
BOSTON COLLEGE

HONORS THESIS

Byzantine Concensus: Theory and

Applications in a Dynamic System

Author:

Yifan Zhang

Supervisor:

Lewis Tseng

May 19, 2021



i

BOSTON COLLEGE

Abstract

Department of Computer Science

Byzantine Concensus: Theory and Applications in a Dynamic System

by Yifan Zhang

This survey paper aims to study the theory and applications of Byzantine general

problems. In particular, we compare models and methods being used to study

Byzantine broadcast problems in dynamic systems, where nodes may join and

leave at any time. Byzantine consensus is one of the most fundamental problems

in distributed algorithms. There exist two main variants of Byzantine consen-

sus problems: Byzantine Broadcast (BB) and Byzantine Agreement (BA). Byzan-

tine broadcast problems further have several variants including Byzantine reliable

broadcast (BRB) and Byzantine consistent broadcast (BCB). Byzantine consistent

broadcast has relaxed conditions compared to the original Byzantine broadcast

protocol, and has significant applications in blockchain systems. This paper de-

scribes the history of research on Byzantine consensus problems and their appli-

cations in a dynamic system, and helps readers understand the common tech-

niques being used in these works.



ii

Acknowledgements

Special thanks to professor Lewis Tseng for inspiring me in choosing this partic-

ular topic, believing in me, leading me to through my thesis and answering my

questions.



iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Preliminaries 4

3 Byzantine broadcast problems 7

4 Dynamic Systems 12

5 Bitcoin/Blockchain 15

6 Conclusion 18

Bibliography 19



1

Chapter 1

Introduction

Consensus is the task of getting all nodes in a group to agree on some specific value

based on the votes of each processes. All nodes must agree upon the same value

and it must be a value that was submitted by at least one of the nodes. A funda-

mental problem in distributed computing and multi-agent systems is to achieve

overall system stability, where all nodes agree on some value needed for compu-

tation, in the presence of a number of faulty processes. This often requires coor-

dinating processes to reach consensus. Byzantine consensus is the problem for n

nodes to agree on a value, despite the fact that up to f of them may behave arbi-

trarily, which is called Byzantine failures. Since Byzantine failures imply no restric-

tions they can confuse the failure detection systems, which makes fault tolerance

difficult. Prior works have done extensive study on Byzantine consensus problems

under various models, such as the asynchronous system [22][7][24] and the syn-

chronous [5] system. Besides faulty nodes model, there are studies on reaching

consensus under faulty links model [22][25] as well.

There exist a few variants formulations for the Byzantine consensus problem,

including Byzantine Broadcast(BB) and Byzantine Agreement(BA) problems. In

Byzantine agreement, each party has an input value, and all parties try to decide

on the same value. Lamport et al. [12] showed that more than 2/3 of the participat-

ing parties must be honest to reach consensus. Since then, Byzantine agreement

has been studied under both synchronous and asynchronous settings and in de-

terministic [9] and randomized [2][20] models.



Chapter 1. Introduction 2

In Byzantine broadcast, there is a designated sender that tries to broadcast a

value to the parties, and the goal is for all parties to learn the value and agree on

it. Lamport et al. [12] first introduced the Byzantine broadcast problems and pre-

sented protocols and fault tolerance bounds for two settings (both synchronous).

Without cryptographic assumptions, Byzantine broadcast and agreement can be

solved if f < n/3. With assumptions on digital signatures, Byzantine broadcast

can be solved if f < n and Byzantine agreement can be solved if f < n/2.

The Byzantine broadcast problem further has several variants. In particular, a

fundamental primitive for synchronization among a group of parties is reliable

broadcast, where a distinguished party broadcasts a value m to the other par-

ties. Two basic types of systems are considered: synchronous systems and asyn-

chronous systems. Protocols in synchronous systems can be seen as a sequence of

rounds. In each round, every node sends messages to other nodes, receives mes-

sages sent to it in that round, and then updates its state based on these messages.

By contrast, there are no bounds on message delays. Protocols in asynchronous

systems can also be viewed as a sequence of rounds. In each round, a node sends

messages to all other nodes, waits for only n − f messages of that round, and up-

dates state. Besides, there are two failure types to consider: Fail-Stop and Byzan-

tine. In Fail-Stop failure, faulty nodes may omit messages at any time, but they

stop participating in the protocol after the first time they omit messages. In Byzan-

tine failure, faulty nodes can fail to send messages when they should and can send

contradictory messages.

