f ∆(δ)dδ=
∫

A
dF∆(δ).

Further, f ∆(δ) is continuous at δ= 0.
Proof. Using the definition above, we have∫

A
f ∆(δ)dδ=

∫
A

{Ï
ΩME

f ∆|ME (
δ

∣∣µ,ε
)

dF ME (µ,ε)

}
dδ,

=
Ï

ΩME

{∫
A

f ∆|ME (
δ

∣∣µ,ε
)

dδ

}
dF ME (µ,ε),

where the first equation comes from the definition of f ∆ in the statement of the
result, and the second comes from a Fubini–Tonelli change of integration order. We
can continue with∫

A
f ∆(δ)dδ=

Ï
ΩME

{∫
A

dF∆|ME (
δ

∣∣µ,ε
)}

dF ME (µ,ε),

=
Ñ

A×ΩME
dF∆ME (δ,µ,ε),

=
Ñ

∆−1(A)
dF∆ME (δ,µ,ε),

=
∫

A
dF∆(δ).
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The first equation follows from Result C.1, while the second follows from the defini-
tion of a conditional distribution. The third follows because the integration region
in the second integral is just ∆−1(A), and the fourth follows from the definition of
a marginal distribution. So we have shown that f ∆, as defined above, is indeed a
density for the marginal distribution of ∆.

To see that f ∆(δ) is continuous at δ = 0, we use the equicontinuity part of
Result C.1, which says that for any x > 0, there is a y > 0 such that when |δ| < y ,∣∣ f ∆|ME (

δ
∣∣µ,ε

)− f ∆|ME (
0
∣∣µ,ε

)∣∣ < x for all (µ,ε) ∈ ΩME . This immediately implies
that when |δ| < y , ∣∣ f ∆(δ)− f ∆(0)

∣∣ < x, which is the definition of continuity at zero
for f ∆.

The continuity result shows that any version of the density f ∆ that meets
the definition above has the same value at zero.
Going forward, we use the versions of f ∆|ME and f ∆ listed in
Results C.1 and C.2.

Proposition C.1. Define the measure F ME |∆ such that, for any δ ∈ [−δ̄, δ̄]
and B ∈B

(
ΩME

),Ï
B

dF ME |∆ (
µ,ε

∣∣δ)

≡


1

f ∆(δ)

Ï
B

f ∆|ME (
δ

∣∣µ,ε
)

dF ME (µ,ε) if f ∆(δ) > 0,Ï
B

dF ME (µ,ε) if f ∆(δ) = 0.

Then, for realizations of ∆ on [−δ̄, δ̄], F ME |∆ is a version of the measure of
(M ,E) conditional on ∆. That is, for any A ∈B

(
[−δ̄, δ̄]

) and B ∈B
(
ΩME

), it
is true that∫

A

{Ï
B

dF ME |∆ (
µ,ε

∣∣δ)}
f ∆(δ)dδ=

Ñ
A×B

dF∆ME (δ,µ,ε). (C.22)

Further, for any B ∈ B
(
ΩME

), if f ∆(0) > 0, then the function defined by the
integral Ï

B
dF ME |∆ (

µ,ε
∣∣δ)

is continuous at δ= 0.
Proof. Define A+ ≡ {

δ ∈ A : f ∆(δ) > 0
}. On A \ A+, the left-hand side of the Equa-

tion C.22 equals zero, regardless of how F ME |∆ is defined. The right-side does as
well, since

0 ≤
Ñ

(A\A+)×B
dF∆ME (δ,µ,ε) ≤

Ñ
(A\A+)×ΩME

dF∆ME (δ,µ,ε) =
∫

A\A+
dF∆(δ) = 0.
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So, we only need show that the equation holds on A+. Starting with the left-hand
side of Equation C.22, we can proceed as follows:∫

A+

{Ï
B

f ∆|ME (
δ

∣∣µ,ε
)

dF ME (µ,ε)

}
dδ

=
Ï

B

{∫
A+

f ∆|ME (
δ

∣∣µ,ε
)

dδ

}
dF ME (µ,ε),

=
Ï

B

{∫
A+

dF∆|ME (
δ

∣∣µ,ε
)}

dF ME (µ,ε),

=
Ñ

A+×B
dF∆ME (δ,µ,ε).

where the first expression comes from plugging in our version of F ME |∆ and can-
celling the f ∆(δ) terms, the first equality comes from a Fubini–Tonelli interchange
of integration order, the second comes from the fact that f ∆|ME is a density for
F∆|ME , and the third follows from the definition of conditional distribution applied
to F∆|ME and F ME . So, we see that our equation does indeed satisfy the require-
ments to be a version of the conditional measure F ME |∆.

The proof of the continuity result at the end is almost identical to the proof of
the continuity result from Result C.2.

Note that the proof shows that the value taken on by F ME |∆ (
µ,ε

∣∣δ) for val-
ues of δ where f ∆(δ) = 0 doesn’t matter; our choice, F ME (µ,ε), is an arbi-
trarily chosen probability measure on ΩME . The continuity result shows
that any version of the density f ∆ that meets the definition will yield equal
expectations conditional on ∆= 0.
Going forward, for realizations of ∆ on [−δ̄, δ̄], we use the version of
F ME |∆ listed in Proposition C.1.

To summarize, we assume densities for F Θ|ME that let us construct in-
tuitive expressions for the measures F∆|ME , F ME |∆, and F∆. We leave the
measure F ME general, however, so it is free to include atoms, among other
things. This allows us, for instance, to place an atom at E = 0 to model a
finite fraction of the population that ignores the nudge altogether.
C.2.e What drives τ?
Looking at Equation C.21′ , the approximate treatment effect, τ, can be
written as an unconditional expectation, that is,

τ= E
[
E (ν−M) f ∆|ME (0 |M ,E)

]
.

The importance of marginal agents is captured by the density term. Of
course, it would be more intuitive for the entire expectation to be condi-
tional on the marginal sub-population. Assuming f ∆(0) is strictly positive,
Proposition C.1 allows us to write

τ= f ∆(0) E
[
E (ν−M)

∣∣∆= 0
]

. (C.23)
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In this light, Assumption C.4 becomes a statement about the existence
of the moment E

[
E (ν−M)

∣∣∆= 0
] (i.e., the expected update among the

marginal).4a Going forward, we will assume there are marginal agents.
That is,

Assumption C.5. The deficit density at zero— f ∆(0)—is finite and strictly
positive.

Intuitively then, τ is driven by three forces. First, it is driven by how many
marginal agents there are, captured by the density f ∆(0). Second, it is driven
by how strongly the marginal agents update, captured by E in the condi-
tional expectation. And third, it is driven by the discord between the in-
formation and the prior for marginal agents (the “newsworthiness” of the
signal), captured by ν−M in the conditional expectation.

With a bit of algebra, we can also write τ as

τ = f ∆(0) E
[
E

∣∣∆= 0
] {

ν − E
[
E M

∣∣∆= 0
]

E
[
E

∣∣∆= 0
] }

. (C.24)

Tacitly, we are assuming that E[
E

∣∣∆= 0
] is strictly positive.

Assumption C.6. The expected update strength of the marginal,
E
[
E

∣∣∆= 0
], is strictly positive.

In Equation C.24 then, the strength of marginal updates is captured by
E
[
E

∣∣∆= 0
], while the “newsworthiness” of the signal comes from compar-

ing it to E
[
E M

∣∣∆= 0
]/

E
[
E

∣∣∆= 0
], which is the average of marginal priors,

weighted by update strength.
Note that when E and M aren’t strongly correlated, the simple average

prior among the marginal, E[
M

∣∣∆= 0
], becomes a good approximation for

E
[
E M

∣∣∆= 0
]/

E
[
E

∣∣∆= 0
].

C.2.f Showing τ is a good approximation
We now return to showing that τ is a good approximation for τe by bound-
ing the absolute approximation error, |τe −τ|. For any X ∈B

(
ΩME

), define
τe (X ) ≡

Ï
X

{
F∆|ME (

ε (ν−µ)
∣∣µ,ε

)−F∆|ME (
0
∣∣µ,ε

)}
dF ME (µ,ε),

τ(X ) ≡
Ï

X
ε (ν−µ) f ∆|ME (

0
∣∣µ,ε

)
dF ME (µ,ε).

Our general strategy will be to partition ΩME into regions that can be han-
dled by differing methods. To do this, we will need to strengthen Assump-
tion C.4.

4a. The moment E[
E (ν−M)

∣∣∆= 0
] is said to exist if the integral E[

E |ν−M | ∣∣∆= 0
] exists

and is finite.
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Assumption C.7. Themoments E[
E 2 (ν−M)2

] and E[
E 2 (ν−M)2

∣∣∆= 0
]

exist.
Notice that, Assumptions C.5 and C.7 combine to imply Assumption C.4.5a

C.2.f.i Where Updates are Large

When updates are sufficiently large, the deficit density is not guaranteed to
exist. This happens on the region given by

A ≡ {
(µ,ε) ∈ΩME : ε |ν−µ| > δ̄

}
. (C.25)

The the error contributed on A can be easily bounded.

