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Abstract  

Reliable   broadcast   is   an   important   primitive   to   ensure   that   a   source   can   reliably   broadcast  

a   message   to   all   the   non-faulty   nodes   in   either   a   synchronous   or   asynchronous   network.   This  

network   system   can   also   be   failure   prone,   meaning   packets   can   be   dropped   or   the   packets   can   be  

corrupted.   The   faulty   server   can   perform   different   faulty   behaviour   such   as   sending   wrong  

messages,   and   not   sending   any   message.   In   1987,   Bracha   first   proposed   reliable   broadcast  

protocols,   and   since   then   different   reliable   broadcast   protocols   had   been   designed   in   order   to  

achieve   different   goals,   such   as   reducing   round   and   bit   complexity.  

In   a   practical   network,   there   are   several   constraints   such   as   limited   bandwidth   or   high  

latency.   Thus   We   aim   to   design   new   reliable   broadcast   protocols   that   consider   these   practical  

 



network   constraints.   More   specifically,   we   use   cryptographic   hash   functions   and   erasure   coding  

to   reduce   communication   and   computation   complexity.   

Finally,   We   also   designed   a   general   benchmark   framework   that   can   be   used   to   test  

reliable   broadcast   algorithms.   We   evaluated   new   algorithms   we   have   designed   and   implemented  

using   this   benchmark   platform.   and   the   algorithms   showed   superior   performance   in   practical  

networks.  
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1.   Introduction:  

We   consider   the   reliable   broadcast   problem   in   an   asynchronous   network   system   with   n  

number   of   servers   (n-f   number   of   non-faulty   server,   f   faulty   server)   with   each   message   size  

having   L   bits.   Some   properties   need   to   be   satisfied   by   a   reliable   broadcast   algorithm.   First,   if   the  

source   is   non-faulty,   then   all   non-faulty   nodes   eventually   deliver   the   same   message,   which   is  

broadcasted   by   the   non-faulty   source.   Second,   if   the   source   is   faulty,   all   the   non-faulty   nodes  

should   either   not   deliver   or   deliver   the   same   message.  

Since   the   proposal   of   Brach's   reliable   broadcast   algorithm   [3],   many   broadcast   algorithms  

[3,4,5]   have   been   proposed   to   reduce   computation,   rounds   and   bits   complexity.   However,   based  

on   our   knowledge,   their   results   are   only   proved   in   a   theoretical   perspective   and   are   not   tested   in   a  

practical   network   system   assuming   computational   power   and   bandwidth   constraints.   In   order   to  

study   how   practical   system   constraints   affect   reliable   broadcast   algorithms,   we   implemented  

several   broadcast   algorithms   from      previous   papers     as   the   baseline   for   the   new   algorithms   we  

have   designed.   

In   order   to   carefully   and   thoroughly   benchmark   reliable   broadcast   algorithms,   We   have  

designed   a   benchmark   tool   on   top   of   Mininet   [8].   Mininet   allows   us   to   manipulate   the   networks  

such   as   bandwidth   constraint,   cpu   computation   for   each   node,   and   network   topology.   The   goal   of  

our   paper   is   to   understand   the   performance   of   reliable   broadcast   protocols   in   a   practical  

asynchronous   network   system.   Basically,   a   reliable   broadcast   protocol   is   a   problem   in   distributed  

computing,   focusing   on   sending   messages   to   different   processes   or   servers   under   the   presence   of  

nodes   having   byzantine   behaviours   such   as   send   the   wrong   message   or   stop   failure.  

Motivation:  

The   following   are   our   observations   when   trying   to   apply   previous   fault   tolerant   RB  

protocols   in   practice:  

1. Existing   reliable   broadcast   algorithms   are   not   efficient   in   terms   of   bandwidth   usage  

and/or   computation   (Table1)  



2. Most   Reliable   Broadcast   protocols   assume   unlimited   bandwidth,   and   use   flood  

mechanisms   to   send   redundant   messages   over   the   network.   (Table   1)  

3. In   many   real   world   applications,   source   may   not   reside   in   the   same   system   as   other  

nodes.   In   such   a   case,   bandwidth   limitation   is   often   much   higher   between   source   and  

other   nodes   compared   to   nodes   in   the   same   network   system.   One   of   the   examples   is   that  

the   source   can   be   a   client,   and   the   rest   of   the   nodes   are   in   the   same   data   center   with   an  

optimized   network   system.  

 

Main   Contributions:  

First,   we   proposed   a   family   of   reliable   broadcast   algorithms.  