There are two types of protocols to consider for reliable broadcast: determin-

istic and randomized. In deterministic protocols, no random steps are taken. For

deterministic protocols, there is a termination requirement that all correct nodes

decide by some round r . In randomized protocols, if the sender is honest, then all

non-faulty parties should accept m; and if the sender is faulty, all non-faulty par-

ties should decide for the same value or not terminate the protocol at all. There is



Chapter 1. Introduction 3

a considerable literature [3][21] devoted to the implementation of reliable broad-

cast in presence Byzantine failures in asynchronous systems.

Byzantine Consistent Broadcast (BCB) is probably one of the easiest problems

in the Byzantine consensus family, as it only requires honest parties not to de-

cide while others do not have to decide. We are interested in studying Byzantine

Consistent Broadcast that requires the following two properties: consistency and

validity. The importance of BCB may have been somewhat overlooked. The most

important application for BCB today is Byzantine fault tolerant (BFT) replication

systems (also known as blockchains). Among various applications of BCB, we fo-

cus on BCB protocol in a dynamic system where nodes can join or leave at any-

time.

Byzantine consensus problems in dynamic systems are important because they

have more applications in real life because the system is not always static, and

nodes in the system may change with respect to time. Hence, we compare the

models and methods of previous works on dynamic systems, as well as important

models in Bitcoin/Blockchain.



4

Chapter 2

Preliminaries

We look at some commonly used techniques to study Byantine consensus prob-

lems, especially BCB, in dynamic system. Studies in broadcast problems generally

assume digital signatures and public-key infrastructure (PKI), and use 〈x〉r to de-

note a message x signed by party r . We abstract away some details of cryptography

but it is important to keep in mind that any PKI system must have some method

by which certificate authorities can authenticate users, and that all participants in

the PKI system trust that method. Therefore, this prevents faulty nodes from au-

thenticating the messages. Besides, it is assumed that the signature schemes enjoy

ideal unforgeability, which means any node r is able to sign specific messages he

chose himself or messages provided by an opponent. Unforgeability promises that

any node r is able to sign the messages before sending them. It is further assumed

that a threshold signature scheme, in which a set of signatures 〈x〉r for a message

x from t distinct parties can be combined into a threshold signature for x with the

same length as an individual signature. This is because signature from fewer than

t parties have no useful information and at least t parties are required for creating

a signature. If we set t to be n− f where the number of nodes n > 3 f and there are

≤ f faulty nodes, a set of signatures with useful information cannot be created by

faulty nodes.

In most studies on broadcast problems in a dynamic system, it is assumed that

every node knows who’s in the system and the protocol proceeds in synchronous



Chapter 2. Preliminaries 5

rounds. Under synchronous setting, if an honest party sends a message at the be-

ginning of some round, an honest recipient receives the message at the end of that

round. To be more specific, a round consists of three phases (i) nodes send mes-

sages in the current round, (ii) nodes receives messages sent at the beginning of

the current round and (iii) process the received messages and update local state.

There are a set of nt nodes in our model, and nt is the number of nodes in the sys-

tem at time t . As we have mentioned earlier, nodes can join and leave the system

anytime in a dynamic system. A node that is not faulty throughout the execution

is said to be honest and faithfully executed in the protocol. It is only assumed that

each node knows who’s in the system but it does not know who is faulty. We use the

term quorum to mean the minimum number of all honest parties in round t , i.e.,

nt − f . Quorum mechanism is a voting algorithm commonly used in distributed

systems to ensure data redundancy and final consistency.

Since synchronous setting is highly unrealistic in reality, we consider Byzan-

tine consensus problems in asynchronous systems where there are no bounds

on message delays. The FLP impossibility result [17] proved that it is impossible

to achieve agreement, validity, and termination simultaneously in asynchronous

systems. As a result, previous works sacrificed one or two of the properties by: (1)

either having a randomized guarantee to achieve relaxed versions of consensus;

(2) or achieving "weak synchronous" by requiring a stabilizing period in which

message delays are moderate. Thus, even though the number of rounds to reach

agreement is not bounded, the probability that the protocol does not terminate is

zero.