Result C.3. The absolute error contributed on A obeys the following bound:∣∣τe (A)−τ(A)
∣∣ ≤ E

[
E 2 (ν−M)2

]
δ̄2

+ f ∆(0)

δ̄
E
[
E 2 (ν−M)2

∣∣∆= 0
]

.

Proof. Our strategy is first to bound |τe (A)| and |τ(A)| separately and then to com-
bine the bounds with the triangle inequality. Starting with |τe (A)|, it is clear the
magnitude of its integrand is bounded by 1. Hence,∣∣τe (A)

∣∣ ≤
Ï

A
dF ME (µ,ε),

= Pr{(M ,E) ∈ A} ,

= Pr
{
E |ν−M | > δ̄

}
,

≤ E
[
E 2 (ν−M)2]

δ̄2
.

The final inequality comes from Markov’s inequality and the fact that
Pr

{
E |ν−M | > δ̄

}= Pr
{
E 2 (ν−M)2 > δ̄2}. Moving on to |τ(A)|, we have

|τ(A)| = f ∆(0)

∣∣∣∣Ï
A
ε (ν−µ) dF ME |∆ (

µ,ε
∣∣0

)∣∣∣∣ ,

= f ∆(0)

∣∣∣∣Ï
ΩME

1{ (µ,ε)∈A } ε (ν−µ) dF ME |∆ (
µ,ε

∣∣0
)∣∣∣∣ ,

≤ f ∆(0)

√Ï
ΩME

1
2
{(µ,ε)∈A } dF ME |∆ (

µ,ε
∣∣0

) √Ï
ΩME

ε2 (ν−µ)2 dF ME |∆ (
µ,ε

∣∣0
)

,

= f ∆(0)
√

Pr
{

(M ,E) ∈ A
∣∣∆= 0

} √
E
[
E 2 (ν−M)2

∣∣∆= 0
]

,

= f ∆(0)
√

Pr
{
E |ν−M | > δ̄

∣∣∆= 0
} √

E
[
E 2 (ν−M)2

∣∣∆= 0
]

,

≤ f ∆(0)

√
E
[
E 2 (ν−M)2

∣∣∆= 0
]

δ̄2

√
E
[
E 2 (ν−M)2

∣∣∆= 0
]

,

= f ∆(0)

δ̄
E
[

E 2 (ν−M)2
∣∣∣∆= 0

]
.

5a. Given Assumption C.5, Assumption C.4 becomes equivalent to E
[
E |ν−M | ∣∣∆= 0

]<∞.
To see this, start with the inequality E 2 (ν−M)2 +1 > E |ν−M |. (When E |ν−M | ≤ 1, the one
on the right-hand side ensures the inequality holds. When E |ν−M | > 1, the E2 |ν−M |2 on the right-
hand side ensures the inequality holds.) If we integrate it, we get E

[
E 2 (ν−M)2

∣∣∆= 0
]+ 1 >

E
[
E |ν−M | ∣∣∆= 0

]. Hence, if the left-hand side is finite, the right-hand side must be also.

Appendix 26



The first inequality is the Cauchy–Schwarz inequality, while the second is the same
Markov’s inequality trick from before. From here, the triangle inequality estab-
lishes the desired bound.

C.2.f.ii Where Updates are Smaller

Off the set A, Result C.1 states that the conditional deficit density exists.
This means that, for any measurable X ⊆ΩME

∖
A, we can write

τe (X )−τ(X )

=
Ï

X

{∫ε (ν−µ)

0

{
f ∆|ME (

δ
∣∣µ,ε

)− f ∆|ME (
0
∣∣µ,ε

)}
dδ

}
dF ME (µ,ε). (C.26)

Now, we bound |τe (X )−τ(X )| for three important classes of X . As we go
along, we will motivate these these classes with examples.

Example C.1 (Normal, Independent Thresholds). LetΩΘ = (−∞,∞),
and assume that the threshold,Θ, is distributed normally with mean and vari-
ance (

µΘ, σ2
Θ

) and that it is independent of (M , E ). Then, conditional on
(M ,E) = (µ,ε), the distribution of the deficit, ∆, is just the distribution of Θ
with its mean shifted to the left by µ. That is, letting φ represent the standard
normal density, we have

f ∆|ME (
δ

∣∣µ,ε
) = 1

σΘ
φ

(
δ− (

µΘ−µ
)

σΘ

)
.

This function is continuous in δ; in fact, it is Lipschitz continuous. To see this,
note that

∂1 f ∆|ME (
δ

∣∣µ,ε
)= 1

σ2
Θ

φ′
(
δ− (

µΘ−µ
)

σΘ

)
.

Since φ′(x) =−xφ(x) and φ′′(x) = (x2 −1)φ(x), we see that φ′(x) attains its
maximum magnitude when x = ±1. Hence, we have that |φ′(x)| ≤ |φ′(1)| =
1
/p

2πe . The Mean Value Theorem then tells us that, for any δ1 and δ2, and
any (µ,ε), we have

∣∣ f ∆|ME (
δ2

∣∣µ,ε
)− f ∆|ME (

δ1
∣∣µ,ε

)∣∣ ≤ 1

σ2
Θ

p
2πe

|δ2 −δ1| .

In fact, since the Lipschitz constant is independent of (µ,ε), we have that the
family of functions {

f ∆|ME
(
δ

∣∣µ,ε
)}

(µ,ε)∈ΩME is equi-Lipschitz continuous.

Looking to this example, our first class will be densities that obey an equi-
Lipschitz condition.
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Result C.4 (Equi-Lipschitz-Continuous Densities). Fix a set
X ⊆ΩME \ A, and for some k > 0, assume the inequality∣∣ f ∆|ME (

δ
∣∣µ,ε

)− f ∆|ME (
0
∣∣µ,ε

)∣∣ ≤ k |δ|

holds for any (µ,ε) ∈ X and any δ between 0 and ε (ν−µ). Then, the following
bound holds: ∣∣τe (X )−τ(X )

∣∣ ≤ k

2
E
[
E 2 (ν−M)2] .

Proof. Using the assumed inequality, the desired bound is almost immediate:
∣∣τe (X )−τ(X )

∣∣≤ k
Ï

X

∣∣∣∣∫ε (ν−µ)

0
|δ|,dδ

∣∣∣∣dF ME (µ,ε),

= k

2

Ï
X

ε2 (ν−µ)2 dF ME (µ,ε),

≤ k

2

Ï
ΩME

ε2 (ν−µ)2 dF ME (µ,ε),

= k

2
E
[

E 2 (ν−M)2
]

.

The first inequality is assumed; the second follows because the integrand is non-
negative.

While the condition from the previous result is sensible, it can be violated.
The density from Example C.1 worked mainly because its derivative was
everywhere bounded. This can fail in two ways, as the next example shows.

Example C.2 (Beta-Distributed, Independent Thresholds). LetΩΘ =
[0,1], and assume that the threshold, Θ, is beta-distributed with strictly posi-
tive, real parameters (p, q) and that it is independent of (M , E ). Then, condi-
tional on (M ,E) = (µ,ε), the deficit,∆, has a shifted beta distribution. Letting
B represent the beta function, we have

f ∆|ME (
δ

∣∣µ,ε
) =

(
δ+µ

)p−1 (
1− (

δ+µ
))q−1

B(p, q)
,

where the domain of f ∆|ME is limited to δ ∈ [−µ,1−µ]. Looking back to Ex-
ample C.1, we see that our equi-Lipschitz condition fails if the first derivative
is unbounded. This derivative is given by

∂1 f ∆|ME (
δ

∣∣µ,ε
) = 1

B(p, q)

{
(p −1)

(
δ+µ

)p−2 (
1− (

δ+µ
))q−1

−(q −1)
(
δ+µ

)p−1 (
1− (

δ+µ
))q−2

}
.

As δ+µ→ 0, the derivative becomes unbounded if p ∈ (0,2)\{1}. For p ∈ (0,1),
the density is unbounded as well, while for p ∈ (1,2), the density goes to zero.
Similarly, as δ+µ → 1, the derivative becomes unbounded if q ∈ (0,1) \ {1}.
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Figure C.5: Example C.2 threshold density for (p, q) = (3/2,1/2).
NOTES: The derivative becomes unbounded when θ approaches ei-
ther 0 or 1, but the density only becomes unbounded when θ ap-
proaches 1. These two cases correspond to Results C.5 and C.6. (The
labeled horizontal and vertical lines correspond to points of interest from the
standard partition constructed near the end of Section C.2.g.)

For q ∈ (0,1), the density is unbounded as well, while for q ∈ (1,2), the density
goes to zero.

So, the derivative can be unbounded in two ways: when the density is un-
bounded and when it is not. The threshold density with parameters (p, q) =
(3/2,1/2), plotted in Figure C.5, illustrates this distinction. At zero, the den-
sity is zero, but the slope is infinite. At one, the slope and density are both
infinite (i.e., there is a vertical asymptote).

The distinction in the previous example informs the other two classes of
sets on which we will bound the absolute error.

C.2.f.iii Bounded threshold density.

Whenever the densities on X are bounded, the absolute error is easy to
bound.

Result C.5. Fix a set X ⊆ΩME \ A, and for some f̄ , assume the inequality
f ∆|ME

(
δ

∣∣µ,ε
)≤ f̄ holds for any (µ,ε) ∈ X and any δ between 0 and ε (ν−µ).