1. Crash-tolerant   erasure-based   reliable   broadcast  

2. Byzantine   hash   reliable   broadcast  

3. Byzantine   erasure   code   reliable   broadcast  

Table   1   provides   a   summary   of   both   theoretical   and   practical   results   of   different   reliable  

broadcast   algorithms.   The   bottleneck   below   indicates   the   scenario   that   may   throttle   the  

performance   of   the   individual   algorithm.   We   used   cryptographic   hash   for   our   hash   reliable  

broadcast   and   [n,k]   MDS-code   for   erasure   based   algorithms.   MDS-code   known   as   maximum  

distance   separable   code,   where   n   represents   individual   block   length   and   k   represents   the  

dimension   of   the   codeword.  

Our   algorithms   have   bit   complexity   O(nL   +   nfL).   When   source   is   non-faulty,   then   our  

algorithms   achieve   O(nL).   However,   when   source   can   equivocate,   the   bit   complexity   becomes  

O(nL   +   nfL).   Furthermore,   our   algorithm   when   using   erasure   code   achieves   O(nL   /   k)   bits  

complexity   between   source   node   and   others.   Since   most   practical   systems   have   a   small   number  

of   faulty   servers,   our   algorithms   perform   well   in   practical   systems.  

 

 

 



 

 

 

 

 

Table   1:  

Algorithm  Bit  
Complexity  

System  
Size(Resilie 
nce)  

Round  
Complexity  

Error-free  Uses   MDS  
codes  

Bottleneck  

CRB[7]  O(n^2L)  >   f   1  Yes  No   

EC-CRB  O(n^2L/k)  >   f  2  Yes  Yes  MDS-Code  

Bracha[3]  O(n^2L)  >   3f  3  Yes  No  flooding  

Raynal[5]  O(n^2L)  >   3f  2  Yes  No  flooding  

Patra[4]  O(nL)  >   3f  8  Yes  Yes  local  
computation  

Hash-BRB[ 
3f+1]  

O(nL)+O(nf 
L)  

>   3f  3  No  No  Hash   Fun  

Hash-BRB[ 
5f+1]  

O(nL)+O(nf 
L)  

>   5f  2  No  No  Hash   Fun  

EC-BRB[3f 
+1]  

O(nL)+O(nf 
L)  

>   3f  3  No  Yes  Hash   Fun   +  
Coding  

EC-BRB[4 
F+1]  

O(nL)+O(nf 
L)  

>   4f  3  No  Yes  Hash   +  
Coding  

 

 

Second,   We   built   a   benchmark   platform   called   Reliably-Mininet-Benchmark   (RMB)  

specifically   to   benchmark   the   performance   of   broadcast   algorithms.   Future   developers   can   use  

this   platform   easily   as   they   only   need   to   write   their   own   protocols   without   worrying   about  

benchmark   calculation   and   network   settings.  



Special   Recognition:  

 Sapta   Kumar   analyzes   the   theoretical   performance   for   all   algorithms   in   table1   and  

proofread   the   proof   of   the   new   Algorithms.  

Haochen   (Roger)   Pan   helps   designing   reliable   broadcast   protocols,   formulate   proof   and  

mininet   setup.  

Prof.   Tseng   leads   the   project   and   designs   reliable   broadcast   protocols.  

Organization   of   the   Paper:  

Section   2:   System   Models,   notations   and   problem   specification  

Section   3:   Hash-Based   Reliable   Broadcast   protocol  

Section   4:   Coded-Based   Reliable   Broadcast   protocol  

Section   5:   Design   of   our   benchmark   tool   (RMB)   and   benchmark   result.  

2   PRELIMINARIES  

2.1   Model   and   Notation  

Our   network   system   models   [7,9]   contain   a   number   of   nodes,   which   are   connected   to   all  

the   other   nodes   inside   the   network.   Furthermore,   this   is   an   asynchronous   system,   which   can   a  

maximum   of   f   number   of   faulty   nodes.  

Network:    “Asynchronous”   means   that   individual   nodes   have   their   own   clock   instead   of   a  

uniform   clock.   In   our   network   assumption,   we   assume   reliable   channels   meaning   no   packet  

should   be   dropped.   Our   protocol   also   ensures   authentication,   which   is   that   individual   nodes   can  

have   the   access   of   the   sender   of   a   packet.   In   an   asynchronous   network,   the   delay   for   a   packet  

varies,   meaning   sometimes   a   packet   can   take   a   really   long   time   to   arrive   at   the   final   destination.  

However,   if   a   sender   is   non-faulty,   then   its   message   will   be   eventually   received   by   other   nodes  

inside   the   network.  



Fault   Model :   Our   network   system   tolerates   up   to   f   number   of   faulty   nodes.   A   Byzantine  

node   can   perform   arbitrary   behavior   such   as   not   sending   a   packet,   shutting   itself   down,   or  

sending   wrong   messages   to   other   nodes   inside   the   network.   Furthermore,   our   protocol   also  

allows   the   source   nodes   to   be   faulty   so   a   faulty   source   node   can   even   equivocate   the   messages.To  

equivocate   a   message,   a   faulty   source   will   send   a   message   m1   to   a   partition   of   nodes   and   m2   to  

another   partition   of   nodes,   or   can   send   nothing   to   the   third   partition   of   nodes.  

