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Abstract

We incorporate asymmetric information into collective household models,

demonstrating how this approach can identify bargaining power. We first

discuss the typical non-identification of bargaining power in collective mod-

els. We then show that point identification becomes possible when household

members may exploit information advantages in bargaining. Specifically, we

formulate the household’s decision process as a binary choice under partial

information disclosure using a Bayesian persuasion framework. This struc-

ture enables us to point identify utility and bargaining power, which would

not be identified under symmetric information. We also extend our model to

situations involving multiple choices and multiple players.
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1 Introduction

The collective model, pioneered by Becker (1981) and Chiappori (1988, 1992), is widely

used for analyzing household behavior. We address two issues in this literature. First,

there is a scarcity of research that incorporates information asymmetry into formal mod-

els of collective behavior, even though many experimental studies document significant

instances and implications of asymmetric information in household decisions. For ex-

ample, income hiding by spouses is well documented.1 Second, when the model implies

Pareto-efficient decisions, the Pareto weights, a measure of intrahousehold bargaining

power,2 are often difficult to identify. As emphasized in Chiappori and Mazzocco (2017),

integrating asymmetric information and achieving identification results are crucial for

effective policy design and evaluation.

A famous result in the efficient collective household model literature is the non-

identification3 of utility and Pareto weights from continuous demand data, unless one

imposes strong behavioral restrictions (e.g., Chiappori and Ekeland, 2009). We show

that a similar non-identification holds for discrete household decisions such as a binary

choice, but surprisingly, identification becomes achievable when there is asymmetric in-

formation among household members.

In this paper we focus on the case where the collective household’s decision is a

binary choice (later extended to multiple choices). As noted by de Palma et al. (2014)

discrete choice decision-making is commonly required in collective households. Examples

include fertility decisions or deciding whether a spouse should work or not. Often it is

plausible to assume that information regarding binary or other discrete decisions could

be asymmetric. One example would be a large purchase decision when one household

member may conceal a portion of income. Another example could be the decision of

whether to send a child to an expensive school or not, where the stay at home spouse has

better information regarding the child’s talents.

1See, e.g., Castilla (2019) and references therein. Other examples include Ashraf (2009), Castilla and
Walker (2013), Doepke and Tertilt (2016), Apedo-Amah et al. (2020), and Ashraf et al. (2022).

2In two-person households, efficiency guarantees that the household behaves as if it were maximizing
a weighted average of the utility functions of the two household members. The weights on these utility
functions, known as Pareto weights, are interpreted as a measure of relative bargaining power of the two
household members.

3Throughout this paper, when we refer to identification, we mean point identification. In contrast,
set identification in collective household models is possible just from household demand functions. See,
e.g., Cherchye et al. (2015) and Cherchye et al. (2017).
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Regarding identification, standard Samuelson-Houthakker revealed preference theory

says that the (ordinal) utility function of a single utility-maximizing consumer can be

identified from that consumer’s observable continuous demand functions. Chiappori and

Ekeland (2009), among others, show that this identification does not extend to efficient

collective households: the utility and relative bargaining power of household members

cannot be identified just from a household’s observable demand functions. Additional

behavioral or data assumptions are required. Examples of such assumptions that have

been proposed to obtain collective model identification include preference similarity re-

strictions across people, strong functional form restrictions, or assuming that some goods

are known to be assignable, i.e., consumed by only one household member. Section 3.3

provides a detailed discussion.

This collective household literature starts from knowledge that suffices to identify a

single person’s preferences over continuous goods, shows that this knowledge does not

identify collective household model utilities and bargaining power, and then adds addi-

tional model assumptions that make identification of continuous decision collective models

possible.

In this paper, we do the same for discrete decision models. We start from assumptions

that suffice to identify the preferences of a single person (e.g., a logit or probit model).

We show that this knowledge is not enough to identify collective household utilities and

bargaining power, and then provide a new modeling assumption, asymmetric information,

that suffices for identification. Though one could argue that, rather than adding an

assumption, we are relaxing the assumption of perfect information.

In a logit or probit model, an individual’s utility function is v + e if he chooses

action a1 and zero otherwise. Here v, which generally would be a function of covariates,

is the individual’s deterministic utility level from choosing a1, and e is a state-specific

random component that is observed by the individual. Maximizing utility, the individual

chooses a1 if e exceeds a cutoff c∗ that suffices to make utility v + e positive, so c∗ =

−v. The researcher is assumed to observe the probability p that the individual chooses

a1. This p is identified either by observing the same individual making choices many

times, or by observing the choices of many individuals who are assumed to have similar

preferences. Observing p here is the analog to observing quantity demand functions in

standard revealed preference theory. Assume that G, the cumulative distribution function
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of e, is known to the researcher (logistic in the case of logit models, or standard normal in

the case of probit models). This standard assumption then suffices to identify the utility

level v from p = 1−G (−v).

In our extension of this model to the collective household, a husband and wife have

utility vh+ e and vw + e, respectively, from choosing a household-level action a1 and zero

otherwise. Under symmetric information, where both spouses observe the realization of

e simultaneously, efficiency again results in the household choosing to take action a1 if e

exceeds a cutoff c∗, but now c∗ is determined by
(
vh + c∗

)
λh+ vw + c∗ = 0 with λh being

the Pareto weight that (relative to one) defines the husband’s relative bargaining power.

In this model, knowing p (the probability that the household chooses a1) and G is not

sufficient to identify any of the parameters vh, vw, or λh.4 We prove this non-identification

following Proposition 1 below.

We then consider an asymmetric information scenario where one household member,

say the wife, observes e, and the other does not. The wife can either fully disclose e to her

husband or not, depending on whichever choice will yield her higher utility. We formulate

the household’s decision process under partial information disclosure using the Bayesian

persuasion framework (Kamenica and Gentzkow, 2011).5 This allows us to obtain the

household’s equilibrium condition and solve the model.6 The result is that there will

still be a cutoff c∗ such that the household chooses a1 if e exceeds c∗, but c∗ is a more

complicated function than before.

Depending on the relative values of the above parameters, the wife will decide whether

to reveal e. If she does reveal e, the husband’s bargaining power will be given by λh above.

But if she chooses not to reveal e, we show that the husband will have a different Pareto

weight λh∗ that is a function of vh, vw, and c∗. The wife maximizes her own utility by

4In discrete choice models, deterministic utility values vh and vw depend on the normalization of
the variance of the random utility component e, given that overall scale of utility is irrelevant (Train,
2009). Nevertheless, the point identification of v under the specified assumptions of e becomes crucial, as
it facilitates market aggregation, welfare analyses, and counterfactual policy evaluations with collective
household decision-making. In Section 3, we show how a researcher can make informed choices regarding
the distribution of e.

5Prior studies like Kamenica (2019) typically either consider multiple players learning the informa-
tion, or multiple players being uninformed. Our analysis extends to encompass both scenarios.

6Full information disclosure is equivalent to no information asymmetry, as both spouses then become
informed upon the realization of e. The alternative to full disclosure is the wife devising a recommen-
dation strategy before e is realized. Following the realization, she recommends a choice to her husband
in accordance with her recommendation strategy. The husband, upon receiving his wife’s recommenda-
tion, updates his belief regarding the information and then determines whether to accept. The resulting
equilibrium describes the household’s behavior.
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making the information revealing choice that yields the lower of λh and λh∗. This variation

in Pareto weights resulting from the wife’s information advantage is what allows us to

potentially identify the parameters vh, vw, and λh. Examining the equilibrium solution

in detail also reveals that the husband’s relative bargaining power decreases the larger is

the variance of e, and decreases the closer vh is to vw.