Then, the following bound holds:
∣∣τe (X )−τ(X )

∣∣ ≤ f̄
√

Pr{(M ,E) ∈ X }
√

E
[
E 2 (ν−M)2

]
.
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Proof. Using the assumed inequality, the desired bound is almost immediate:
∣∣τe (X )−τ(X )

∣∣≤Ï
X

∣∣∣∣∫ε (ν−µ)

0
f̄ dδ

∣∣∣∣dF ME (µ,ε),

= f̄
Ï

X
ε |ν−µ| dF ME (µ,ε),

= f̄
Ï

ΩME
1{ (µ,ε)∈X } ε |ν−µ| dF ME (µ,ε),

≤ f̄

√Ï
ΩME

1
2
{(µ,ε)∈X } dF ME (µ,ε)

√Ï
ΩME

ε2 (ν−µ)2 dF ME (µ,ε) ,

= f̄
√

Pr{(M ,E) ∈ X }
√

E
[
E 2 (ν−M)2

]
.

The first inequality is assumed; the second is the Cauchy–Schwarz inequality.

C.2.f.iv Vertical asymptotes in the threshold density.

In Example C.2, it was only at the endpoints of the domain ofΘ that the den-
sity and its derivatives were both unbounded. Generalizing, we are most
worried about vertical asymptotes cropping up in the threshold density at
the endpoints of (a,b).

Consider f Θ|ME
(
θ

∣∣µ,ε
) having an asymptote as the threshold ap-

proaches a (or b). Necessarily, that density would be decreasing (increas-
ing) for thresholds in some neighborhood of a (b). The monotonicity
condition of the next result captures this intuition.

Result C.6. Fix a set X ⊆ΩME \ A, and assume the inequality

f ∆|ME (
δ

∣∣µ,ε
)≤ f ∆|ME (

0
∣∣µ,ε

)
holds for any (µ,ε) ∈ X and any δ between 0 and ε (ν−µ). Then, the following
bound holds:∣∣τe (X )−τ(X )

∣∣ ≤ f ∆(0)
√

Pr
{

(M ,E) ∈ X |∆= 0
} √

E
[
E 2 (ν−M)2

∣∣∆= 0
]

.

Proof. Since f ∆|ME (
δ

∣∣µ,ε
) ≥ 0, it follows that f ∆|ME (

0
∣∣µ,ε

) − f ∆|ME (
δ

∣∣µ,ε
) ≤

f ∆|ME (
0
∣∣µ,ε

). And the assumed inequality tells us that ∣∣ f ∆|ME (
δ

∣∣µ,ε
) −

f ∆|ME (
0
∣∣µ,ε

)∣∣= f ∆|ME (
0
∣∣µ,ε

)− f ∆|ME (
δ

∣∣µ,ε
). Hence, we have shown that∣∣∣ f ∆|ME (

0
∣∣µ,ε

)− f ∆|ME (
δ

∣∣µ,ε
)∣∣∣≤ f ∆|ME (

0
∣∣µ,ε

)
.
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Now, we can write∣∣τe (X )−τ(X )
∣∣

≤
Ï

X

∣∣∣∣∫ε (ν−µ)

0

∣∣∣ f ∆|ME (
δ

∣∣µ,ε
)− f ∆|ME (

0
∣∣µ,ε

)∣∣∣ dδ

∣∣∣∣ dF ME (µ,ε),

≤
Ï

X

∣∣∣∣∫ε (ν−µ)

0
f ∆|ME (

0
∣∣µ,ε

)
dδ

∣∣∣∣ dF ME (µ,ε),

=
Ï

X
ε |ν−µ| f ∆|ME (

0
∣∣µ,ε

)
dF ME (µ,ε),

= f ∆(0)
Ï

X
ε |ν−µ| dF ME |∆ (

µ,ε
∣∣0

)
,

= f ∆(0)
Ï

ΩME
1{ (µ,ε)∈X } ε |ν−µ| dF ME |∆ (

µ,ε
∣∣0

)
,

≤ f ∆(0)

√Ï
ΩME

1
2
{(µ,ε)∈X } dF ME |∆ (

µ,ε
∣∣0

) √Ï
ΩME

ε2 (ν−µ)2 dF ME |∆ (
µ,ε

∣∣0
)

,

= f ∆(0)
√

Pr
{

(M ,E) ∈ X
∣∣∆= 0

} √
E
[
E 2 (ν−M)2

∣∣∆= 0
]

.

The first inequality is obvious, the second comes from the inequality we derived
above, and the third is the Cauchy–Schwarz inequality.

C.2.g Bringing it together
To fully bound our error, we will need to partition ΩME into parts where
Results C.3, C.4, C.5 and C.6 apply. A standard partition is an ordered
quadruple, ( (

A, δ̄
)

, (B ,k) ,
(
C , f̄ ,EC )

,
(
D,ED) )

,

where
• the set ΩME

∖
(A∪B ∪C ∪D) is of F ME -measure zero;

• the set A is as defined in Equation C.25 with the given δ̄;
• the set B satisfies the conditions of Result C.4 with the given k;
• the set C satisfies the conditions of Result C.5 with Pr{(M ,E) ∈C }
bounded above by EC ; and

• the set D satisfies the conditions of Result C.6 with Pr
{

(M ,E) ∈ D |∆=
0
} bounded above by ED .

Now, we introduce our full bound.

Proposition C.2. Let (
A, (B ,k) ,

(
C , f̄ ,EC

)
,
(
D,ED

)) be a standard parti-
tion. Then, the following bound holds:

∣∣τe −τ
∣∣ ≤ E

[
E 2 (ν−M)2

]
δ̄2

+ f ∆(0)

δ̄
E
[
E 2 (ν−M)2

∣∣∆= 0
]

+ k

2
E
[
E 2 (ν−M)2] + f̄

√
EC

√
E
[
E 2 (ν−M)2

]
+ f ∆(0)

√
ED

√
E
[
E 2 (ν−M)2

∣∣∆= 0
]
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Proof. Use the triangle inequality on the bounds from Results C.3, C.4, C.5, and
C.6.

To see how this works more concretely, let’s construct a standard partition
for Example C.2 with parameters (p, q) = (3/2, 1/2). Further, let’s set ν= 3/5.

(A, δ̄): The density is valid everywhere, so we can set δ̄ to whatever
we like. We choose δ̄= 1/8 and use Equation C.25 to define A.
For any (µ,ε) ∈ΩME

∖
A then, we know that ε |ν−µ| ≤ 1/8.

(B , k): Pick any η ∈ (0, 1/8), and let B = (
[η, 1−η]×ΩE

)∖
A. For any

(µ,ε) ∈ B , we know that µ and µ+ε (ν−µ) (and all numbers be-
tween) are in [η,1−η]. Looking at Figure C.5, on [η,1−η], the
density is continuous and its slope is bounded, so we can con-
struct a Lipschitz constant, k, in much the same way we did in
Example C.1.

(C , f̄ , EC ): Let C = (
(0, η)×ΩE

)
\ A, and let f̄ = f Θ|ME

(
η+1/8

∣∣µ,ε
).

Looking at Figure C.5, on (0,η+ 1/8), the density is smaller
than f̄ . Finally, note that Pr{(M ,E) ∈C } ≤ Pr

{
M ∈ (0, η)

}. So, we
set EC = Pr

{
M ∈ (0, η)

}.
(D, ED ): Let D = (

(1−η, 1)×ΩE
)

\ A. The conditions of Result C.6
are met since the density is strictly increasing on (

1− (η+ δ̄),1
).

Finally, note that Pr{(M ,E) ∈ D} ≤ Pr
{

M ∈ (1−η, 1)
}. So, we set

ED = Pr
{

M ∈ (1−η,1)
}.

Points of interest from this standard partition are illustrated in Figure C.5;
the partition itself is illustrated in Figure C.6. Given all of this, Proposi-
tion C.2 gives us a bound on the absolute error of our approximation.

What’s more, by decreasing η, we can make EC and ED as small as we
like. We call an experiment regular if there is some ¯̄f such that, for any
E > 0, we can construct a standard partition for which max

{
EC , ED

}< E and
f̄ ≤ ¯̄f .
C.2.h Asymptotics
Formally, asymptotic analysis requires considering a sequence of experi-
ments, ((

νn , F∆ME
n

))∞
n=1. We capture dependence on n in a derived quantity

with an n subscript; for example, f ∆
n (0) represents the density of marginal

agents in the nth experiment.
Now, to start, we will introduce our set of baseline asymptotic assump-

tions. The first two merely adjust Assumptions C.3 and C.7 to the asymp-
totic context. The third assumes that there are in fact marginal agents,
while the last asserts that all experiments in the asymptotic sequence are
regular in a coherent way.

Assumption C.8. The following are true:
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Figure C.6: Standard partition from the end of Section C.2.g

a) Assumption C.3 holds for all n uniformly; that is, the sequence (δ̄n) is
uniformly bounded away from zero.

b) For all n, Assumption C.7 holds.
c) The sequence (

f ∆
n (0)

) is uniformly bounded above and uniformly bounded
away from zero.

d) The sequence of experiments is uniformly regular. That is, there is an ¯̄f
such that, for any E > 0, for each n, there is a standard partition,((

An , δ̄n
)

, (Bn ,kn) ,
(
Cn , f̄n ,EC

n

)
,
(
Dn ,ED

n

))
,

such that max
{
EC

n , ED
n

} < E , the sequence (kn) is uniformly bounded
above, and the sequence ( f̄n) is uniformly bounded above by ¯̄f .