Notations :   For   each   message   m   that   a   non-faulty   source   wants   all   non-faulty   nodes   to  

reliably   accept,   m   is   associated   with   a   tuple   (s,h),   where   s   is   the   identifier   of   the   sender   and   h   is  

the   h-th   instance   of   the   reliable   broadcast.   In   all   of   our   algorithms,   we   use   MsgSet i    [𝑠,   h]   to  

denote   the   set   of   messages   that   the   node   𝑖   collects,   in   which   are   candidates   that   can   be   identified  

with   (𝑠,   h).   When   the   context   is   clear,   we   omit   the   subscript   𝑖.   We   use   Counter[∗]   to   denote   a  

local   counter   of   certain   type   of   messages   that   is   initialized   to   0.   We   use   H(∗)   to   denote   the  

cryptographic   hash   function.   

2.2   Reliable   Broadcast   Properties  

We   adopted   the   definition   and   properties   of   reliable   broadcast   from    [ 1,3,4 ] .  

Reliable-Broadcast(m,h):    a   source   reliably   broadcast   a   message   at   round   h.  

Reliable-Accept(m,h):    When   a   non-faulty   node   has   received   enough   number   of   certain  

types   of   messages,   the   server   would   relable-accept   this   message,   meaning   for   the   hth   round,  

message   m   is   the   one   to   be   accepted.  

A   reliable   broadcast   protocol   is   correct   if   it   satisfies   the   following   properties.  

 1.   (Non-faulty   Broadcast   Termination) .   If   a   non-faulty   source   𝑠   with   a   message   𝑚   of  

index   h   performs   Reliable-Broadcast(𝑚,   h),   then   all   non-faulty   nodes   will   eventually  

Reliable-Accept(𝑠,   𝑚,   h).  

2.   (Validity) .   If   a   non-faulty   source   𝑠   does   not   perform   Reliable-Broadcast(𝑚,   h)   then   no  

non-faulty   node   will   ever   perform   Reliable-Accept(𝑠,   𝑚,   h).  

3.   (Agreement) .   If   a   non-faulty   node   performs   Reliable-   Accept(𝑠,   𝑚,   h)   and   another  

non-faulty   node   will   eventually   perform   Reliable-Accept(𝑠,𝑚′,h)   then   𝑚   =𝑚′.  



4.   (Integrity) .   Anon-faultynodereliablyacceptsatmost   one   message   of   index   h   from   a  

source   𝑠.  

5.   (EventualTermination) .   If   a   non-faulty   node   performs   Reliable-Accept(𝑠,   𝑚,   h),   then  

all   non-faulty   nodes   eventually   per-   form   Reliable-Accept(𝑠,   𝑚,   h).   

Note   that   it   is   possible   when   a   faulty   source   node   broadcasts   a   message,   non-faulty   nodes  

will   never   accept   the   message,   and   this   is   different   from   synchronous   systems,   where   each  

non-faulty   node   needs   to   output   a   value.  

2.3   Five   types   of   Messages:   

As   mentioned   before,   individual   nodes   inside   the   network   when   receiving   different   types  

of   messages   need   to   do   certain   action.   These   different   types   of   messages   are   required   for   the  

correctness   of   our   algorithm.  

MSG :    This   is   the   message   directly   received   from   the   source,   and   if   the   message   sender  
is   different   from   the   source,   then   the   server   should   never   accept   the   message.  

ECHO :    This   message   tells   individual   servers   what   messages   other   servers   have  
received   from   other   servers.   Note   that   we   use   broadcast   H(m)   here   instead   of   m   in   order   to  
reduce   bit   complexity.  

ACC :    This   message   tells   other   servers   that   one   server   is   ready   to   accept   a   message.  
Again,   the   server   sends   H(m)   instead   of   m   throughout   the   process.  

REQ :    Sometimes,   due   to   network   delay   or   faulty   source   equivocate,   a   server   may   never  
receive   the   real   message.   Thus   it   needs   to   send   a   REQ   to   other   servers   to   get   the   real  
message.  

FWD :    This   message   helps   servers   who   have   sent   a   REQ   message,   meaning   the   REQ  
senders   have   not   received   the   real   message,   to   get   the   information   of   the   real   message.  
 

3.   Hash   Reliable   Broadcast:  

Below,   We   presented   the   first   algorithm   using   a   cryptographic   hash   function.   Indicated  
by   the   name   as   “3f+1”,   this   means   that   in   order   to   ensure   the   reliable-broadcast   properties,   we  
need   n   >=   3f   +   1.  