Byzantine general problems under both synchronous and asynchronous set-

tings often adopt protocols with multiple phases. A common technique is to have

one phase where nodes echo the sender’s proposed value so that they can detect

if the sender "equivocates", i.e., proposing different values to different parties. In



Chapter 2. Preliminaries 6

most dynamic systems, the join/leave protocols of nodes usually require multi-

ple phases of message-passing which generally consist of: new nodes multicast-

ing join/leave request, existing nodes check signature and identities, and existing

nodes echoing the new node, etc.

Nevertheless, the number and function of phases can vary depending on the

system model. For example, Byzantine broadcast protocols have a designated

sender and focus on the message exchange from sender and the rest of nodes in

the system, while others Byzantine general problems do not have a sender but in-

stead assign a primary node in the system. Hence, we want to compare different

protocols in the next few chapters.



7

Chapter 3

Byzantine broadcast problems

As mentioned earlier, a designated sender denoted by rs has an input vi n to broad-

cast to all parties in broadcast. The broadcast problem further has several vari-

ants. The consistency and validity conditions of BA, BB and BRB are the same

as the conditions for BCB protocol, and the only difference is termination con-

dition. The Byzantine reliable broadcast [4] has a totality condition that is more

relaxed than the termination condition for Byzantine Broadcast. As shown in the

definitions, BCB has more relaxed requirements compared to the original byzan-

tine broadcast protocol and Byzantine reliable broadcast because it allows some

parties to decide while others do not.

Definition 1. (Byzantine Consistent Broadcast (BCB)) A Byzantine consistent broad-

cast protocol must satisfy (i) consistency: if two honest parties r and r ′ decide val-

ues v and v ′, then v = v ′, and (ii) validity: if the sender rs is honest, then all honest

parties decide the input value vi n and terminate.

Definition 2. (Byzantine Braodcast(BB)). A Byzantine broadcast protocol must

satisfy (i) consistency: if two honest parties r and r ′ decide values v and v ′, then

v = v ′, (ii) validity: if the sender rs is honest, then all honest parties decide the

input value vi n and terminate, and (iii) termination: every honest party decides a

value and terminates.

Definition 3. (Byzantine Reliable Broadcast(BRB)). A Byzantine reliable broadcast

protocol must satisfy (i) consistency: same as above, (ii) validity: same as above,



Chapter 3. Byzantine broadcast problems 8

and (iii) totality: if an honest party decides a value, then every honest party decides

a value.

Now we compare different methods from studies on Byzantine broadcast prob-

lems. As mentioned earlier, there are two main variants of Byzantine consensus:

broadcast and agreement. The Byzantine broadcast further has several variants

Byzantine reliable broadcast and Byzantine consistent broadcast. Bracha [4] de-

veloped a technique that reduces the effect of Byzantine nodes on the system. To

be more specific, this technique has two parts: a reliable broadcast primitive and

a validation method. The broadcast primitive forces the same messages to all cor-

rect processes while the validation method forces the faulty processes to send only

messages that could have been sent by correct processes. There are three types of

messages in the protocol: (initial, v), (echo, v) and (ready, v) where processes pro-

pose, echo, and accept messages respectively.

Many of the early studies on broadcast problems are too idealistic and their

solutions are too ineffective to implement in reality. Thus, Castro and Liskov [16]

introduced PBFT (Practical Byzantine Fault Tolerance) as the first practical and ef-

ficient solution in a weakly synchronous environment, such as the Internet. PBFT

solves a more general problem called state machine replication so the setting is

different from settings in BB/BA. A state machine stores a state of the system. It

receives a set of inputs (commands) and the state machine applies these inputs in

a sequential order using a transition function to generate an output and updated

state. Now we consider a client-server setting. The server replicas all start with the

same state. When they receive concurrent requests from a client, non-faulty repli-

cas must first agree on the sequence of client commands that they receive. After

the sequence is agreed upon, the replicas apply commands one by one. Assum-

ing the transition function is deterministic, all honest server replicas maintain an

identical state at all times. The requirements for a Fault-tolerant SMR are similar

to those for BB and BA. But a major different is that in BB and BA, the nodes exe-

cuting the protocol are the ones learning the result. In State Machine Replication



Chapter 3. Byzantine broadcast problems 9

(SMR), the replicas engage in the consensus protocol but need to convince clients

of the results. For example, if there are f Byzantine replicas, the client needs to

communicate with at least f +1 replicas to know that it has communicated with

at least one honest replica. While Bratcha’s reliable broadcast protocol does not

use signature schemes, all replicas in SMR know the others’ public keys to verify

signatures.