Finally, we extend our model to situations with multiple choices and then to multi-

ple players. Our conclusions about the optimal decision and bargaining power remain

similar to those in the two-choice, two-player case, though they require some additional

assumption about the structure of players’ utility. We show that identification can still

be achieved, based on independent moment conditions that arise from varying relation-

ships among players’ preferences and/or their information access. The number of moment

conditions required depends on the number of choices and players.

In the sense that information asymmetry affects spouses’ bargaining power without

affecting their preferences or the budget constraint, it is an example of a distribution

factor. However, in contrast to standard distribution factors, information asymmetry

allows us to identify the level of bargaining power (and not just how power changes as

a function of the distribution factor). Our results suggest that information asymmetry

may be a generally useful tool for obtaining identification in collective household models.

The paper is organized as follows. Section 2 sets out a binary choice collective model

with information asymmetry. Section 3 shows the identification. Section 4 extends the

model to incorporate multiple choices and multiple players. Section 5 concludes.

2 A collective model with information asymmetry

Consider a household with a husband and a wife, m ∈ {h,w}, that faces a choice between

two alternative actions ai ∈ A ≡ {a1, a2}. For now, the indices i and m each only take on

two values, but the notation we develop here will later extend to results involving more

players and more actions.

Each member m has a continuous utility function um that depends on the choice ai

and the state of the world ε = (ε1, ε2) ∈ Ω, which also depends on the choice. Let

e ≡ ε1−ε2 denote the state-specific utility associated with choosing a1 relative to a2, and

vm denote the deterministic utility associated with choosing a1 over a2. So the utility
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from choosing a1 is vm + e for member m,7 with the utility of a2 being normalized to

0. This is a free normalization for each member, which is taken before applying the

equilibrium calculation.

Both vm and the distribution of e may also depend on a covariate vector x, containing

variables like individual attributes of the spouses (e.g., age, education, income, and health

status) or attributes of the household (e.g., whether they rent or own a home). The state

of the world e follows a conditional cumulative distribution function G(· | x) with mean

normalized to zero. We will usually omit the vector x for notational simplicity.

If an individual m observed e and then chose ai to maximize utility, this would be a

standard binary choice model—e.g., if G was a standard normal distribution, this would

yield an ordinary binary probit model. We instead consider a collective household where

each spouse m has their own utility function.

2.1 Full symmetric information

Before the realization of e, the husband and wife collectively design a decision strategy,

which can be formulated as π : Ω → ∆(A), a mapping from e to the set of all probability

distributions over A. That is, π (ai | e) is the probability of the household choosing ai

conditional on e. After the realization of e, the husband and wife make a choice based

on their ex ante determined strategy. The decision process is illustrated in panel A of

Figure 1.

To model the collective household’s behavior, we follow Chiappori (1988, 1992) by

making the following assumption:

Assumption 1 The household decision strategy π : Ω → ∆(A) is efficient in the sense

that no other feasible choice would have enhanced the utility of both spouses.

Given the randomness of e, this assumption posits that household decisions exhibit

ex ante efficiency. Whether households actually behave efficiently is an open question—

e.g., domestic violence is sometimes cited as evidence of inefficiency. Nevertheless, the

assumption of efficiency is widely used in both theoretical and empirical models of the

household. See, e.g., Browning et al. (1994), Lewbel and Pendakur (2022), and references

therein.

7The utility function can be extended to incorporate more complex relationships between the two
components, as long as um monotonically increases with εi. We assume additivity between the two
components here for simplicity.
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2.1.1 Equilibrium

We now consider the household’s equilibrium behavior. The optimal strategy is to max-

imize each member m’s expected utility while holding the expected utility of the other

member m′ at a given level, denoted as um′
o :

max
π

∫
π (a1 | e) (vm + e) dG(e), (1)

s.t.

∫
π (a1 | e) (vm

′
+ e) dG(e) ≥ um′

o , m ∈ {h,w} and m′ ̸= m. (2)

Here π(a1 | e) is the probability that the household chooses a1 conditional on e; so the

probability that the household chooses a2 is 1 − π(a1 | e). Let λm denote the Lagrange

multiplier for the constraint in equation 2. Then the problem is equivalent to:

max
π

∑
m∈{h,w}

λm

∫
π (a1 | e) (vm + e) dG(e). (3)

Based on equation 3, a Pareto-efficient outcome maximizes a weighted sum of the two

individual utilities, with the weight being λm for member m. A feature of the formulation

in equation 3 is that the Pareto weight λm has a natural interpretation in terms of m’s

intrahousehold bargaining power (Browning et al., 1994). Since increasing λm in equation

3 results in a move along the Pareto set in the direction of higher utility for m and lower

for m′, the coefficient λm reflects m’s bargaining power, in the sense that a larger λm

corresponds to more power and better outcomes being enjoyed by m.

Note that our model permits, but does not require, the presence of a vector z of dis-

tribution factors, defined as observed household characteristics that affect Pareto weights

λm but do not affect individual household members’ utility functions um (or a budget

constraint if present). Possible examples of distribution factors include sex ratio on the

relevant marriage market, divorce legislation, generosity of single parent benefits, spouses’

wealth at marriage, and the targeting of specific benefits to particular members (Browning

et al., 1994; Bourguignon et al., 2009).

For ease of exposition, we normalize the wife’s bargaining power to 1 (this is another

free normalization) and denote the husband’s relative bargaining power as λh. Solving

problem 3 gives us the following proposition.
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Proposition 1 Under Assumption 1, the household’s optimal strategy π∗(ai | e) is

π∗ (a1 | e) = 1(e ≥ c∗),

where 1(·) is an indicator function and

c∗ = −λhvh + vw

λh + 1
. (4)

Proof. See Appendix I.

This result says that the household will choose a1 when the relative utility of doing

so, i.e. e, is above the cutoff c∗ defined by equation 4. This cutoff depends on bargain-

ing power and the deterministic utility levels of each spouse. If the husband had zero

bargaining power, so λh = 0, the household decision would be determined solely by the

wife’s utility, with a cutoff c∗ = −vw. In this case, the model would reduce to standard

binary choice, e.g., a logit model if G has a logistic distribution.

2.1.2 Non-identifiability

Note again that throughout this paper, when we refer to identification, we mean point

identification, not set identification. Recall that π(a1 | e) is the conditional probability

of the household choosing a1. Let p =
∫
π (a1 | e) dG(e) denote the unconditional prob-

ability that the household chooses a1. Suppose a researcher has the information that

would be used to estimate a logit or probit model. This means that the researcher knows

the distribution function G (e.g., logistic if a logit model or standard normal if a probit

model), and can estimate the probability p, either by observing the household making re-

peated choices, or by observing the choices of a homogeneous sample of households. The

household’s optimal cutoff c∗ in equation 4 could then be identified from p = 1−G (c∗),

assuming G is invertible.

However, while c∗ is identified, the spouses’ bargaining power and utilities, i.e., the

parameters λh, vh, vw, remain unidentified, since we have only one equation 4 with three

unknowns. To prove non-identification, consider a solution set {λ̌h, v̌h, v̌w}. Another

valid solution set is given by {(λ̌h + 1)(1 + ϵ)− 1, v̌h, v̌w + (v̌w − v̌h)(1 + ϵ)}, where ϵ is

an arbitrarily small positive constant. So a continuum of solutions exists, corresponding

to different values of ϵ. This remains true even if we observed some distribution factors
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z, by replacing λ̌h with λ̌h(z).