Hash   Function:    One   of   the   assumptions   we   have   made   for   our   hash   function   is   that   it   is  
collision   free.   However,   this   is   not   really   practical   in   that   if   one   server   has   unlimited   computed  
power,   it   can   construct   a   faulty   message   say   m’,   such   that   H(m)   =   H(m’).   Even   though   hash  
function   has   such   limitations,   it   has   still   been   a   widely   adopted   technique.   For   example,   Bitcoin  
[10]   has   adopted   the   hash   function   for   the   miners   when   the   miners   try   to   solve   puzzles.   Thus,  



hash   functions   could   also   be   applied   under   our   reliable   broadcast   context.   Since   all   the   nodes  
run   the   same   hash   function,   If   a   hash   function   is   chosen   appropriately,   computation   of   a   collision  
message   takes   time.   Furthermore,   if   the   broadcast   process   is   fast,   finding   a   collision   message  
before   reliable-accept   in   the   same   round   is   nearly   impossible   in   practical   network   settings  



3.1:   Hash-BRB[3f+1]  

3.1.2   Pseudo   code:  

 



3.1.3   Proof   of   the   correctness  

In   this   section   we   are   going   to   prove   that   Hash-BRB[3f+1]   satisfied   Property   1   -   5   of  
reliable   broadcast   mentioned   in   2.2.  

We   begin   with   three   important   lemmas,   the   first   two   lemmas   follow   directly   from   the  
reliable   and   authenticated   channel.  

Lemma1 .   If   a   non-faulty   source   𝑠   performs   Reliable-Broadcast(𝑚,h),   then   MsgSet i    [𝑠,   h]  
⊆   {𝑚}   at   each   non-faulty   node   𝑖.  

Lemma2 .   If   a   non-faulty   node   𝑠   never   performs   Reliable-Broadcast   (𝑚,   h),   then  
MsgSet i [𝑠,   h]   =   ∅   at   each   non-faulty   node   𝑖.  

Lemma3.    If   two   non-faulty   nodes   𝑖   and   𝑗   send(ACC,𝑠,H(𝑚),h)   and   (ACC,   𝑠,   H(𝑚′),   h)  
messages,   respectively,   then   𝑚   =   𝑚′.   

Proof   Property   1   -   4:    Here   we   are   going   to   prove   with   contradiction.   Supposed   server   i  
is   the   first   server   to   send   (ACC,   s,   H(m),   h)   and   server   j   is   the   first   server   to   send   (ACC,   s   H(m’),  
h)   messages.   Since   both   of   them   are   the   first   servers   to   send   their   corresponding   ACC   message,  
server   i   and   j   send   the   ACC   through   line   8   in   Algorithm   3.   

Now   let's   first   look   at   server   i.   According   to   line   6,   server   i   must   have   collected   at   least   n  
-   f   echo   messages   and   at   least   n   -   f   -   f   >=   f   +   1   are   from   non-faulty   servers.   This   means   that  
server   j   can   at   most   collect   2f   Echo   messages   that   are   corresponding   to   message   m’.   However,  
since   individual   servers   can   only   send   one   type   of   message   in   each   round,   it   is   impossible   for  
server   j   to   send   Acc   in   line   8.   Thus   we   have   a   contradiction.  

Thus   from   the   above   proof,   we   show   that   Property   1-4   are   satisfied.  
Now   let’s   look   at   property   5,   which   is   the   guarantee   of   eventual   termination.  
Proof   Property   5 :   Supposed   server   i   has   reliably   accepted   the   message   (line   13,  

Algorithm   3).   Then   it   has   received   at   least   n   -   f   messages   from   other   servers.   Among   these  
messages   at   least   n   -   f   -   f   >=   f   +   1   messages   are   from   non-faulty   servers.   These   f   +   1   messages  
will   eventually   be   received   by   all   the   non-faulty   nodes.   Supposed   that   a   server   never   gets   the  
original   message   directly   from   the   source,   then   it   will   get   the   original   message   by   sending   REQ  
messages   to   those   f   +   1   servers   (line   14   Algorithm   2).   After   eventually   receiving   these   f   +   1   Acc  
messages   from   the   non-faulty   servers,   the   remaining   non-faulty   servers   will   also   broadcast   the  
same   ACC   message   as   server   i.   Thus   eventually   all   the   non-faulty   servers   will   receive   at   least   n   -  
f   number   of   ACC   messages,   which   implies   that   all   the   non-faulty   servers   will   reliably   accept  
message   m   (line   13,   Algorithm   3).  