There will be a primary node responsible for ordering the requests from the

clients. However, if the primary node does not work, view changes will be car-

ried out to elect a new primary node. Similar to Bracha’s reliable broadcast, this

model also adopts a three-phase protocol: pre-prepare, prepare and commit. The

primary node multicasts the sequence of proposed requests from the client to

other nodes, like what the sender does in broadcast protocol. Upon receiving a

pre-prepare message, nodes enter the prepare phase to echo the message. Like

Bracha’s reliable broadcast model, Castro and Liskov’s model used a quorum mech-

anism (which is explained in the previous chapter). Once collecting a quorum of

2 f prepare messages, nodes will commit that message. Then replicas execute the

message and send a reply to the client. Lastly, the client waits for f +1 replies from

different replicas with same result and valid signatures. This is the result of the

operation.

Similarly, Momose and Ren [18] desgined an algorithm in BCB protocol where

everyone interacts with the designated sender only. The protocol proceeds in syn-

chronous rounds. There are four phases in the algorithm: Propose, Echo, Vote

and Forward. Although BCB protocol has more relaxed conditions compared to

Byzantine broadcast, BCB has important applications as well. Momose and Ren

studied how BCB protocol can be used to close the considerable gaps in the com-

munication complexity of Byzantine consensus. The linear communication com-

plexity when f < n/2 can be achieved using an expander graph. An expander

graph has a constant number of edges per vertex, which ensures constant commu-

nication per party and good connectivity to detect inconsistent values effectively.



Chapter 3. Byzantine broadcast problems 10

They further discovered a quadratic communication lower bound when f > n/2 to

solve BCB under fault majority and Byzantine broadcast and Byzantine agreement

protocols with quadratic communication.

The simplest way to obtain broadcast in a multiple hop network is by using

flooding, where the sender sends the message to everyone in its transmission

range. Then each device that receives a message for the first time delivers it to

the application and also forwards it to all other devices in its range. Although

flooding is robust, it is wasteful as too many messages are being sent. Therefore,

many broadcast protocols maintain an overlay, which typically covers all nodes in

the system while each node has a limited number of neighbors. Given an over-

lay, broadcast messages are flooded only along the paths of the overlay, and thus

reducing the number of messages sent and the number of collisions.

However, having an overlay reduces the robustness of broadcast protocol against

failures, especially Byzantine behavior of overlay nodes. To solve this problem,

Drabkin et al. [26] present an overlay based Byzantine tolerant broadcast proto-

col that overcomes Byzantine failures by combining digital signatures, gossiping

of message signatures, and failure detectors. The failure detectors collect reports

of bad signatures and other observable deviations from the protocol. The infor-

mation obtained from failure detectors is used to ensure that there are enough

correct nodes in the overlay so that the correct nodes of the overlay form a con-

nected graph and that each correct node is within the transmission disk of an over-

lay node that does not exhibit Byzantine behavior. So we can reduce f +1 node

independent overlays to one single overlay. At the same time when messages are

disseminated, signatures about these messages are being gossiped by all nodes

in the system in an unstructured manner. This allows all nodes to learn about

the existence of a message even if some of the overlay nodes fail to forward them.

Moreover, multiple gossip messages are aggregated into one packet since gossips

are sent periodically. The benefit of gossiping is that if a node hears a gossip about

a message that it has never received, it can explicitly ask the message both from



Chapter 3. Byzantine broadcast problems 11

its overlay neighbor and from the node from which it received the gossip. This

greatly reduces the number of messages generated by the protocol since nodes do

not need to be sent f +1 times like they do in previous protocols.