2.2 Asymmetric information

Now we introduce information asymmetry into the model. For simplicity, we focus on the

case where the wife learns the realized value of the state of the world e, and the husband

remains uninformed, but later we will also consider the reverse.

Before e is realized, both spouses share a common prior G(·). After the realization

of e, suppose the wife knows its value while the husband does not. The wife then has

the option to either fully disclose this information to her husband, or not, depending

on which option gives her higher utility. In the case of full information disclosure, the

analysis follows the same approach as in the preceding section, as both spouses learn the

value of e upon its realization. The decision process is illustrated in panel B of Figure 1.

2.2.1 Partial information disclosure

We model partial information disclosure as the wife who will first learn the realized value

of e, designing a recommendation strategy ϖ(ai | e) : Ω → ∆(A), where ϖ (ai | e) is the

probability of she recommending choice ai to her husband conditional on e.8 Upon the

realization of e, the wife recommends a choice in accordance with ϖ(ai | e). The hus-

band, upon receiving his wife’s recommendation, updates his belief regarding e and then

determines whether to accept the recommendation. The decision process is illustrated in

panel C of Figure 1.

We obtain an equilibrium solution for this model using the Bayesian persuasion frame-

work proposed by Kamenica and Gentzkow (2011). The solution concept is an information

sender-preferred subgame perfect equilibrium, since given a prior G(·) and the choice ai

recommended by the wife (information sender), the husband (information receiver) forms

the posterior Gϖ(e | ai) using Bayes’s rule and makes a decision that maximizes his utility.

In this case, solving the model requires a less stringent version of the ex ante efficiency

assumption:

Assumption 1’ The household decision strategy π : Ω → ∆(A) is invariant to the state

of the world e.

8The model allows the sender to choose any form of signal to reveal, not limited to a binary signal
from the choice set. Kamenica and Gentzkow (2011) note that focusing on signals from the choice set (in
our case, the wife recommends either a1 or a2) greatly simplifies the analysis without loss of generality.
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This assumption inherently follows Assumption 1, suggesting the Pareto weights remain

invariant across various values of e (Browning et al., 1994; Browning, 2009; Browning

et al., 2014).

To consider equilibrium household behavior in the case of partial information disclo-

sure, we begin by characterizing the husband’s problem. Given the wife’s recommendation

strategy ϖ(ai | e), the husband follows her recommendation if and only if:∫
(vh + e) dGϖ(e | a1) ≥ 0 ≥

∫
(vh + e) dGϖ(e | a2). (5)

That is, when the wife recommends a1, the husband’s expected utility from choosing

a1 must exceed his expected utility from choosing a2; and the same applies if his wife

recommends a2. Since the wife has to consider her husband’s behavior (equation 5)

in making recommendations, this ensures that in equilibrium, the husband will always

follow the wife’s recommendation. Therefore, the outcome of the equilibrium is that the

household will do whatever the wife recommends. So we have:

π(a1 | e) ≡ ϖ(a1 | e).

We next establish the following result that simplifies our analysis.

Lemma 1 The husband’s expected utility upon receiving the wife’s recommendation is no

lower than his utility from taking action without such a recommendation:∫
π(a1 | e)(vh + e) dG(e) ≥ max{vh, 0}, (6)

where G(·) is the cumulative distribution function of e.

Proof. This result is essentially equivalent to equation 5. See Appendix I.

2.2.2 Equilibrium

Taking her husband’s behavior under partial information disclosure as given, the wife

either fully discloses the information e, or chooses a recommendation strategy π(a1 | e)

before the realization of e. Full information disclosure results in the husband’s expected

utility being uh
o , the level when his wife maximizes her utility (equation 2). Partial

information disclosure results in the husband’s expected utility being max{vh, 0}, as e
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has a zero mean. The wife will choose whichever constraint is less restrictive to maximize

her expected utility:

max
π

∫
π(a1 | e)(vw + e) dG(e), (7)

s.t.

∫
π(a1 | e)(vh + e) dG(e) ≥ min

{
uh
o , max{vh, 0}

}
. (8)

That is, the wife will opt for full information disclosure when uh
o ≤ max{0, vh} and partial

information disclosure otherwise. The husband’s expected utility will be the lower bound

of what he would have under full or partial information disclosure.

We again reformulate the problem using a Lagrange multiplier that represents bar-

gaining power:

max
π

λh

∫
π(a1 | e)(vh + e) dG(e) +

∫
π(a1 | e)(vw + e) dG(e). (9)

Solving this problem yields the following proposition.

Proposition 2 Suppose the wife, and not the husband, learns the value of e after its

realization. The household’s optimal strategy π∗(ai | e) is then

π∗ (a1 | e) = 1(e ≥ c∗),

where 1(·) is the indicator function and c∗ depends on the value of uh
o versus max{vh, 0}

as follows:

i) When uh
o ≤ max{vh, 0}, the wife fully discloses e to the husband under Assumption

1, with c∗ given by equation 4;

ii) When uh
o > max{vh, 0}, the wife recommends a choice and the husband always

follows under Assumption 1’, with

c∗ =


k(−vh) if vh > 0 and k(−vh) < −vw,

q(−vh) if vh < 0 and q(−vh) > −vw,

−vw otherwise,

(10)

where k−1(c) ≡ E [e | e < c] and q−1(c) ≡ E [e | e ≥ c].9

9These definitions ensure that k(−vh) is defined when vh > 0, and that q(−vh) is defined when
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Proof. See Appendix I.

As in the full symmetric information case, the household will choose a1 when the

relative utility of doing so is above some cutoff, and hence when e ≥ c∗. But now the

formula that determines the cutoff is more complicated, as laid out in expression 10.

3 Identification with asymmetric information

As in the full information case, the household will choose a1 if the realized value of

e exceeds a cutoff c∗. So c∗ is identified by solving for p = 1 − G (c∗), where p is the

unconditional probability that the household chooses a1 and G is the distribution function

of e (assumed to be invertible). This identification, as before, relies on the assumption

that the researcher has the necessary information to estimate a logit or probit model, so

the researcher knows the form of G (e.g., logistic if a logit model or standard normal if

a probit model), and is able to estimate p (by observing repeated choices made by the

household or by analyzing the choices of a homogeneous sample of households).

Unlike the full information case, however, our model allows for the identification

of spouses’ utilities and relative bargaining power, provided some positive fraction of

households is in the partial disclosure equilibrium. In this section, we demonstrate this

identifiability, and explore the implications of asymmetric information for intrahousehold

bargaining power. We also compare our model with existing approaches to identification.

3.1 Spouses’ utilities

To achieve identification, the researcher needs to be able to classify households by who

holds the information advantage, and by their choices, either through direct observation

or by using observed covariates.

Consider an example where information asymmetry arises from income hiding by the

wife, such as through additional earnings from a side business or an inheritance. Action

a1 is making a large discretionary purchase (e.g., buying a luxury car), while action a2

involves saving money for future needs (e.g., retirement savings). The state of the world

ε1 is the utility derived from the household’s disposable income after the large purchase,

and ε2 is the utility without the purchase, with e representing the difference between

them. The higher the value of e, the greater the relative utility associated with the

vh < 0. We are assuming the functions E [e | e < c] and E [e | e ≥ c] are invertible. These conditional
expectation functions are themselves fully determined by G.
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purchase, making it more feasible. As suggested in Proposition 2, the large purchase will

occur if e exceeds a certain cutoff c∗.