3.2   Hash-BRB[5f+1]  
Inspired   by   a   recent   paper   [5]   that   sacrifices   resilience   for   lower   message   and   round  

complexity,   we   adapt   Hash-BRB[3f+1]   in   a   similar   way.   More   specifically,   we   can   get   rid   of   the  
ACC   Phase.   We   need   5f   +   1   in   order   to   ensure   that   at   least   n   -   2f   >   3f   non   faulty   nodes   have  



received   the   same   message,   basically   an   idea   of   majority   quorum.   By   increasing   n   to   be   at   least  
5   f   +   1,   this   algorithm   successfully   reduces   the   round   complexity   to   2.  

4.   Erasure   Code   Reliable   Broadcast:  

One   of   the   drawbacks   in   Hash-BRB[3f+1]   is   that   the   bit   complexity   is   still   high.   For  
example,   when   a   source   broadcasts   a   message,   the   bit   complexity   is   O(nl).   Thus,   instead   of  
using   hash,   We   tried   to   use   Erasure   Code   to   further   reduce   bit   complexity.  
 

4.1:   MDS   Erasure   Code   Preliminaries  
For   completeness,   we   first   discuss   basic   concepts   and   notations   from   coding   theory.   We  

use   linear   [n,k]   MDS   (Maximum   Distance   Separable)   erasure   code   over   a   finite   field    F𝑞   to  
encode   the   message.    n   represents   the   total   number   of   codes   we   need,   and   k   represents   the   total  
number   of   elements   needed   to   decode   back   a   message.  

When   encoding   operation   is   performed,   m   is   first   divided   into   k   pieces   with   each   size  
L/k,   which   then   will   output   n   coded   elements.   

At   the   beginning   of   the   algorithm,   the   source   broadcasts   one   unique   message   to   each  
server.   We   use   ENC i    to   denote   the   coded   element   sending   to   the   ith   server,   where   1   <=   i   <=   n.  

4.2   EC-BRB[3f+1]   
This   algorithm   requires   n   >=   3f   +   1   in   order   to   ensure   the   reliable   broadcast   properties.  

One   of   the   downsides   of   this   algorithm   is   that   this   algorithm   requires   exponential   calculation  
when   permuting   all   the   possible   coded   elements.   The   complexity   is   .   When   f   is   small,   the ( )O n

f+1  

computation   complexity   is   minimal   but   as   f   increases,   this   algorithm   does   not   scale.  
Notice   that   between   algorithm   12   and   16,   it   is   possible   that   one   server   decodes   faulty  

messages   and   includes   them   into   the   message   set.  



4.2.1   Pseudo   Code  

 



 



 

4.2.2:   Proof   of   correctness 

 

The   proof   of   this   algorithm   is    similar   to   our   proof   for   our   hash   based   reliable   broadcast  
algorithm.  

We   begin   with   three   important   lemmas,   the   second   lemmas   follow   directly   from   the  
reliable   and   authenticated   channel.   But   now   the   first   lemma   is   much   more   complicated   as   the  
original   message   needs   to   be   decoded   back   from   the   codes  

Lemma1 .   If   a   non-faulty   source   𝑠   performs   Reliable-Broadcast(H(𝑚),   c k ,   h),   then  
MsgSet i    [𝑠,   h]   ⊆   {𝑚}   at   each   non-faulty   node   𝑖.  

proof   of   Lemma   1:  
A   non-faulty   server   j   will   eventually   include   a   message   into   its   message   set   in   line  

16   or   in   line   32.   Since   there   are   at   least   n   -   f   >=   2f   +   1>   f   +   1,   server   i   can   get   the   message   back  
in   line   16   by   the   echo   message   from   other   servers.  

 



Lemma2 .   If   a   non-faulty   node   𝑠   never   performs   Reliable-Broadcast   (H(𝑚),   c k ,   h),   then  
MsgSet i [𝑠,   h]   =   ∅   at   each   non-faulty   node   𝑖.  

Lemma3.    If   two   non-faulty   nodes   𝑖   and   𝑗   send(ACC,𝑠,H(𝑚),h)   and   (ACC,   𝑠,   H(𝑚′),   h)  
messages,   respectively,   then   𝑚   =   𝑚′.   

Proof   Property   1   -   4:    Here   We   are   going   to   prove   with   contradiction.   Supposed   server   i  
is   the   first   server   to   send   (ACC,   s,   H(m),   h)   and   server   j   is   the   first   server   to   send   (ACC,   s   H(m’),  
h)   messages.   Since   both   of   them   are   the   first   servers   to   send   their   corresponding   ACC   message,  
server   i   and   j   send   the   ACC   through   line   8   in   Algorithm   3.   