From here, we will show that the absolute error converges to zero and then
discuss why we must shift our focus to the relative error.

C.2.h.i Absolute Error

To capture the intuition of a nudge, we assume that updates get small in
our asymptotic sequence. The following assumption meets our technical
needs.

Assumption C.9. The following limits hold:
lim

n→∞En
[
E 2 (νn −M)2] = 0 = lim

n→∞En
[
E 2 (νn −M)2

∣∣∆= 0
]

.
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Jensen’s inequality then immediately tells us that

Result C.7. The following limits hold:

lim
n→∞En

[
E (νn −M)

] = 0 = lim
n→∞En

[
E (νn −M)

∣∣∆= 0
]

.

It follows almost immediately then that the absolute error goes to zero.

Proposition C.3. The following limit holds:

lim
n→∞

∣∣τe
n −τn

∣∣ = 0.

Proof. Consider the bound from Proposition C.2. Pick any E > 0. The elements of
Assumption C.8 tell us that 1/δ̄2

n , f ∆n (0)/δ̄n , kn , f̄n , and f ∆n (0) are all bounded above.
And EC

n and ED
n are both less than E . Hence, Assumption C.9 establishes our final,

desired result.

At first glance, this result seems sufficient. But, it implies that

Result C.8. The following limits hold:

lim
n→∞ τn = 0 = lim

n→∞ τe
n .

Proof. Consider the formula for τn , that is, f ∆n (0) En
[
E (νn −M)

∣∣∆= 0
]. By Assump-

tion C.8 and Result C.7, this approaches zero, and we’ve established the first de-
sired limit.

Now, by the triangle inequality, |τe
n | ≤ |τn | + |τe

n −τn |. Using the limit just es-
tablished and Proposition C.3, this becomes limn→∞ |τe

n | ≤ 0, which establishes the
second desired limit.

This result tells us that, asymptotically, τe
n and the constant 0 have the same

absolute error (i.e., zero). But 0 isn’t a particularly compelling approxima-
tion for the treatment effect of a nudge!

To see where τn outperforms 0, we will need to consider relative error.
In the next section, we will show that τn and τe

n don’t just become infinites-
imally close, but that their ratio approaches one. In other words, we will
show that they are asymptotically equivalent.

C.2.h.ii Relative error

Before considering relative error, we must make a few more assumptions
about the asymptotic sequence.

Assumption C.10. The following regularity conditions hold:
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a) The sequence (
En

[
E 2 (νn −M)2

](
En

[
E (νn −M)

])2

)∞
n=1

is defined and uniformly bounded above and below by strictly posi-
tive constants.6a

b) For j ∈ {1,2}, the sequence( ∣∣∣∣∣ En
[
E j (νn −M) j

]
En

[
E j (νn −M) j

∣∣∆= 0
] ∣∣∣∣∣

)∞
n=1

is defined and uniformly bounded above and below by strictly posi-
tive constants.

Part a) ensures that En
[
E 2 (νn −M)2

] and (
En

[
E (νn −M)

])2 shrink at about
the same rate. Part b) ensures that marginal agents aren’t too different from
the general population.

Now, we can use the bound from Proposition C.2 to show that the ratio
of τe

n/τn converges to unity.

Theorem C.1. The ratio τe
n/τn is defined for all n; moreover, the following

limit holds:
lim

n→∞
∣∣τe

n/τn −1
∣∣ = 0.

Proof. For the ratio to be defined, we need τn to always be non-zero. This is true be-
cause Assumption C.8 tells us that f ∆n (0) is always positive, while Assumption C.10
tells us that En

[
E (νn −M)

∣∣∆= 0
] is always non-zero.

Hence, we can divide anything through by τn in our asymptotic. Doing so with
the bound from Proposition C.2 gives

∣∣τe
n /τn −1

∣∣ ≤ 1

δ̄2
n f ∆n (0)

En
[
E 2 (νn −M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term A1

+ 1

δ̄

En
[
E 2 (νn −M)2

∣∣∆= 0
]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term A2

+ kn

2 f ∆n (0)

En
[
E 2 (ν−M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term B

+ f̄n

f ∆n (0)

√
EC

n

√
En

[
E 2 (νn −M)2

]∣∣En
[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term C

+
√
ED

n

√
En

[
E 2 (νn −M)2

∣∣∆= 0
]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term D

.

The terms are named to correspond the part of the standard partition they corre-
spond to. We consider the convergence of each term individually.

6a. The lower bound here isn’t really an assumption, as Jensen’s inequality ensures that
the sequence is bounded below by 1.
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Term A1. By Assumption C.8, Term A1 converges to zero if
En

[
E 2 (νn −M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

converges to zero. To see that it does, note that

En
[
E 2 (νn −M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

= En
[
E 2 (νn −M)2](

En
[
E (νn −M)

])2︸ ︷︷ ︸
Term A1-i

(
En

[
E (νn −M)

]
En

[
E (νn −M)

∣∣∆= 0
] )2

︸ ︷︷ ︸
Term A1-ii

∣∣En
[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term A1-iii
.

Terms A1-i and A1-ii are bounded above and below by Assumption C.10.
Term A1-iii goes to zero by Result C.7. So, Term A1 converges to zero.

Term A2. By Assumption C.8, Term A2 converges to zero if
En

[
E 2 (νn −M)2

∣∣∆= 0
]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

converges to zero. To see that it does, note that

En
[
E 2 (νn −M)2

∣∣∆= 0
]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

= En
[
E 2 (νn −M)2

∣∣∆= 0
]

En
[
E 2 (νn −M)2

]︸ ︷︷ ︸
Term A2-i

En
[
E 2 (νn −M)2](

En
[
E (νn −M)

])2︸ ︷︷ ︸
Term A2-ii

∣∣En
[
E (νn −M)

]∣∣︸ ︷︷ ︸
Term A2-iii

.

Terms A2-i and A2-ii are bounded above and below by Assumption C.10.
Term A2-iii goes to zero by Result C.7. So, Term A2 converges to zero.

Term B. By Assumption C.8, Term B converges to zero if
En

[
E 2 (νn −M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

converges to zero. To see that it does, note that

En
[
E 2 (νn −M)2]∣∣En

[
E (νn −M)

∣∣∆= 0
]∣∣

= En
[
E 2 (νn −M)2]

En
[
E 2 (νn −M)2

∣∣∆= 0
]︸ ︷︷ ︸

Term B-i

En
[
E 2 (νn −M)2

∣∣∆= 0
](

En
[
E (νn −M)

∣∣∆= 0
])2︸ ︷︷ ︸

Term B-ii

∣∣En
[
E (νn −M)

∣∣∆= 0
]∣∣︸ ︷︷ ︸

Term B-iii
.

Terms B-i and B-ii are bounded above and below by Assumption C.10. Term B-
iii goes to zero by Result C.7. So, Term B converges to zero.

Term C. Term C can be rewritten as

f̄n

f ∆n (0)

√
EC

n

√√√√ En
[
E 2 (νn −M)2

](
En

[
E (νn −M)

∣∣∆= 0
])2

= f̄n

f ∆n (0)

√
EC

n

√√√√√√√
En

[
E 2 (νn −M)2]

En
[
E 2 (νn −M)2

∣∣∆= 0
]︸ ︷︷ ︸

Term C-i

En
[
E 2 (νn −M)2

∣∣∆= 0
](

En
[
E (νn −M)

∣∣∆= 0
])2︸ ︷︷ ︸

Term C-ii

.
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Terms C-i and C-ii are bounded above by Assumption C.10. Hence the radical
on the right-hand side of the previous equation is bounded above. Further,
by Assumption C.8, f̄n

/
f ∆n (0) is bounded above. Hence, Term C is bounded

above by the product of some positive constant, K C , and
√
EC

n .
Term D. Term D can be rewritten as

√
ED

n

√√√√ En
[
E 2 (νn −M)2

∣∣∆= 0
](

En
[
E (νn −M)

∣∣∆= 0
])2

.

The rightmost radical is bounded above by Assumption C.10. Hence,Term D
is bounded above by the product of some positive constant, K D , and

√
ED

n .

Combining the bounds for Terms A–D, we get that

lim
n→∞

∣∣τe
n /τn −1

∣∣ ≤
(
K C +K D

) √
max

{
EC

n , ED
n

}
.

In other words, the relative error, ∣∣τe
n /τn −1

∣∣, is bounded by the product of a con-
stant, K C +K D , and something, by Assumption C.8, we can make arbitrarily small.
This establishes our desired result.

That is, τn is non-zero, finite, and asymptotically equivalent to τe
n . Based on

this result, going forward, when we refer to the treatment effect, we refer
to τ.