In households where the wife has a side business or receives an inheritance, she is

assumed to have an information advantage over her husband regarding the true amount of

disposable income available to the household, and thus over the relative utility associated

with the purchase, e. In such cases, when the wife has an incentive to partially disclose

this information, the cutoff function in expression 10 applies, covering three scenarios.

Suppose that some covariates xh (e.g., the husband’s age, education, health status, or

social status consideration) are known to affect vh but not vw, while other covariates xw

are known to affect vw but not vh. Given these covariates, if the cutoff c∗ among some

households is observed to vary with xh but not xw, these households must be in either the

first or second scenario of expression 10. Note that the functions k and q are known to

the researcher, as they are determined by G. With this information, the researcher can

distinguish between these two scenarios. If the cutoff c∗ is observed to vary with xw but

not xh, these households must instead be in the third scenario. If c∗ is observed to vary

with both xw and xh, these households (with information asymmetry) are considered to

be under full information disclosure.

In the above case where the wife has the information advantage, identifying spouses’

utilities vw and vh requires that: i) some households fall into the first or second scenario

of expression 10, and ii) some households fall into the third scenario. We can first identify

the c∗ values for households that meet conditions i) and ii) under the standard assumption

(G is known and p can be estimated), and then estimate vh and vw respectively from

these two types of households using expression 10.

The analysis is similar when the husband, rather than the wife, has the information

advantage and only partially discloses the information. The cutoff function is given by:

c∗ =


k(−vw) if vw > 0 and k(−vw) < −vh,

q(−vw) if vw < 0 and q(−vw) > −vh,

−vh otherwise.

(11)

Identification requires that: iii) some households fall into the first or second scenario of

expression 11, and iv) some households fall into the third scenario.
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If, as is often the case in reality, either spouse can sometimes have the information

advantage, then identification requires that: either i) and iii), or ii) and iv) hold (or both,

leading to over-identification; see the discussion below).

Full-information households While we derive spouses’ utilities based on households

in the partial disclosure equilibrium, identification does not require that all households

be in such an equilibrium. We still obtain identification if only some households have

asymmetric information with partial disclosure, while others either have full symmetric

information (e.g., neither spouse has a side business or receives an inheritance), or have

full disclosure with asymmetric information.

Monte Carlo Analysis Appendix II illustrates our results by providing a simple Monte

Carlo analysis. In this example, half of the households have the wife with an information

advantage, while the other half have full symmetric information. We obtain identification,

and as expected, estimates become more precise as the sample size increases.

Choice of error distribution We have assumed the researcher has the knowledge of the

distribution function G for our identification. One potential concern is the bias that could

arise if the researcher makes incorrect assumptions about this distribution. Reassuringly,

the researcher can apply statistical tests to make informed assumptions. For example, the

Vuong (1989) test compares alternative assumptions regarding the error distribution, with

the null hypothesis that competing models are equally close to the true data-generating

process, and the alternative that one model is closer. As the Monte Carlo exercise in

Appendix II shows, estimates are not too sensitive to a misspecification of G, and the

Vuong test can assist researchers in selecting the correct specification.

Over-identification If the data contain households where the wife has the information

advantage, and other households where the husband has the advantage, then we do not

need to assume that utilities vh and vw in the former are the same as in the latter types

of households. In particular, if all conditions i), ii), iii), and iv) are satisfied in the data,

then using the above results we can identify the different husband and wife utilities of

these two types of households, along with the bargaining power in each.

3.2 Intrahousehold bargaining power

Solving the problem in equation 9 yields the following result about intrahousehold bar-

gaining power.
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Proposition 3 Suppose the wife, and not the husband, learns the value of e after its

realization. Under Assumption 1, the husband’s relative bargaining power is

λh = min{λh
o , λh∗},

where λh
o is the Pareto weight in case i) of Proposition 2 with full information disclosure

and λh∗ is the Pareto weight in case ii) of Proposition 2 with partial disclosure:

λh∗ = −vw + c∗

vh + c∗
, (12)

where c∗ is given by expression 10.

Proof. See Appendix I.

Under symmetric information, the husband’s bargaining power is some nonnegative

value λh
o . With asymmetric information, his bargaining power λh either still equals λh

o (if

the wife reveals e) or equals λh∗ that is determined by c∗, vh, and vw using equation 12.

To identify bargaining power, we leverage households with partial information disclo-

sure. Given vh, vw, and c∗, which can be identified as described in the preceding section,

we can determine λh∗. If there are households with full symmetric information (or full

information disclosure), λh
o can then be obtained using equation 4.

Factors determining bargaining power with asymmetric information To analyze

these factors, we rewrite equation 12 as:

λh∗ =
vh − vw

vh + c∗
− 1. (13)

This shows that the closer vh is to vw (i.e., the more similar the spouses’ utilities), the

lower the husband’s bargaining power due to his information disadvantage. Also, λh∗

depends on c∗, which in turn depends on k(·) and q(·), both determined by G. As the

distribution G becomes more dispersed, the absolute values of k(·) or q(·) decrease,10

leading to lower bargaining power for the husband.

That is, the premium in bargaining power for a spouse with an information advantage

10To illustrate this point, consider a case where vh > 0 and k(−vh) < −vw, resulting in c∗ = k(−vh),
so E [e | e < c∗] = −vh. A smaller absolute value of k(·) indicates a more dispersed distribution of e.
And the smaller the absolute value of k(·) is, for a given value of −vh < 0, the closer is the cutoff c∗

(which is negative in sign) to zero, and hence the lower is λh∗.
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will be larger when the spouses’ preferences are more aligned, or when the state-specific

shocks are more dispersed.

3.3 Comparison with existing approaches to identification

As discussed earlier, standard revealed preference theory shows that a single utility-

maximizing consumer’s ordinal utility function can be identified from their observable

continuous demand functions. In contrast, Chiappori and Ekeland (2009) and others

show that in efficient collective households, the utility and bargaining power of household

members cannot be identified solely from observable continuous demand functions. To

identify collective models, additional assumptions are needed, such as preference similar-

ity across individuals, strong functional form restrictions, or the assumption that some

goods are exclusively consumed by one household member.

Examples of collecting detailed consumption data for individual household members

including the fraction of shared goods that each individual consumes are Cherchye et al.

(2012) and Menon et al. (2012). Papers that attain identification by imposing behavioral

or functional form restrictions on preferences of individuals within or across households

include Lewbel and Pendakur (2008), Lise and Seitz (2011), Bargain and Donni (2012),

Browning et al. (2013), and Dunbar et al. (2013). The latter paper, along with Lechene

et al. (2022), assume assignable goods.

The use of distribution factors has also been proposed for identification. The effects

of changing a distribution factor on changes in bargaining power are identified, but by

themselves distribution factors cannot identify the level of bargaining power. See, e.g.,

Browning et al. (1994), Fong and Zhang (2001), Chiappori et al. (2002), Blundell et al.

(2005), Chau et al. (2007), and Bourguignon et al. (2009).

Note that all of the examples listed in this subsection so far refer to continuous

decisions, so none can be directly applied to identify our binary decision model. Also, all

of these prior literature examples implicitly assume symmetric information.

Turning to binary choice models, it is again the case that we start with sufficient

information to identify the utility of a single utility-maximizing agent. And, as with

continuous demand, this same information is not sufficient to identify utility and bar-

gaining power in a two-person household with symmetric information. However, unlike

continuous demand, having distribution factors is also not sufficient to identify how bar-
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gaining power changes when the distribution factor changes (see the example at the end

of Section 2.1.2).