Now   let's   first   look   at   server   i.   According   to   (line   7   Algorithm   13),   server   i   must   have  
collected   at   least   n   -   f   echo   messages   and   at   least   n   -   f   -   f   >=   f   +   1   are   from   non-faulty   servers,  
which   also   implies   that   they   can   decode   back   the   original   message   m,   where   H(m)   =   H.   This  
means   that   server   j   can   at   most   collect   2f   Echo   messages   that   are   corresponding   to   message   m’.  
However,   since   individual   servers   can   only   send   one   type   of   message   in   each   round,   it   is  
impossible   for   server   j   to   send   Acc   in   line   9   Algorithm   13.   Thus   we   have   a   contradiction.  

Thus   from   the   above   proof,   we   show   that   Property   1-4   are   satisfied.  
Now   let’s   look   at   property   5,   which   is   the   guarantee   of   eventual   termination.  
Proof   Property   5 :   Supposed   server   i   has   reliably   accepted   the   message   (line   14,  

Algorithm   13).   Then   it   has   received   at   least   n   -   f   (ACC,   s,   H(m),h]   messages   from   other   servers.  
Among   these   messages   at   least   n   -   f   -   f   >=   f   +   1   messages   are   from   non-faulty   servers.   These   f   +  
1   messages   will   eventually   be   received   by   all   the   non-faulty   nodes.   Supposed   that   a   server   never  
gets   the   original   message   directly   from   the   source,   then   it   will   get   the   f   +   1   codes   by   sending  
REQ   messages   to   those   f   +   1   servers   (line   23   Algorithm   12).   After   eventually   receiving   these   f   +  
1   Acc   messages   from   the   non-faulty   servers,   the   remaining   non-faulty   servers   will   also   broadcast  
the   same   ACC   message   as   server   i.   Thus   eventually   all   the   non-faulty   servers   will   receive   at   least  
n   -   f   number   of   ACC   messages,   which   implies   that   all   the   non-faulty   servers   will   reliably   accept  
message   m   (line   14,   Algorithm   13).  
 

4.3   EC-BRB[4f+1]   (Written   by   Prof.Tseng)  

In   order   to   solve   the   scalability   problem   presented   in   EC-BRB[3f+1],   resilience   needs   to  
be   sacrificed   such   that   in   this   algorithm,   n   >=   4f   +   1   and   k   =   n   -   3f;  



4.3.1   Pseudo   code  

 

 

 

 
 
 



4.4   EC-CRB[f+1]  
This   algorithm   does   not   handle   byzantine   failure   but   is   practical   in   the   sense   that   in   most  

of   the   systems,   nodes   do   not   have   byzantine   behavior.   The   common   failure   case   for   a   server   is  
simply   shutting   down.  

4.4.1   Pseudo   Code:  

 

4.4.2   Proof   of   Correctness   and   Complexity:  
Correctness:    As   long   as   k   >=   n   -   f,   individual   servers   can   get   back   the   original   message  

from   these   k   elements.   In   the   worst   case,   f   number   of   servers   can   crash,   and   the   other   servers  
have   to   wait   for   all   the   coded   elements   from   other   servers.  

Round   complexity    is   2;   one   round   for   the   source   to   other   nodes,   and   an   extra   round   for  
individual   servers   to   send   their   coded   elements   received   from   the   source   to   other   servers.  

Message   complexity    is   O(n^2),   as   all   the   servers   need   to   send   n   messages   to   other  
nodes   in   one   round.  

Bit   complexity    is   O(n^2L   /   k).   since   individual   code   has   size    O(L/k).  
 

 



5   Evaluation:  

Various   reliable   broadcast   algorithms   have   been   implemented   in   Golang.   We   used   Golang  

as   it   is   a   lightweight   language   for   distributed   programming.   We   further   evaluate   our   algorithms  

using   the   benchmark   tool   we   built   called   RMB   (Reliable   mininet   Benchmark).   RMB   is  

appropriate   for   evaluating   protocols   over   a   network   within   a   datacenter   or   a   cluster.   In   this  

section,   we   will   first   introduce   the   architecture   of   RMB   and   then   present   as   well   as   analysis   on  

the   results   we   collect.  

5.1   Architecture   of   RMB  

RMB   is   built   on   top   of   Mininet.   The   architecture   of   RMB   is   presented   in   Figure   2.   The  

Github   repo   for   RMB   is   at    https://github.com/yingjianwu199868/HRB  

The   generator   layer   helps   to   generate   data,   collect   data   and   calculate   statistics   such   as  

throughput   and   latency.   The   protocol   layer   contains   the   RB   protocols   that   we   implement.   RMB   is  

extensible   in   the   sense   that   developers   can   easily   write   their   own   reliable   broadcast   algorithms  

without   worrying   about   network   communication   and   benchmark.   The   only   thing   they   need   to   do  

is   to   conform   to   the   communication   protocol   between   generator   and   the   manager.   Finally,   the  

network   layer   is   simulated   by   Mininet   and   the   network   manager   that   we   implement.   RMB   users  

can   easily   use   the   script   we   provide   to   configure   the   network   conditions,   e.g.,   delay,   jitter,  

bandwidth,   network   topology,   etc.   Each   RMB   component   runs   inside   a   container,   and   the   entire  

RMB   is   simulated   on   a   single   machine   using   mininet.   These   layers   are   implemented   in   Go   and  

python   scripts   are   provided   to   launch   RMB.  