C.3 Literature-level model
C.3.a The big idea
Variations in the baseline and treatment effect are driven by moving the
nudge signal and the distribution of (Θ, M ,E). To capture the first idea, at
the literature level, wemodel the nudge signal as the realization of a random
variable, N . To capture the second idea, we assume the distribution of
(Θ, M ,E) is changed by some random vector of literature-level parameters.
C.3.b Simplifying the experiment-level model
Before elaborating on the approach laid out in the previous section, it is
helpful to introduce two changes to the experiment-level model. The first
makes it easier to compare experiments; the second simplifies what follows.

C.3.b.i Holding the belief distribution fixed across experiments

For any strictly increasing, continuous transformation, H , consider setting

M̃ = H(M),

Θ̃ = H(Θ ), and
ν̃ = H( ν ).
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Further, set

Ẽ =


H

(
M +E(ν−M)

)− M̃

ν̃− M̃
if ν̃ 6= M̃ ,

E if ν̃= M̃ .7a

Clearly, M ≥ Θ if and only if M̃ ≥ Θ̃, and M +E (ν− M) ≥ Θ if and only if
M̃ + Ẽ

(
ν̃− M̃

) ≥ Θ̃. In other words, the model of the individual is invariant
under strictly increasing, continuous transformations.

Now, take the distribution function for the standard normal, Φ. If we
assume F M is strictly increasing and continuous (i.e., has no atoms and
is of full support), then the function Φ−1 ◦ F M is also strictly increasing
and continuous; furthermore, if we set H equal to it, the transformation
above leaves priors distributed according to the standard normal and leaves
thresholds, posteriors, and the nudge signal to be interpreted as z-scores
relative to the prior distribution.

Going forward we will always consider experiments after they have been
transformed in the way just described. So, while all experiments have unit-
normal priors, each is potentially different in its nudge signal, ν, and its
conditional-on-prior joint-distribution of thresholds and update-strengths,
F ΘE |M . Summarizing:

Assumption C.11 (Fixed belief distribution). For all experiments, the
distribution function for beliefs, F M , is that of the standard normal, Φ.

Note this means that the interval (a,b) is now the real line for all experi-
ments.

C.3.b.ii Independence of preferences and the updating process

Intuitively, thresholds summarize preferences, while the prior and update
strength summarize information processing. As such, it is sensible to as-
sume, for a given experiment, that thresholds are independent of priors and
update strengths.

Assumption C.12 (Independent thresholds). For any experiment, the
threshold, Θ, is independent of the prior and update strength, (M ,E).

Given this assumption, experiments vary in nudge signal, ν, threshold dis-
tribution, F Θ, and conditional-on-prior update-strength distribution, F E |M .
Note that when combined with Assumption C.3, Assumption C.12 means
that the threshold has a continuous density, f Θ, over the entire real line.

7a. Our ν̃= M̃ definition of Ẽ has the nice property that, when H is differentiable at ν, it
equals the limit of the ν̃ 6= M̃ definition as M approaches ν.
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C.3.c The literature’s data-generating process
Given the reparametrization of the previous section, we set the outcome
space for the random variable N to the real line. Moving on to the literature-
level parameters, without loss of generality, we assume one of them, B ,
is the baseline, and we set its outcome space to be the open unit inter-
val.8a Aside from B , we assume an additional random vector of literature-
level parameters, Λ, whose outcome space is some subset, L , of a finite-
dimensional Euclidean space. We call Λ the literature-level noise. When
the realization of (B ,Λ) is (β,λ), the distributions that describe (Θ, M ,E) are
F Θ
β,λ and F E |M

β,λ .
In sum, a given experiment can be seen as a realization of the random

vector (N ,B ,Λ), whose outcome space is R× (0,1) ×L . The distribution
of this random vector can then be described by some measure, GN BΛ. To
capture the idea that Λ really is noise, we will also make an independence
assumption.

Assumption C.13 (Independence of the literature-level noise). The
random vector Λ is independent of the random vector (N ,B).

Given this assumption, the literature can be summarized by two measures:
GN B and GΛ. We will also assume that the conditional-on-baseline first
moment of N exists and is uniformly bounded.

Assumption C.14. There exists some ν̄> 0 such that, for any β on the open
unit interval, E[|N | ∣∣B =β

]≤ ν̄.

C.3.d The baseline and treatment-effect integrals
Given the setup just discussed, when the realization of (B ,Λ) is (β,λ), the
equation

β=
∫∞

−∞
F Θ
β,λ(µ)dΦ(µ) (C.27)

must be satisfied. Now, it is clear why we defined the outcome space of
B to omit zero and one: such baselines would require the integrand of the
previous equation to be 0 everywhere or 1 everywhere, respectively. No dis-
tribution function can satisfy such a requirement. That said, it is still possi-
ble for valid distribution functions to achieve baselines arbitrarily close to
zero and one.

Moving on from the baseline, when the realization of (N ,B ,Λ) is (ν,β,λ),
we can write the treatment effect as

τ(ν,β,λ) =
∫∞

−∞
Eβ,λ

[
E

∣∣M =µ
]

(ν−µ) f Θ
β,λ(µ)dΦ(µ), (C.28)

8a. The reason the outcome space for B doesn’t include 0 and 1 is technical in nature and
will be clarified shortly.
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where
Eβ,λ

[
E

∣∣M =µ
] =

∫1

0
εdF E |M

β,λ

(
ε
∣∣µ)

.

The (β,λ) subscript on the expectation indicates that it is a function of those
realizations.

In what follows, we build on the foundation of Equations C.27 and C.28
to learn how two important quantities vary with the baseline: the probability
that the treatment effect is positive and the expectation of the treatment
effect.
C.3.e What drives variation in the baseline?
Looking at Equation C.27, it is clear that β must shift thresholds down
(and hence increase the distribution function F Θ

β,λ) in some sense. To add
structure to this intuition, we assume the parameter βmoves the threshold
distribution in the likelihood-ratio sense. That is,

Assumption C.15 (β shifts Θ down in the likelihood-ratio sense).
For any realization, λ, of Λ; any two real numbers θ′ and θ; and any two
baselines, β′ and β, on (0,1); if θ′ > θ and β′ >β, then the inequality

f Θ
β,λ(θ′) f Θ

β′,λ(θ) > f Θ
β′,λ(θ′) f Θ

β,λ(θ)

is satisfied.
This assumption implies that increasing β decreases the threshold distribu-
tion in the first-order-stochastic sense. That is,

Result C.9 (β shifts Θ down in the first-order stochastic sense). For
any realization, λ, of Λ, and any θ on the real line, the distribution function
F Θ
β,λ(θ) is strictly increasing in β.

Proof. Take (θ′,θ′′) satisfying θ′ < θ < θ′′ and β′ >β. Assumption C.15 tells us that
f Θ
β,λ(θ′′) f Θ

β′,λ(θ′ ) > f Θ
β′,λ(θ′′) f Θ

β,λ(θ′ ).

Integrating over all θ′′ > θ and θ′ < θ yields

F Θ
β,λ(θ)

(
1−F Θ

β′,λ(θ)
)
<

(
1−F Θ

β,λ(θ)
)

F Θ
β′,λ(θ).

Adding F Θ
β,λ(θ)F Θ

β′,λ(θ) to both sides yields the desired result.

Corollary 1. For any realization, λ, of Λ, the baseline integral,∫∞

−∞
F Θ
β,λ(µ) dΦ(µ),

is strictly increasing in β.

Appendix 40



The corollary shows that Assumption C.15 is consistent with Equation C.27.
Assumption C.15 also means that the threshold density is non-zero every-
where.

Result C.10 (Threshold density is non-zero). For any realization, λ, of
Λ, β′ on (0,1), and θ on the real line, the threshold density obeys the inequality
f Θ
β′,λ(θ) > 0.

Proof. Pick β<β′ and θ′ > θ. If f Θ
β′,λ(θ) = 0, Assumption C.15 reads

0 > f Θ
β′,λ(θ′) f Θβ,λ(θ),

which cannot hold, since densities are non-negative.

C.3.f What drives variation in the sign of the treatment effect?
Recall the expression for the treatment effect in Equation C.24, which
shows that, when the realization of (N ,B ,Λ) is (ν,β,λ), the treatment effect
is strictly positive if and only if

f ∆
β,λ(0) Eβ,λ

[
E

∣∣∆= 0
] > 0 (C.29)

and
ν > Eβ,λ

[
E M

∣∣∆= 0
]

Eβ,λ
[
E

∣∣∆= 0
] . (C.30)

A basic assumption ensures the first inequality is satisfied. So, variation in
the sign of the treatment effect is ultimately driven by variation in the two
sides of the second inequality.

The first inequality

We can write the right-hand side of the inequality in Equation C.29 more
explicitly as

f ∆
β,λ(0) Eβ,λ

[
E

∣∣∆= 0
]=∫∞

−∞
Eβ,λ

[
E

∣∣M =µ
]

f Θ
β,λ(µ) dΦ(µ). (C.31)

Result C.10 tells us that f Θ
β,λ(µ) is strictly positive, so for the entire integral

to be positive, we just have to make an assumption about Eβ,λ
[
E

∣∣M =µ
].

Assumption C.16 (Agents update). The conditional-on-prior expected
update strength, Eβ,λ

[
E

∣∣M =µ
], is strictly positive for all µ, regardless of the

realization, (β,λ), of (B ,Λ).
This assumption is rather uncontroversial; it states that the sub-population
with almost any prior doesn’t consist entirely of agents that ignore the signal.
But, it does give us the following useful result.