However, some of the additional assumptions that have been proposed in the collective

continuous demand literature to achieve identification with symmetric information might

be applicable to our binary decision model as well. For example, Browning et al. (2013)

show identification assuming that continuous demand functions are observed for both

singles and couples, and that individuals’ utility functions stay fixed before and after

marriage. These additional assumptions might allow us to achieve identification in our

model: the individual’s binary choices as singles (such as ordinary logit or probit models)

would identify vh and vw, and given those parameters along with c∗, the bargaining power

λh could be recovered from equation 4.

Advantages of our approach Although such collective binary choice identification

with symmetric information might be possible, our alternative of considering information

asymmetry offers two main advantages. First, it brings the model closer to reality by

relaxing the restriction of perfect information between spouses, which aligns with nu-

merous experimental studies documenting significant instances and effects of asymmetric

information in household decisions. Second, it avoids imposing additional assumptions,

such as preference similarity restrictions across single and married individuals.

Moreover, the fact that information asymmetry affects bargaining power, but not the

preferences of the individual spouses (or any budget constraint), means that information

asymmetry fits the definition of a distribution factor. As discussed earlier, in existing

continuous demand collective models, observing a distribution factor is not sufficient to

identify bargaining power from household demand functions (though one can identify how

the level of bargaining power changes when distribution factors change). In contrast, a

unique feature of our model is that the level of relative bargaining power λh, as well

as the spouses’ utilities vh and vw, can be identified given the presence of information

asymmetry as a distribution factor.

Finally, compared to the standard collective setup, where bargaining power affects the

overall allocation of resources between spouses, our framework offers greater flexibility

by allowing bargaining power to be determined on a choice-by-choice basis, depending

on the information about each decision. For example, a migrant spouse might have

an information advantage regarding their earnings, while the spouse remaining behind

16



might have an information advantage concerning local investment opportunities. In this

case, bargaining power could vary across consumption and investment choices, which is

potentially more realistic than assuming bargaining power is the same for all decisions.

4 Extensions

In this section, we extend our model to situations with multiple choices and then to

multiple players.

4.1 Household collective decision with multiple choices

Suppose the husband and wife now face a choice from a finite set of I alternative actions:

ai ∈ A ≡ {a1, a2, ..., aI}. Their utility function again depends on the choice ai and

the state of the world ε ≡ {ε1, ε2, ..., εI}. Let F (·) denote the conditional cumulative

distribution function of ε with mean normalized to zero. Let νm
i denote member m’s

deterministic utility associated with choosing ai. The household’s collective decision

π (ai | ε) can be obtained by solving the following problem:

max
π

∑
m∈{h,w}

λm

∫ I∑
i=1

π (ai | ε) (νm
i + εi) dF (ε), (14)

where λm represents m’s bargaining power.

For any two different choices ai and aj in A, let eij ≡ εi−εj and vmij ≡ νm
i −νm

j denote

the state-specific utility and m’s deterministic utility associated with choosing the former

relative to the latter. Then the decision π (ai | ε) satisfies:

max
π

∑
m∈{h,w}

λm

∫
π (ai | eij) (vmij + eij) dGij(eij), ∀ j ̸= i, (15)

where Gij(·) is the cumulative distribution function of eij. Normalizing the wife’s bar-

gaining power to 1 and denoting the husband’s as λh, we obtain a result parallel to

Proposition 1.

Proposition 4 Under Assumption 1, the household’s optimal strategy π∗(ai | ε) is

π∗ (ai | ε) = 1

(
I⋂

j ̸=i

{eij ≥ c∗ij}

)
,
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where 1(·) is an indicator function and

c∗ij = −
λhvhij + vwij
λh + 1

. (16)

Proof. See Appendix III for this proof and all subsequent ones. These proofs are

straightforward extensions of those provided in earlier sections.

We then suppose that the wife learns the value of ε upon its realization but the

husband remains uninformed. In the case of partial information disclosure where the

wife recommends a choice ai, the husband upon receiving the recommendation updates

his belief regarding ε and then decides whether to accept. The wife’s recommendation

strategy serves as the equilibrium decision, as she formulates her recommendation to

ensure the husband follows it.

Taking the husband’s behavior in this case as given, the wife either fully discloses the

information to her husband or chooses a recommendation strategy π(ai | ε), depending

on which option maximizes her expected utility:

max
π

∫
π(ai | eij)(vwij + eij) dGij(eij), (17)

s.t.

∫
π(ai | eij)(vhij + eij) dGij(eij) ≥ min

{
uh
o,ij, max{vhij, 0}

}
, ∀ j ̸= i, (18)

where uh
o,ij is the husband’s expected utility under full information disclosure, and max{vhij, 0}

is his utility under partial disclosure. These equations are parallel to equations 7 and 8.

Solving the problem yields a result parallel to Proposition 2.

Proposition 5 Suppose the wife, and not the husband, learns the value of ε after its

realization. The household’s optimal strategy π∗(ai | ε) is

π∗ (ai | ε) = 1

(
I⋂

j ̸=i

{eij ≥ c∗ij}

)
,

where 1(·) is an indicator function and c∗ij depends on the value of uh
o,ij versus max{vhij, 0}:

i) When uh
o,ij ≤ max{vhij, 0}, the wife fully discloses eij to her husband under Assump-

tion 1, with c∗ij given by equation 16;

ii) When uh
o,ij > max{vhij, 0}, the wife recommends a choice from {ai, aj} and the
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husband always follows under Assumption 1’, with

c∗ij =


kij(−vhij) if vhij > 0 and kij(−vhij) < −vwij,

qij(−vhij) if vhij < 0 and qij(−vhij) > −vwij,

−vwij otherwise,

(19)

where k−1
ij (c) ≡ E [eij | eij < c] and q−1

ij (c) ≡ E [eij | eij ≥ c].

4.1.1 Identification

Note that the Lagrange multiplier for the constraint in equation 18 may depend on the

specific choices ai and aj. To solve for intrahousehold bargaining power that is invariant

to the choices, we impose an additional assumption about spouses’ utility functions.

Assumption 2 For any two choices ai and aj in A:

1. Spouses’ preferences differ by a constant scale, such that vwij = bvhij;

2. The distribution of normalized random utility, ẽij ≡ eij/v
h
ij, is identical.

We then obtain the following result about bargaining power.

Proposition 6 Suppose the wife, and not the husband, learns the value of ε after its

realization. Under Assumptions 1 and 2, the husband’s relative bargaining power is

λh = min{λh
o , λh∗},

where λh
o is the Pareto weight in case i) of Proposition 5 with full information disclosure;

and λh∗ is the Pareto weight in case ii) of Proposition 5 with partial disclosure:

λh∗ = max

{
0, − b− q̃(1)

1− q̃(1)

}
, (20)

where q̃−1(c) ≡ E [ẽij | ẽij ≥ c].

We arrive at similar conclusions about bargaining power as before. The wife’s pre-

mium in bargaining power due to her information advantage would be larger if spouses’

preferences are more aligned (indicated by a smaller difference between b and 1), or if the

state-specific shocks are more dispersed (indicated by a smaller value of q̃).
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The identification with multiple choices can be decomposed into C2
I problems, where

I is the number of choices. Each problem is to identify the values of relative bargain-

ing power λh and spouses’ utilities vhij and vwij, for a pair of choices {ai, aj}. This can

be achieved as described in Section 3. In particular, each problem requires that in at

least some households, one spouse has an information advantage and has an incentive to

partially disclose the information. Moreover, the researcher needs to be able to classify

households by their choices and by who has the information advantage, either through

direct observation or through covariates as before.