 

https://github.com/yingjianwu199868/HRB


 

 

Configuration   file :   Protocol   parameters   can   be   specified   in   a   yaml   file,   including  

information   including   number   of   trusted   nodes,   number   of   faulty   nodes,   whether   source  

byzantine   or   not,   etc.   Benchmark   managers,   protocol   and   generator   are   invoked   by   a   python  

script.   Advanced   users   can   also   use   another   yaml   file   to   control   the   network   parameters   such   as  

network   topology,   link   bandwidth,   and   individual   node   computational   power.  

Mininet:     The   bottom   layer   (gray   boxes   in   figure   2)   is   a   virtualized   network,   created   by  

Mininet   [20,   26].   Mininet   is   a   battle-tested   software   that   is   widely   used   in   prototyping  

Software-De   ned   Networks   (SDNs).   The   python   start-up   script   calls   the   Mininet   library   to   start   a  

virtual   network   consisting   of   hosts,   links,   switches   and   a   controller   before   the   start   of   simulation.  

A   virtual   host   (container)   emulates   a   node   with   an   OS   kernel   in   a   real   system.   Other   three   layers  

of   RMB   (essentially,   Linux   applications)   run   on   each   host   inside   Mininet.   Hosts   do   not  

communicate   with   each   other   directly,   instead,   they   connect   to   switches   through   Mininet   links.  

Switches   are   also   connected   to   each   through   links.  

Manager   Layer:    We   have   one   (network)   manager   for   each   host,   which    is   to   manage  

data   communication   between   the   protocol   layer   and   other   hosts   in   the   network.   There   are   four   go  

routines   for   separate   re-   sponsibilities:   (i)   receiving   messages   from   the   protocol   layer,   (ii)  

receiving   messages   from   other   hosts,   (iii)   sending   to   the   protocol   layer,   and   (iv)   sending  



messages   to   other   hosts.   Another   responsibility   is   to   control   the   faulty   behavior   if   the   current  

node   is   configured   to   be   Byzantine   node,   e.g.,   randomly   corrupt   messages.  

Protocol   Layer   (RB   Algorithms):    The   middle   layer   implements   the   protocol   that   we  

want   to   evaluate.   For   our   purpose,   we   implement   RB   protocols   here.   Each   instance   is   paired   up  

with   a   manager   we   discussed   above,   and   thus   does   not   need   to   know   explicitly   the   existence   of  

other   manager/protocol   instances.   Such   a   design   choice   allows   researchers   to   implement   new  

protocols   and   benchmark   them   at   ease.   In   our   RB   protocols,   there   are   two   goroutines   in   this  

layer.   One   is   responsible   for   sending   messages   to   the   manager   layer,   and   the   other   one   is  

responsible   for   reading   messages   from   the   manager   layer   and   then   performing   corresponding  

action.   That   is,   we   implemented   an   event-driven   algorithm   as   in   our   pseudo-code.   Note   that   we  

make   minimal   assumptions   in   this   layer;   hence,   potentially,   future   RMB   users   can   implement  

their   favorite   programming   language   and   the   algorithms   do   not   have   to   be   event-driven.   For   the  

hash   function,   We   used   Golang   default   package   hmac512   ,   and   for   the   erasure   coding,   We   used  

an   open   source   package   written   by   Klaupost.  

Application   Layer   (Workload   Generator):    The   top   layer   implements   the   workload  

generator   in   RMB.   There   are   two   roles:   (i)   issue   reliable-broadcast   commands   following   a  

specified   workload   (e.g.,   size,   frequency),   and   (ii)   collect   and   calculate   statistics   (latency   and  

throughput).   

5.2   Performance   Evaluation  

Simulation   Setup :    We   perform   the   performance   evaluation   using   RMB   on   a   single  

virtual   machine   (Google   Cloud   Platform   instance)   with   24vCPU   and   48   GB   memory.   By   default,  

the   round   trip   time   between   individual   nodes   is   between   0.06   ms   and   0.08   ms.  

We   have   done   various   benchmarks   under   different   scenarios,   and   have   picked   3   of   them  

that   give   some   practical   insights.  

Evaluation   1   (Different   network   Topologies) :   RMB   allows   developers   to   easily   evaluate  

different   protocols   with   different   network   parameters.   We   first   test   our   protocols   with   5   servers  

and   0   faulty   servers   under   three   different   network   topologies.   (1)   Linear   topology:   5   switches  



with   one   host   per   switch.   (2)   Tree   Topology:   tree   depth:   3   and   fan-out   =   2.   (3)   Fat   tree   topology:  

5   edges,   with   each   host   per   edge.  