Result C.11. The inequality in Equation C.29 holds.
Now, we move on to the two sides of the inequality in Equation C.30.
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Marginal priors

We can write the right-hand side of the inequality in Equation C.30 more
explicitly as

Eβ,λ
[
E M

∣∣∆= 0
]

Eβ,λ
[
E

∣∣∆= 0
] =

∫∞
−∞ µ Eβ,λ

[
E

∣∣M =µ
]

f Θ
β,λ(µ) dΦ(µ)∫∞

−∞ Eβ,λ
[
E

∣∣M =µ
]

f Θ
β,λ(µ) dΦ(µ)

. (C.32)

Instead of thinking of this as the ratio of two expectations, we can think of
it as one: the expected marginal prior weighted by update strength. Looking
back at Equation C.32, this is a simple first moment with respect to the
density

ψβ,λ(µ) =
Eβ,λ

[
E

∣∣M =µ
]

f Θ
β,λ(µ)φ(µ)∫∞

−∞ Eβ,λ
[
E

∣∣M = µ̃
]

f Θ
β,λ(µ̃)φ(µ̃) d µ̃

,

whose likelihood ratio can be written

ψβ,λ(µ′)
ψβ,λ(µ)

=
f Θ
β,λ(µ′)

f Θ
β,λ(µ)

Eβ,λ
[
E

∣∣M =µ′]
Eβ,λ

[
E

∣∣M =µ
] .

So long as increasing the baseline doesn’t increase the relative update
strengths of agents with high priors (too much), this density will inherit
the maximum-likelihood property from Assumption C.15. We assume this
is the case.

Assumption C.17 (β shifts marginal agents’ update-weighted priors
down in the likelihood-ratio sense). For any realization,λ, ofΛ; any two
real numbers µ′ and µ; and any two baselines, β and β′, on (0,1); if µ′ >µ and
β′ >β, then the inequality

ψβ,λ(µ′) ψβ′,λ(µ) > ψβ′,λ(µ′) ψβ,λ(µ)

is satisfied.
This immediately implies that the distribution function that corresponds
to ψβ,λ—i.e., Ψβ,λ(µ) ≡∫µ

−∞ ψβ,λ(µ̃)d µ̃—is increasing in β.

Result C.12 (β shifts marginal agents’ update-weighted priors down
in the first-order stochastic sense). For any realization, λ, ofΛ, any real
number µ, the distribution function Ψβ,λ(µ) is strictly increasing in the base-
line, β.
Proof. This proof is almost identical to that of Result C.9.

From here it is clear that the expectation of the update-weighted prior
among the marginal is decreasing in baseline.
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Corollary 2 (β shifts the expectation of marginal agents’ up-
date-weighted priors down). For any realization, λ, ofΛ, the expectation
of update-weighted priors among themarginal, Eλ,β

[
E M

∣∣∆= 0
]/

Eλ,β
[
E

∣∣∆= 0
],

is strictly decreasing in β.

Signal

Given the results of the previous section, we see that increasing β can only
switch the sign of the treatment effect from negative to positive, so long as
the signal, N , isn’t too negatively correlated with the baseline. To simplify
things, we make the following assumption.

Assumption C.18. The conditional-on-baseline signal distribution is in-
creasing in the first-order stochastic sense with baseline; that is, for any real ν,
the function GN |B (

ν
∣∣β) is weakly decreasing in β.

We will also assume that, for any baseline, the conditional-on-baseline
nudge signal distribution has full support. This is a technical convenience:
we could proceed without it at the expense of making the statements of
subsequent theorems a but more complicated.

Assumption C.19. For any baseline, β, the conditional-on-baseline signal
distribution, GN |B (

ν
∣∣β) is strictly increasing in ν.

Now, we are prepared to show how the probability of a positive treatment
effect varies with the baseline.

The probability of a positive treatment effect

Looking back to Equation C.30, we see that, conditional on baseline, the
probability of a strictly positive treatment effect is given by

Pr
{
τ(B , N ,Λ) > 0 |B =β

}= 1−E

[
GN |B

(
EB ,Λ

[
E M

∣∣∆= 0
]

EB ,Λ
[
E

∣∣∆= 0
] ∣∣∣∣B =β

)]
,

where the expectation is over the literature-level noise, Λ. Given the as-
sumptions from the previous subsection, it is easy to see that the probabil-
ity of a positive treatment effect is increasing in the baseline.

Theorem C.2. The function Pr
{
τ(B , N ,Λ) > 0 |B =β

} is strictly increasing
in β.
Proof. Take any realization, λ, of Λ, and any two baselines on the open unit interval
that satisfy β′ >β. By Corollary 2,

Eλ,β′
[
E M

∣∣∆= 0
]/

Eλ,β′
[
E

∣∣∆= 0
] < Eλ,β

[
E M

∣∣∆= 0
]/

Eλ,β
[
E

∣∣∆= 0
]

.
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Since distribution functions are strictly increasing (by Assumption C.19), this
means that

GN |B (
Eλ,β′

[
E M

∣∣∆= 0
]/

Eλ,β′
[
E

∣∣∆= 0
]∣∣∣B =β

)
< GN |B (

Eλ,β
[
E M

∣∣∆= 0
]/

Eλ,β
[
E

∣∣∆= 0
]∣∣∣B =β

)
. (⋆)

By Assumption C.18, we also know

GN |B (
Eλ,β′

[
E M

∣∣∆= 0
]/

Eλ,β′
[
E

∣∣∆= 0
]∣∣∣B =β′)

≤ GN |B (
Eλ,β′

[
E M

∣∣∆= 0
]/

Eλ,β′
[
E

∣∣∆= 0
]∣∣∣B =β

)
.

Putting the previous two inequalities together yields

GN |B (
Eλ,B

[
E M

∣∣∆= 0
]/

Eλ,B
[
E

∣∣∆= 0
]∣∣B =β′)

< GN |B (
Eλ,B

[
E M

∣∣∆= 0
]/

Eλ,B
[
E

∣∣∆= 0
]∣∣B =β

)
.

Taking the expectation over realizations of Λ and subtracting from one yields
Pr

{
τ(B , N ,Λ) > 0

∣∣B =β′} > Pr
{
τ(B , N ,Λ) > 0

∣∣B =β
}
,

as desired. Note that this inequality would be weak ifGN |B (· ∣∣β)were constant from
between Eλ,β′

[
E M

∣∣∆= 0
]/

Eλ,β′
[
E

∣∣∆= 0
] and Eλ,β

[
E M

∣∣∆= 0
]/

Eλ,β
[
E

∣∣∆= 0
], as it

would make the inequality marked with (⋆) weak. The charm of Assumption C.19
is that it allows us to side-step this detail.

C.3.g The conditional-on-baseline expected treatment effect
In this section, we will show that the conditional-on-baseline expected
treatment effect, E

[
τ(N ,B ,Λ)

∣∣B =β
], approaches zero as the baseline ap-

proaches 0 or 1 and that it is single crossing from below. To do so, we must
first discuss averaging out the literature-level noise.

Averaging out the literature-level noise

If we take the conditional-on-baseline expectation of Equation C.27, Fu-
bini’s theorem lets us write

β=
∫∞

−∞
F Θ
β (µ)dΦ(µ),

where
F Θ
β (θ) ≡ E

[
F Θ
β,Λ(θ)

]
.

If we further define
f Θ
β (θ) ≡ E

[
f Θ
β,Λ(θ)

]
,

we can show the following result.

Result C.13. For any β ∈ (0,1), the distribution F Θ
β
represents a probability

measure on the real line with density f Θ
β
.
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Proof. Fubini’s theorem shows that, for any real θ, F Θ
β

(θ) = ∫θ
−∞ f Θ

β
(θ′)dθ′ and∫∞

−∞ f Θ
β

(θ)dθ = 1.

The probability measure represented by F Θ
β

is best thought of as a Λ-
averaged version of the measure represented by F Θ

Λ,β. Going forward, it
will prove useful to show that f Θ

β
is strictly positive.

Result C.14. For any β ∈ (0,1) and any real θ, the density f Θ
β

(θ) is strictly
positive.
Proof. This is a straightforward consequence of Result C.10.

Turning to the treatment effect, if we take the conditional-on-baseline ex-
pectation of Equation C.28, Fubini’s theorem lets us write

E
[
τ(N ,B ,Λ)

∣∣B =β
]

=
∫∞

−∞
Eβ

[
E

∣∣M =µ
]

f Θ
β (µ)

(
E
[
N

∣∣B =β
]−µ

)
dΦ(µ), (C.33)

where
Eβ

[
E

∣∣M =µ
] ≡ E

[
Eβ,Λ

[
E

∣∣M =µ
] f Θ

β,Λ(µ)

f Θ
β

(µ)

]
.

This definition is well defined by Result C.14. It is useful to show that it is
strictly positive and bounded by one.

Result C.15. For any β ∈ (0,1) and any real µ, the expectation
Eβ

[
E

∣∣M =µ
] is strictly positive and bounded above by one.