It is worth noting that, as a result of Assumption 2, all problems yield the same

λh.11 By not making this assumption, our model enables the identification of intrahouse-

hold bargaining power that is specific to a choice pair. This approach could yield more

generalized findings in the collective model literature.

4.2 Collective decision with multiple choices and multiple play-

ers

Consider a game that consists of a finite number of players m ∈ Φ, who face multiple

choices from A ≡ {a1, a2, ..., aI}. The collective decision π (ai | ε) satisfies:

max
π

∑
m∈Φ

λm

∫
π (ai | eij) (vmij + eij) dGij(eij), ∀ j ̸= i, (21)

as parallel to equation 15. Solving this problem gives us the following result.

Proposition 7 Under Assumption 1, the household’s optimal strategy π∗(ai | ε) is

π∗ (ai | ε) = 1

(
I⋂

j ̸=i

{eij ≥ c∗ij}

)
,

where 1(·) is an indicator function and

c∗ij = −
∑

m∈Φ λmvmij∑
m∈Φ λm

. (22)

11Assumption 2 is to ensure that bargaining power remains constant across choices. How-
ever, it does not by itself guarantee identification: e.g., if

{
λ̌h(z), b̌, v̌h

}
is a solution set, then{

(λ̌h + 1)(1 + ϵ)− 1, b̌+ (b̌− 1)(1 + ϵ), v̌h
}

also forms a solution set, where ϵ is an arbitrarily small
positive constant.
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Suppose some players of the game (call them senders) learn the value of ε after it

is realized while other players (call them receivers) remain uninformed. Let S denote

the set of senders and R ≡ Φ \ S denote the set of receivers. In the case of partial

information disclosure, we represent senders’ recommendation strategy as π(ai | ε), which

also serves as the final outcome. This is because, in equilibrium, receivers consistently

follow the recommendation from senders, who take into account receivers’ behavior when

formulating their recommendation.12

Similar to the result in Lemma 1, receivers’ expected utility, weighted by their in-

dividual Pareto weights, upon receiving senders’ recommendation is at least as high as

their weighted utility from taking actions without the recommendation:

∑
m∈R

λm
o

∫
π(ai | eij)(vmij + eij) dGij(eij) ≥ max{vRij , 0}, (23)

where λm
o is the Pareto weight for member m ∈ R under symmetric information, and

vRij =
∑

m∈R λm
o v

m
ij .

Taking receivers’ behavior under partial information disclosure as given, senders either

fully disclose the information so that receivers’ expected utility is uR
o,ij, or senders choose

a recommendation strategy such that receivers’ expected utility is max{vRij , 0}. Senders

will opt for the less restrictive constraint to maximize their weighted utility:

max
π

∑
m∈S

λm
o

∫
π(ai | eij)(vmij + eij) dGij(eij), (24)

s.t.
∑
m∈R

λm
o

∫
π(ai | eij)(vmij + eij) dGij(eij) ≥ min

{
uR
o,ij, max{vRij , 0}

}
, ∀ j ̸= i. (25)

Senders will choose full information disclosure when uR
o,ij ≤ max{vRij , 0} and partial dis-

closure otherwise. Receivers’ expected utility is the lesser of that under full or partial

information disclosure. Solving this problem yields the following proposition.

Proposition 8 Suppose some players are senders who learn the value of ε after its real-

ization but others are receivers who remain uninformed. The optimal strategy π∗(ai | ε)

12The assumption of ex ante efficiency implies that senders collectively design a recommendation
strategy, and receivers collectively decide whether to accept it. Importantly, information asymmetry
does not impact the relative bargaining power among senders or among receivers.

21



is

π∗ (ai | ε) = 1

(
I⋂

j ̸=i

{eij ≥ c∗ij}

)
,

where 1(·) is an indicator function and c∗ij depends on the value of uR
o,ij versus max{vRij , 0}:

i) When uR
o,ij ≤ max{vRij , 0}, senders fully disclose eij to receivers under Assumption

1, with c∗ij given by equation 22;

ii) When uR
o,ij > max{vRij , 0}, senders recommend a choice from {ai, aj} and receivers

always follow under Assumption 1’, with

c∗ij =


kij
(
−v̄Rij

)
if vRij > 0 and kij

(
−v̄Rij

)
< −v̄Sij,

qij
(
−v̄Rij

)
if vRij < 0 and qij

(
−v̄Rij

)
> −v̄Sij,

−v̄Sij otherwise,

(26)

where vRij =
∑

m∈R λm
o v

m
ij , v̄Rij = vRij/

∑
m∈R λm

o , and v̄Sij is similarly defined; k−1
ij (c) ≡

E [eij | eij < c] and q−1
ij (c) ≡ E [eij | eij ≥ c].

4.2.1 Identification

The following assumption is introduced to achieve bargaining power that is invariant to

the choices.

Assumption 2’ For any two choices ai and aj in A:

1. Players’ preferences differ by a constant scale, such that vmij = bmvy0ij , ∀ m ∈ Φ,

where y0 is a random fixed player;

2. The distribution of normalized random utility, ẽij ≡ eij/v
y0
ij , is identical.

Normalizing senders’ bargaining power to the value under symmetric information,

denoted as λo, we obtain the following result.

Proposition 9 Suppose some players are senders who learn the value of ε after its re-

alization but others are receivers who remain uninformed. Under Assumptions 1 and 2’,

receiver m’s relative bargaining power is

λm = min{λm
o , λm∗},

where λm
o is the Pareto weight in case i) of Proposition 8 with full information disclosure;
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and λm∗ is the Pareto weight in case ii) of Proposition 8 with partial disclosure:

λm∗ = max

{
0, −λm

o

bS −
∑

m∈S λ
m
o q̃(b̄R)

bR −
∑

m∈R λm
o q̃(b̄R)

}
, (27)

where bR =
∑

m∈R λm
o b

m, b̄R = bR/
∑

m∈R λm
o , and bS is similarly defined; q̃−1(c) ≡

E [ẽij | ẽij ≥ c].

We observe that senders’ premium in bargaining power due to information advantage

would be larger if the preferences of senders and receivers are more aligned (a smaller

difference between bS and bR), or if the state-specific shocks are more dispersed (a smaller

value of q̃).

As discussed in Section 4.1.1, the identification with I choices can be broken down into

C2
I problems. Each problem focuses on identifying the values of game players’ bargaining

power λm and preferences vmij for a pair of choices {ai, aj}. All problems yield the same

values of bargaining power due to Assumption 2’.

We now discuss the conditions needed for identifying one of the C2
I problems, omitting

subscripts i and j below. Consider a game with N players. There are N parameters for

their preferences and N −1 parameters for bargaining power (with player y0’s bargaining

power normalized to 1). Thus, 2N − 1 moment conditions are required for identification.

We note that there are 2N − 2 ways to partition the set of players into senders and

receivers, since each of the N players can be either a sender or a receiver, and since

information asymmetry excludes the case with no sender or no receiver. For each way of

partitioning, the cutoff under partial information disclosure is given by:

c∗ =


k
(
−v̄R

)
if v̄R > 0 and k

(
−v̄R

)
< −v̄S,

q
(
−v̄R

)
if v̄R < 0 and k

(
−v̄R

)
> −v̄S,

−v̄S otherwise.

(28)

This expression provides two moment conditions (the first or second scenario versus

the third), resulting in a total of 2×
(
2N − 2

)
moments for all possible ways of partitioning.