 

 

 

 

depth   here   means   the   height   of   the   tree   and   fanout   means   number   of   children   for   each   server.  



 

Fat   tree   topology   is   much   more   complicated   that   the   previous   two   topologies   because  

oversubscription   of   links   can   prevent   failure   in   the   network.  

 

For   each   data   point   below,   the   source   broadcast   2000   messages   with   each   message   size  

1024   bytes.   The   throughput   is   calculated   as   the   number   of   reliable-accept   /   seconds.   We   have  

also   implemented   a   simple   non-fault   tolerant   broadcast   as   our   baseline.   The   result   is   presented   in  

table   2,   3,   4.  



 

 



 

 

Under   these   three   different   network   topologies,   when   bandwidth   consumption   is   not  

limited,   Bracha   outperforms   our   algorithms   as   our   algorithm   incurs   computational   power.  

However,   as   expected,   when   bandwidth   consumption   is   limited,   our   algorithms   except  

EC-BRB[3f+1]   outperforms   Bracha.   Moreover,   Hash-BRB[3f+1]   is   50%   of   Broadcast’s  

performance.  

Evaluation2   (Synchronous   vs   Asynchronous) :    Even   though   a   synchronous   algorithm  

does   not   work   in   an   asynchronous   network,   it   serves   as   a   good   baseline   (Some   might   adapt  

synchronous   algorithms   to   work   in   a   practical   setting.   For   example,   in   [27],   it   is   argued   that   the  

proposed   synchronous   algorithms   are   appropriate   in   a   datacenter   setting .    )   In   this   set   up   we   adopt  

the   single-switch   topology,   with   n   =   4,   message   size   1024   bytes,   and   2000   messages   broadcast.  

We   compared   our   algorithms   with   two   synchronous   algorithms   called   Digest,   which   used   hash  

and   NCBA,   which   used   coding.   The   result   is   shown   in   Table   5.  



 

 

Interestingly,   the   throughput   performance   is   close,   and   Hash-BRB   even   beat   Digest   and  

NCBA   by   around   20%,   even   though   we   get   rid   of   the   most   expensive   stage   in   Digest   and   NCBA,  

which   is   the   dispute   control   phase,   which   helps   to   detect   and   then   blacklist   faulty   nodes.  

Evaluation3   (Hash   vs   EC):     In   the   final   set   of   experiments,   we   provide   guidance   for  

choosing   the   best   algorithms   under   an   application   scenair.   We   used   a   single   switch   topology,   n   =  

20,   and   100   rounds   of   reliable   broadcast.   Each   experiment   is   with   the   following   setup:  

exp1:   f   =   4,   source’s   bandwidth   limitation   =   0.4   Mbits/s,   message   size   =   1096   bytes.  

exp2:   f   =   4,   source’s   bandwidth   limitation   =   4   Mbits/s,   message   size   =   1096   bytes.  

exp3:   f   =   1,   source’s   bandwidth   limitation   =   0.4   Mbits/s,   message   size   =   1020   bytes  

exp4:   exp3:   f   =   1,   source’s   bandwidth   limitation   =   4   Mbits/s,   message   size   =   1020   bytes.  

The   result   is   presented   in   Table   6.  

 

The   result   in   table   6   conforms   to   our   theoretical   analysis.  

(i)   When   bandwidth   limitation   is   high,   Hash-RRB   performs   worse   than   the   other   two.   



(ii)   EC-BRB[3f+1]   performs   better   with   larger   f.  

(iii)   EC-BRB[4f+1]   performs   better   with   smaller   f.  

 

6.Conclusion:  

In   this   honor   thesis,   seeing   the   importance   of   bridging   theoretical   algorithms   into  

practical   network   systems,   we   have   designed   and   presented   a   family   of   reliable   broadcast  

algorithms   using   techniques   such   as   cryptographic   hash   function   and   MDS   codes.   We   have  

also   implemented   other   reliable   broadcast   algorithms   from   the   previous   paper   as   a   baseline   for  

our   designed   protocol.    Furthermore,   we   have   built   a   benchmark   tool   that   is   designed   for  

benchmarking   the   performance   of   reliable   broadcast   protocols.   This   benchmark   tool   called   RMB  

is   extensible   and   future   developers   only   need   to   write   their   own   protocol   codes   without   worrying  

about   network   configuration   and   benchmark   statistics   calculation.   Finally,   we   have   used   RMB   to  

benchmark   the   algorithms   we   have   implemented   in   different   scenarios.   Based   on   the  

benchmark   results,   we   have   also   included   some   practical   insights   on   when   to   choose   different  

algorithms   based   on   different   situations.  
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