Proof. Positivity is is a straightforward consequence of Assumption C.16 and Re-
sults C.10 and C.14. To see that Eβ

[
E

∣∣M =µ
]≤ 1, note that

Eβ
[
E

∣∣M =µ
] =

∫
Eβ,Λ

[
E

∣∣M =µ
] f Θ

β,Λ(µ)∫
f Θ
β

(µ)dGΛ(λ)
dGΛ(λ).

The fraction f Θ
β,Λ(µ)

/ ∫
f Θ
β

(µ)dGΛ(λ) is a density with respect to GΛ(λ),
so Eβ

[
E

∣∣M =µ
] is an average of terms that are between 0 and 1. Hence,

Eβ
[
E

∣∣M =µ
]≤ 1.

The expectation Eβ
[
E

∣∣M =µ
] is best thought of as a Λ-averaged and re-

weighted version of Eβ,λ
[
E

∣∣M =µ
]. The re-weighting factor, f Θ

β,λ(µ)
/

f Θ
β

(µ)

ensures that if Λ causes a certain threshold to be more likely, then that
threshold’s expected update strength is more heavily weighted.

Putting our two pieces together, note that

Eβ
[
E

∣∣M =µ
]

f Θ
β (µ) = E

[
Eβ,Λ

[
E

∣∣M =µ
]

f Θ
β,Λ(µ)

]
,
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that is, Eβ
[
E

∣∣M =µ
]

f Θ
β

(µ) is the expectation overΛ of Eβ,Λ
[
E

∣∣M =µ
]

f Θ
β,Λ(µ).

One might then think that Eβ
[
E

∣∣M =µ
]

f Θ
β

(µ) inherits the monotone-
likelihood-ratio property of Assumption C.17. This is not the case; we
must assume it.

Assumption C.20. For any two real numbers µ′ and µ, and any two base-
lines, β′ and β, on (0,1), if µ′ >µ and β′ >β, then the inequality{

Eβ
[
E

∣∣M =µ′] f Θ
β (µ′)

} {
Eβ′

[
E

∣∣M =µ
]

f Θ
β′ (µ)

}
>

{
Eβ′

[
E

∣∣M =µ′] f Θ
β′ (µ′)

} {
Eβ

[
E

∣∣M =µ
]

f Θ
β (µ)

}
.

is satisfied.
The reason wemust make Assumption C.20 is simple: Featherstone (2024)
shows that the monotone-likelihood property doesn’t necessarily aggregate
for arbitrary distributions over Λ. That paper also provides a simple mixing
condition that ensures it does; Assumption C.20 can be interpreted as as-
suming that mixing condition.

Now that we have discussed averaging out the literature-level noise,
we are prepared to discuss how the expected treatment effect changes as a
function of the baseline.

Expected treatment effect as baseline approaches 0 and 1

We begin by characterizing the convergence of F Θ
β
for baselines approaching

0 and 1.
Result C.16. For any real θ, the following limits hold:

lim
β→0

F Θ
β (θ) = lim

β→1

(
1−F Θ

β (θ)
)
= 0.

In other words, as β approaches 0 or 1, the measure represented by F Θ
β

con-
verges vaguely to the zero measure.9a

Proof. We’ll start with the proof for a baseline of 0; the proof for a baseline of 1
is completely symmetric. Consider a sequence (βk ) whose limit is zero. Clearly,
liminf F Θ

βk (θ) ≥ 0, since distribution functions are non-negative.

9a. Vague convergence is a generalization of weak convergence that allows convergence to
sub-probability measures that assign a less-than-one measure to the entire outcome space.
The canonical example considers a sequence of random variables whose distributions are
Φ(n − x). This sequence of distributions converges pointwise to zero as n → ∞, but zero
is not a distribution. So, the sequence fails to converge weakly to anything, but it does
converge vaguely to the zero measure. See Chung (2001).
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It is also true that limsup F Θ
βk (θ) ≤ 0. To see this, first note that, since distri-

bution functions are weakly increasing, for any K > 0, there exists a k such that
F Θ
βk (x) ≥ limsup F Θ

βk (θ) for any x ≥ θ. This implies we would have

limsup
∫∞

−∞
F Θ
βk (µ) dΦ(µ) ≥

(
limsup F Θ

βk (θ)
) (

1−Φ(θ)
)
.

If limsup F Θ
βk (θ) were strictly positive, this would contradict the assumption that

βk → 0. Hence, limsup F Θ
βk (θ) = 0, which means that F Θ

βk (θ) → 0. And since there
was nothing special about θ, this must hold for for all θ on the real line. In other
words, F Θ

βk converges vaguely to the zero measure chung2001course.

Given this result, we can characterize the limiting behavior of the expected
treatment effect as the baseline approaches 0 or 1.

Proposition C.4. The limit of E[
τ(N ,B ,Λ)

∣∣B =β
] as β approaches either

0 or 1 is zero.
Proof. Looking at Equation C.33, we can use the triangle inequality to write the
bound ∣∣E[

τ(N ,B ,Λ)
∣∣B =β

]∣∣≤ ∫∞

−∞
(
ν̄+|µ|) φ(µ)dF Θ

β (µ).

where ν̄ is the bound from Assumption C.14. We have removed Eβ
[
E

∣∣M =µ
] as, by

Result C.14, it is positive and bounded by 1.
Clearly, the integrand approaches zero as µ approaches ±∞. Then, using

Result C.16 and the vague-convergence equivalent of the Portmanteau Theorem
(Chung 2001, Theorem 4.4.1), ∣∣E[

τ(N ,B ,Λ)
∣∣B =β

]∣∣ must approach zero as β

approaches 0 or 1. Hence, E[
τ(N ,B ,Λ)

∣∣B =β
] does as well.

The expected treatment effect takes both signs

For a given realization, (ν,β,λ), of (N ,B ,Λ), when the inequality in Equa-
tion C.30 is satisfied, the treatment effect is strictly positive; otherwise, it
is not. Looking to Equations C.32 and C.33, it is clear that the analogous
condition for the conditional-on-baseline expected treatment effect to be
strictly positive is

E
[
N

∣∣B =β
] >

∫µ
−∞ µ̃ Eβ

[
E

∣∣M = µ̃
]

f Θ
β

(µ̃)φ(µ̃)d µ̃∫∞
−∞ Eβ

[
E

∣∣M = µ̃
]

f Θ
β

(µ̃)φ(µ̃) d µ̃
. (C.34)

The right-hand side of this inequality can be written as the first moment of
a random variable whose density with respect to the measure F Θ

β
is

ψβ(µ) ≡ Eβ
[
E

∣∣M =µ
]
φ(µ)∫∞

−∞ Eβ
[
E

∣∣M = µ̃
]
φ(µ̃) dF Θ

β
(µ̃)

;

its distribution is hence Ψβ(µ) ≡ ∫µ
−∞ ψβ(µ̃)dF Θ

β
(µ̃). This random variable

is some sort of expectation-weighted prior, so we refer to it as Eβ
[
ME

] ≡∫∞
−∞ µψβ(µ̃)dF Θ

β
(µ̃).
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Clearly, the measure Ψβ is absolutely continuous with respect to the
measure F Θ

β
. We will need this to hold uniformly across all baselines to

ensure the measure Ψβ doesn’t develop any atoms as β approaches zero or
one. Formally,

Assumption C.21 (Uniform absolute continuity). For any ι> 0, there
exists an α> 0 such that, for any set, A, and baseline, β, if ∫

A dF Θ
β
<α, then,∫

A ψβ(µ)dF Θ
β
< ι.

This assumption immediately implies thatΨβ and F Θ
β
have the same behav-

ior in the limit where the baseline approaches zero or one.

Result C.17. For any real µ, the following limits hold:
lim
β→0

Ψβ(µ) = lim
β→1

(
1−Ψβ(µ)

) = 0.

Proof. Consider the set A = (−∞,µ]. By Assumption C.21, for any ι> 0, there exists
an α > 0 such that when F Θ

β
(µ) < α, Ψβ(µ) < ι. But by Result C.16, for sufficiently

small β, F Θ
β

(µ) < α. Hence, for sufficiently small β, Ψβ(µ) < ι. And since ι can be
made arbitrarily small, we have established the first desired limit. The second can
be proven in a similar manner, starting with the set A = (µ,∞).

By Assumption C.20, we see that Ψβ(µ) is increasing in β, which will allow
us to use the monotone-convergence theorem in what follows.

Result C.18. For any real µ, the distribution function Ψβ(µ) is strictly in-
creasing in β.
Proof. Assumption C.20 tells us that, for any two real numbers µ′′ and µ, and any
two baselines, β′ and β, on (0,1), if µ′′ >µ and β′ >β, then the inequality{

Eβ
[
E

∣∣M =µ′′
]

f Θ
β (µ′′)

} {
Eβ′

[
E

∣∣M =µ
]

f Θ
β′ (µ)

}
>

{
Eβ′

[
E

∣∣M =µ′′
]

f Θ
β′ (µ′′)

} {
Eβ

[
E

∣∣M =µ
]

f Θ
β (µ)

}
.

is satisfied. If we integrate over all (µ,µ′′) pairs that satisfy µ′′ >µ′ >µ, we get∫∞

µ′
Eβ

[
E

∣∣M = µ̃
]

f Θ
β (µ̃)dΦ(µ̃)

∫µ′

−∞
Eβ′

[
E

∣∣M = µ̃
]

f Θ
β′ (µ̃)dΦ(µ̃)

>
∫∞

µ′
Eβ′

[
E

∣∣M = µ̃
]

f Θ
β′ (µ̃)dΦ(µ̃)

∫µ′

−∞
Eβ

[
E

∣∣M = µ̃
]

f Θ
β (µ̃)dΦ(µ̃).