Since one of the moments in expression 28 with a set Ŝ being the set of senders is

equivalent to the other moment when Ŝ is the set of receivers, the number of independent

moment conditions is 2N − 2 under partial information disclosure. Equation 22 provides
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another moment under full disclosure (or symmetric information). In total, there are

2N − 1 independent moment conditions, and any subset of 2N − 1 of them can achieve

identification.

As noted in Section 3.1, we obtain identification from partial disclosure equilibrium,

but this does not exclude full information disclosure or symmetric information. Also,

having more data conditions than required does not affect identification.

5 Conclusion

We incorporate information asymmetry into the collective model, by introducing a ran-

dom component of utility. This allows one decision-maker to gain information on the

random state while the other remains uninformed. By formulating the decision process

under partial information disclosure using the Bayesian persuasion framework, we can

solve for decision-makers’ relative bargaining power and utilities. Our model yields point

identification of bargaining power, the level of which is endogenous to the decision-maker’s

information advantage. The analysis reveals a bargaining power premium for the house-

hold member with an information advantage, which becomes greater when preferences

align more or when state-specific shocks disperse more.

Our model extends to multiple choices and multiple players, with some informed while

others remain uninformed. Therefore, our model yields valuable insights into collective

behavior across diverse real-world settings where one group of people seek to influence

another by offering advice and shaping their beliefs. Possible examples include scenarios

such as teachers versus students, government agencies versus citizens, managers versus

shareholders, marketing professionals versus consumers, healthcare providers versus pa-

tients, and lobbyists versus politicians, among others.

While we present new identification results for discrete choice collective models, future

research could explore empirical applications of these results. Also, a fruitful area of future

research could be investigating how asymmetric information might help identification in

continuous collective models.
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Panel A. Symmetric information

Step 1 Step 2

Before ! is realized After ! is realized

Spouses design "($!|!) Spouses choose $! based on "($!|!)

Panel B. Asymmetric information, full disclosure

Wife learns ! and fully 
discloses ! to husbandSpouses design "($!|!)

Step 1 Step 2 Step 3

Spouses choose $! based on "($!|!)

Before ! is realized After ! is realized

Panel C. Asymmetric information, partial disclosure

Wife learns ! and recommends $!
based on '($!|!)

Husband updates belief on !
and decides whether to accept $!Wife designs '($!|!)

Step 1 Step 2 Step 3

Before ! is realized After ! is realized

Figure 1 Decision process with symmetric and asymmetric information

Notes: Panel A plots the decision process in the case where both spouses learn the value of e after its
realization. Panels B and C plot the decision process in the case where the wife learns the value of e but
the husband is uninformed, under full and partial information disclosure, respectively.
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Online Appendix

I Proofs in two-choice, two-player case

I.1 Proposition 1

We first show that the optimal strategy is a cutoff strategy, such that π∗ (a1 | e) = 1(e ≥ c∗).

Suppose it is not, then two cases are possible: (i) the household chooses a1 with a probability

τ ∈ (0, 1) for some e with a positive measure; (ii) there exists at least a cutoff c, such that

the household chooses a1 with probability 1 when the realized e is smaller than c, and a2

otherwise. For simplicity, we restrict our statement to two intervals: (c1, c2] and (c2, c3), where

−∞ ≤ c1 < c2 < c3 ≤ ∞. The following decision strategy π0(a1 | e) incorporates the two cases:

π0(a1 | e) =

τ1 ∈ (0, 1] if e ∈ (c1, c2] ,

τ2 ∈ [0, 1) if e ∈ (c2, c3) .

(A1)

Suppose π0(a1 | e) in equation A1 (rather than a cutoff strategy) is the optimal strategy,

the household obtains the expected value:

V (π0) =

∫ c2

c1

τ1 v(e) dG(e) +

∫ c3

c2

τ2 v(e) dG(e) + V
∗
, (A2)

where v(e) = λhvh + vw + (λh + 1)e, and V
∗
represents the expected value for e /∈ (c1, c3).

As the cumulative distribution function G(·) increases with e, for some c′ ∈ (c1, c2), there

must exist a τ ′ > τ2 such that

τ1
(
G (c2)−G(c′)

)
+ τ ′ (G (c3)−G (c2)) = τ1 (G (c2)−G (c1)) + τ2 (G (c3)−G (c2))

⇐⇒τ1
(
G(c′)−G (c1)

)
=
(
τ ′ − τ2

)
(G (c3)−G (c2)) .

(A3)

If there exists another strategy π′(a1 | e), with which the expected value is strictly higher

than V (π0) in equation A2, this generates a contradiction. Consider the following strategy:

π′(a1 | e) =


0 if e ∈ (c1, c

′] ,

τ1 ∈ (0, 1] if e ∈ (c′, c2] ,

τ ′ ∈ (0, 1] if e ∈ (c2, c3) ,

(A4)

where c′ and τ ′ are defined in equation A3.

We then show that V (π0) < V (π′). Given c1 < c′ < c2, v(e) increasing with e, and equation

1



A3, we have:∫ c2

c1

τ1 · v(e) dG(e) +

∫ c3

c2

τ2 · v(e) dG(e)

=τ1 (G (c2)−G (c1)) · E (v(e) | c1 < e ≤ c2) + τ2 (G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

<τ1
(
G (c2)−G (c1) · E

(
v(e) | c′ < e ≤ c2

)
+ τ2 (G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

=τ1
(
G (c2)−G(c′)

)
· E
(
v(e) | c′ < e ≤ c2

)
+ τ ′ (G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

+ τ1
(
G(c′)−G (c1)

)
· E
(
v(e) | c′ < e ≤ c2

)
−
(
τ ′ − τ2

)
(G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

=τ1
(
G (c2)−G(c′)

)
· E
(
v(e) | c′ < e ≤ c2

)
+ τ ′ (G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

+ τ1
(
G(c′)−G (c1)

)
·
[
E
(
v(e) | c′ < e ≤ c2

)
− E (v(e) | c2 < e < c3)

]︸ ︷︷ ︸
<0

<τ1
(
G (c2)−G(c′)

)
· E
(
v(e) | c′ < e ≤ c2

)
+ τ ′ (G (c3)−G (c2)) · E (v(e) | c2 < e < c3)

=

∫ c2

c′
τ1 · v(e)dG(e) +

∫ c3

c2

τ ′ · v(e)dG(e).

(A5)

It follows that:

V (π0) =

∫ c2

c1

τ1 · v(e) dG(e) +

∫ c3

c2

τ2 · v(e) dG(e) + V
∗

<

∫ c2

c′
τ1 · v(e) dG(e) +

∫ c3

c2

τ ′ · v(e) dG(e) + V
∗

=V (π′).

(A6)

The result that V (π0) < V (π′) contradicts π0(a1 | e) being the optimal strategy. That is, the

optimal strategy is a cutoff strategy, such that π∗ (a1 | e) = 1(e ≥ c∗).

So our problem is to solve:

max
c

∫ ∞

c
v(e) dG(e), (A7)

such that

λhvh + vw + (λh + 1) c∗ = 0

=⇒c∗ = −λhvh + vw

λh + 1
.

(A8)

2



I.2 Lemma 1

Following equation 5 in the main text, we have:∫
(νh1 + ε1) dFϖ(ε | a1) ≥

∫
(νh2 + ε2) dFϖ(ε | a1),

=⇒
∫
(vh + e) dFϖ(e | a1) ≥ 0,

=⇒
∫

π(a1 | e) (vh + e) dG(e) ≥ 0.