If we then divide by∫∞

−∞
Eβ′

[
E

∣∣M = µ̃
]
φ(µ̃) dF Θ

β′ (µ̃)
∫∞

−∞
Eβ

[
E

∣∣M = µ̃
]
φ(µ̃) dF Θ

β (µ̃),

this becomes (
1−Ψβ(µ′)

)
Ψβ′ (µ′) >

(
1−Ψβ′ (µ′)

)
Ψβ(µ′),

which simplifies to
Ψβ′ (µ′) >Ψβ(µ′),

as we set out to show.

Appendix 48



Finally, we are ready to state the main result from this section.

Result C.19. The limits

lim
β→0

Eβ
[
ME

]=+∞ and

lim
β→1

Eβ
[
ME

]=−∞

are satisfied.
Proof. We will show just the first limit; the second follows from similar reasoning.
Recall the integrated-tail-probability expectation formula (Lo, 2018), which states
that

Eβ
[
ME

] =
∫∞

0

(
1−Ψβ(µ)

)
dµ −

∫0

−∞
Ψβ(µ)dµ.

The first integral on the right-hand side is the expectation of the positive part of the
random variable (i.e., Eβ

[
M+

E

]
≡ Eβ

[
max{0, ME }

]), while the second is the expecta-
tion of the negative part (i.e., Eβ

[
M−

E

]
≡ ∣∣Eβ [

min{0, ME }
]∣∣).

The limit of Eβ
[

M+
E

]
is∞. To see this, consider a sequence of βn that converge

monotonically to zero. Then, 1−Ψβn
(µ) is a monotonically increasing sequence

of non-negative functions that converges to one everywhere. Then, the monotone
convergence theorem states that

lim
n→∞

∫∞

0

(
1−Ψβn

(µ)
)

dµ=
∫∞

0
dµ=∞.

This states that for each M > 0, there exists N > 0 such that, when n > N ,∫∞
0

(
1−Ψβn

(µ)
)

dµ > M . But since this holds for any starting sequence, (βn ), that
converges monotonically to 0, we have that when β < βN ,

∫∞
0

(
1−Ψβn

(µ)
)

dµ > M ,
which establishes the desired limit.

The limit of Eβ
[

M−
E

]
as β approaches zero is 0. To see this, using the same sort

ofmonotonic sequencewe used in the previous paragraph, note thatΨβ1
(µ)−Ψβn

(µ)
is a monotonically increasing sequence of non-negative functions that converges to
Ψβ1

(µ). Then, we can use the same monotone-convergence-theorem logic to state

lim
n→∞

∫0

−∞

(
Ψβ1

(µ)−Ψβn
(µ)

)
dµ=

∫0

−∞
Ψβ1

(µ)dµ.

Using the linearity of the integral, this becomes

Eβ1

[
ME

] − lim
n→∞

∫0

−∞
Ψβn

(µ)dµ = Eβ1

[
ME

]
,

lim
n→∞

∫0

−∞
Ψβn

(µ)dµ = 0.

Plugging the results from the past two paragraphs into the integrated-tail-
probability expectation formula, we have shown that Eβ

[
ME

] approaches ∞ as β

approaches zero.

This, in turn, allows us to know that the treatment effect takes on both
positive and negative values.
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Proposition C.5. There is some β > 0 such that, when β < β,
E
[
τ(N ,B ,Λ)

∣∣B =β
] < 0. Similarly, there is some β̄ such that, when

β> β̄, E[
τ(N ,B ,Λ)

∣∣B =β
]> 0.

Proof. Assumption C.14 states that E
[
N

∣∣B =β
] is bounded above

and below. Result C.19 states that as β→ 0, Eβ
[
ME

] grows without
bound. Hence, there exists some β such that, for all β < β, the
inequality in Equation C.34 will eventually be violated, leading
E
[
τ(N ,B ,Λ)

∣∣B =β
] to be negative. A similar logic shows that

E
[
τ(N ,B ,Λ)

∣∣B =β
] is positive for all baselines that exceed some

β̄.

Single crossing of the expected treatment effect

We now turn to show that the conditional-on-baseline expected treatment
effect is single crossing from below.

Proposition C.6. Take two baselines on (0,1), β′ and β, where β′ > β.
When E

[
τ(N ,B ,Λ)

∣∣B =β
]≥ 0, it must be that E[

τ(N ,B ,Λ)
∣∣B =β′]> 0.

Proof. Define

τ+(β′,β) ≡
∫E

[
N

∣∣∣B=β
]

−∞
Eβ′

[
E

∣∣M =µ
]

f Θ
β′ (µ)

(
E
[
N

∣∣B =β
]−µ

)
dΦ(µ),

τ−(β′,β) ≡
∫∞

E
[

N
∣∣∣B=β

] Eβ′
[
E

∣∣M =µ
]

f Θ
β′ (µ)

(
E
[
N

∣∣B =β
]−µ

)
dΦ(µ), and

τ(β′,β) ≡
∫∞

−∞
Eβ′

[
E

∣∣M =µ
]

f Θ
β′ (µ)

(
E
[
N

∣∣B =β
]−µ

)
dΦ(µ),

so that τ(β′,β) = τ+(β′,β) + τ−(β′,β). Then, τ(β,β) is the expected treatment ef-
fect conditional on the baseline being β (i.e., E[

τ(N ,B ,Λ)
∣∣B =β

]), and τ+(β,β) and
τ−(β,β) are the respective contributions to the treatment effect from those who, in
expectation, are nudged into and out of take-up.

For all (µ,µ′) pairs that satisfy µ < E
[
N

∣∣B =β
] < µ′, Assumption C.20 holds.

If we then multiply it by (
E
[
N

∣∣B =β
]−µ

) (
E
[
N

∣∣B =β
]−µ′

), the inequality flips,
yielding {

Eβ
[
E

∣∣M =µ′
]

f Θ
β (µ′)

} (
E
[
N

∣∣B =β
]−µ′

)
{
Eβ′

[
E

∣∣M =µ
]

f Θ
β′ (µ)

} (
E
[
N

∣∣B =β
]−µ

)
<

{
Eβ′

[
E

∣∣M =µ′
]

f Θ
β′ (µ′)

} (
E
[
N

∣∣B =β
]−µ′

)
{
Eβ

[
E

∣∣M =µ
]

f Θ
β (µ)

} (
E
[
N

∣∣B =β
]−µ

)
.

If we then integrate with respect to the measure Φ over all (µ,µ′) pairs that satisfy
µ< E

[
τ(N ,B ,Λ)

∣∣B =β
]<µ′, we get
τ−(β,β) τ+(β′,β) < τ−(β′,β) τ+(β,β)
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Since the τ− terms are negative, we can also write
|τ−(β,β)| τ+(β′,β) > |τ−(β′,β)| τ+(β,β),

Now, an immediate consequence of Results C.14 and C.15 is that τ+(β′,β) and
τ−(β′,β) are both non-zero. When β′ = β, this says that there is some mass of
the population that the expected signal, E[

N
∣∣B =β

], would nudge into take-up and
some mass that it would nudge out of take up.

Given the positivity of τ−(β′,β) and τ−(β,β), we can transform the previous
inequality to

τ+(β′,β)

|τ−(β′,β)| > τ+(β,β)

|τ−(β,β)| .

By assumption, E[
τ(N ,B ,Λ)

∣∣B =β
]≥ 0, which is equivalent to τ+(β,β)−|τ−(β,β)| ≥ 0,

which is equivalent to τ+(β,β)
/ |τ−(β,β)| ≥ 1. Hence, τ+(β′,β)

/ |τ−(β′,β)| > 1, which
tells us that τ+(β′,β)−|τ−(β′,β)| > 0, which is equivalent to τ(β′,β) > 0.

Assumption C.18 immediately implies that E[
N

∣∣B =β
] is weakly increasing in

β. So, τ(β′,β) is weakly increasing in its second argument, which tells us that
τ(β′,β′) ≥ τ(β′,β). Hence, if τ(β′,β) is strictly positive, then so is τ(β′,β′). But,
τ(β′,β′) = E

[
τ(N ,B ,Λ)

∣∣B =β′], so we have shown that E
[
τ(N ,B ,Λ)

∣∣B =β′] > 0, es-
tablishing the desired result.

The shape of the expected treatment effect curve

Results C.4, C.5, and C.6 establish the shape of the conditional-on-baseline
expected treatment effect.

Theorem C.3. E
[
τ(N ,B ,Λ)

∣∣B =β
] approaches zero as β approaches

zero or one. Further, there is some baseline, β0 ∈ (0,1), such that
E
[
τ(N ,B ,Λ)

∣∣B =β
] ≤ 0 when β ≤ β0 and E

[
τ(N ,B ,Λ)

∣∣B =β
] > 0

when β>β0.
Pictorially then, we expect something like part (h) of Figure 1 in the main
text.
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