(A9)

Similarly, ∫
(νh2 + ε2) dFϖ(ε | a2) ≥

∫
(νh1 + ε1) dFϖ(ε | a2),

=⇒0 ≥
∫

π(a2 | e) (vh + e) dG(e),

=⇒vh ≤ vh −
∫

π(a2 | e) (vh + e) dG(e),

=⇒
∫

π(a1 | e) (vh + e) dG(e) ≥ vh.

(A10)

Based on equations A9 and A10, we have:

∫
π(a1 | e) (vh + e) dG(e) ≥ max{vh, 0}. (A11)

I.3 Proposition 2

When uho ≤ max{vh, 0}, the result follows immediately from Proposition 1.

When uho > max{vh, 0}, given that π∗ (a1 | e) = 1(e ≥ c∗), our problem becomes:

max
c

∫ ∞

c
(vw + e) dG(e)

s.t.

∫ ∞

c
(vh + e) dG(e) ≥ max{vh, 0}.

(A12)

Let λh be the Karush-Kuhn-Tucker multipliers for the constraint. The Lagrangian function is

then given by:

L =V w(c) + λh
(
V h(c)−max{vh, 0}

)
, (A13)

where V m(c) =
∫∞
c (vm + e) dG(e) for m ∈ {h,w}.

Let c∗ be an optimal cutoff, then the first order conditions for optimization are:


∂L

∂c
=

∂V w(c∗)

∂c
+ λh∗∂V

h(c∗)

∂c
= 0,

∂L

∂λh
= V h(c∗) ≥ 0 , λh∗ ≥ 0 , λh∗ ∂L

∂λh
= 0.

(A14)

3



Case 1: interior solution λh∗ = 0.

∂L

∂c
=

∂V w(c∗)

∂c

= −(vw + c∗) g(c∗)

= 0.

(A15)

Then we have

c∗ = −vw. (A16)

Case 2: corner solution λh∗ > 0.

∂L

∂λh
= V h(c∗) = max{vh, 0}. (A17)

When vh > 0 we have

c∗ = k(−vh), (A18)

where k−1(c) = E [e | e < c]; and when vh < 0 we have

c∗ = q(−vh), (A19)

where q−1(c) = E [e | e ≥ c].

Therefore, when uho > max{vh, 0},

c∗ =


k(−vh) if vh > 0 and k(−vh) < −vw,

q(−vh) if vh < 0 and q(−vh) > −vw,

−vw otherwise.

(A20)

I.4 Proposition 3

The result follows immediately from Lemma 1 and Proposition 2.

II A Monte Carlo analysis

Consider an example where information asymmetry arises because the wife hides her income,

possibly from additional earnings through a side business or an inheritance. Action a1 is making

a large discretionary purchase (e.g., buying a luxury car), while action a2 involves saving money

for future needs (e.g., retirement savings). The state of the world ε1 is the utility derived from

the household’s disposable income after the large purchase, and ε2 is the utility without the

4



purchase, with e capturing the difference between the two. The higher the value of e, the greater

the relative utility of making the purchase, thereby increasing its feasibility.

Specifically, we adopt the following functional form for um:

um = γm log (φ) + e, m ∈ {h,w}

where γm reflects how household member m values the car, with a higher value indicating a

greater willingness to purchase it; φ represents a random variable that determines utility at the

household level (e.g., frequency of car usage). For the simulation, the parameter values are set

as γw = 6.25 and γh = 12.5. The relative bargaining power under full symmetric information,

λh
o/λ

w
o , is set to 1.25. The error term e is generated following a normal, logistic, or extreme

value type I distribution, with a mean of zero and a variance of one. That is, the distribution

function G is set to normal, logistic, or extreme.

Using this example, we perform a Monte Carlo analysis to assess the bias in recovered

parameters (γw, γh, and λh
o/λ

w
o ) as well as estimation outcomes (relative bargaining power

λh/λw). We generate a dataset in which half of the observations involve the wife having an

information advantage (e.g. she has a side business or receives an inheritance), while the other

half have full symmetric information.

Results are presented in the following table. The estimation method is maximum likelihood

estimation. Panel A shows the bias and root mean square error (RMSE) when the sample

size is 1,000, and the researcher assumes the distribution to be normal, logistic, or extreme.

We find that the bias resulting from an incorrect distribution assumption is generally small,

indicating that the estimates are not too sensitive to misspecification of the distribution. We

also demonstrate that it is possible to test alternative distributional assumptions using the

Vuong (1989) test. This test evaluates whether competing models are equally close to the true

data-generating process (the null hypothesis) or whether one model is closer (the alternative

hypothesis). The power of this test, reported in the final row of the panel, shows that the null

hypothesis is mostly rejected when there is a significant difference in the choice G. This suggests

that the test can help researchers make informed assumptions about the distribution.

In panel B, we present results when the sample size is increased to 3,000. As before, we

find that the estimates are not overly sensitive to misspecification of G, and the researcher can

make informed distributional assumptions using the Vuong (1989) test. We also observe that

biases and RMSE decrease as the sample size grows, consistent with improved identification.

5
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III Proofs in model extensions

III.1 Proposition 4

The model with multiple choices can be decomposed into C2
I problems with binary choices,

where I is the number of choices. Then the result follows immediately from Proposition 1.

III.2 Proposition 5

The model with multiple choices can be decomposed into C2
I problems with binary choices,

where I is the number of choices. Then the result follows immediately from Proposition 2.

III.3 Proposition 6

With partial information disclosure, the Lagrange multiplier for constraint in equation 18 in

the main text is:

λh∗
ij = −

vwij + c∗ij

vhij + c∗ij
, (A21)

where c∗ij is given by equation 19. With Assumption 2, we have

kij(−vhij) = −vhij q̃(1), (A22)

qij(−vhij) = −vhij q̃(1). (A23)

Then when c∗ij equals kij(−vhij) or qij(−vhij), we have

λh∗
ij = −

bvhij − vhij q̃(1)

vhij − vhij q̃(1)

= − b− q̃(1)

1− q̃(1)
, for ∀i, j ≤ I, i ̸= j

= λh∗.

(A24)

When c∗ij equals −vwij , it is straightforward that λh∗ = 0. Therefore, we have

λh∗ = max

{
0, − b− q̃(1)

1− q̃(1)

}
. (A25)

III.4 Proposition 7

The result follows immediately from Propositions 1 and 4.
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III.5 Proposition 8

The result follows immediately from Propositions 2 and 5.

III.6 Proposition 9

Under partial information disclosure, the Lagrange multiplier for constraint in equation 25 is

λm∗
ij

λm
o

= −
∑

m∈S λm
o vmij +

∑
m∈S λm

o c∗ij∑
m∈R λm

o vmij +
∑

m∈R λm
o c∗ij

, (A26)

where c∗ij is given by equation 26. With Assumption 2’, we have

kij(−v̄Rij) = −vy0ij q̃
(
b̄R
)
, (A27)

qij(−v̄Rij) = −vy0ij q̃
(
b̄R
)
, (A28)

where y0 is a random fixed player. Then when c∗ij equals kij

(
−v̄Rij

)
or qij

(
−v̄Rij

)
, we have

λm∗
ij = −λm

o

bS −
∑

m∈S λm
o q̃(b̄R)

bR −
∑

m∈R λm
o q̃(b̄R)

, for ∀i, j ≤ I, i ̸= j

= λm∗.

(A29)

When c∗ij equals −v̄Sij , it is straightforward that λm∗ = 0.
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