In reality, the implementation and specification of Byzantine broadcast pro-

tocols can vary based on the environments. In particular, asynchronous reliable

broadcast is widely used as building blocks for other distributed computations in

reality, such as secure distributed storage. A client starts the dispersal protocol

as it decides to store a file in a distributed storage system provided by n servers.

The file is split into n different blocks, each one being stored by one of the n

servers. Cachin and Tessaro [6] adapted asynchronous reliable broadcast to im-

plement a simple asynchronous verifiable information dispersal scheme. A key

concept is the gateway, which is an non-faulty party through which clients access

the servers comprising the storage system. The idea is to replace the gateway by an

asynchronous reliable broadcast protocol such as [3] so that the scheme is robust

against corrupted clients, and then the server can keep its own block in memory

together with the list of hashes.



12

Chapter 4

Dynamic Systems

Byzantine consensus problems have been extensively researched in dynamic net-

works. However, many previous works assume that all nodes are fault-free, but the

network is controlled by a message adversary. Kuhn et al. [8] showed that even-

tual consensus is hard in the absence of a good initial upper bound on the size of

the network. Fugger et al. [15] proved tight lower bounds on the contraction rates

of asymptotic consensus algorithms in dynamic networks. More realistic settings

consider node failures. Augustine et al. [10] studied Byzantine agreement in dy-

namic networks and proposed randomized distributed algorithms that achieve

almost-everywhere Byzantine agreement. They assumed that the total number

of nodes in the network remains constant while both nodes and edges in the ex-

pander graph can change arbitrarily.

Instead of changing nodes and edges in an expander graph, Tseng [14] stud-

ied eventual consensus and presented a simple algorithm in both static and dy-

namic systems where nodes leave and join the system. The communication chan-

nel is assumed to be fair-loss. The message will be eventually delivered only if

both ends are fault-free. The eventual property allows us to solve the problem in

asynchronous systems with crash or even Byzantine failures. Tseng’s algorithm in

a dynamic system introduced a History variable to store previous values. Tseng’s

work also showed the importance to clarify the notion of "nodes currently in the

system" and nt in a dynamic system. Nodes that do not execute Join function

properly at the beginning of round t are not considered to be in the system in



Chapter 4. Dynamic Systems 13

round t . Similarly, nodes that do not properly execute Leave function at the be-

ginning of round t , including crashed nodes, are still in the system but are faulty

nodes in round t . Besides, nodes that do not leave properly, including Byzantine

nodes, are considered faulty nodes.

A dynamic system is desirable when it may not be possible or convenient to

stop the entire system to allow modification to part of its hardware or software in

a large distributed system. Hence, Hao et al. [28] proposed a Dynamic PBFT based

on the first practical Byzantine-fault-tolerant protocol (PBFT), so that users could

add or take out any node without stopping the whole system. They assume that

each node has three states: Benign, Absent and Malicious. The state of a new node

should be initialized to Benign. If a node exit actively, the state will change to Ab-

sent. There is a primary node that is similar to the sender in a broadcast protocol.

The primary node can change in a dynamic PBFT model. The join function is a

three-phase protocol message: (1) new node j registers at the primary node; (2)

new node j multicasts a request message to all replicas; (3) nodes verify the signa-

ture upon receiving the request. Node Exit has two parts: active exit and passive

exit. Active exit involves a similar three-phase protocol as join(). For passive exit,

the system protocol clears them out and not allow them to join anymore. Instead

of considering nodes that do not leave properly as faulty nodes as Tseng did, Hao’s

leave protocol makes sure that all nodes leave either actively or being cleared out

of the system.

Dynamic system configuration can modify and extend system while it is run-

ning. Kramer and Magee [11] introduced a model that permits dynamic incre-

mental modification and extension without stopping the unaffected parts of the

system. Previous works either have new nodes join/leave the network, or change

the specialities of nodes in the network. However, Kramer and Magee’s model can

have new nodes join, change existing nodes and even modify new nodes. Specif-

ically, changes to the system include the introduction of new components, modi-

fication of new components, and provision of different interconnection patterns.



Chapter 4. Dynamic Systems 14

Changes have to be validated so that they are compatible with the existing system.

Based on the dynamic configuration, we can determine the properties required by

languages and their environments to support the dynamic configuration.

The following table gives an overview on models that we have discussed so far:

Model Assumptions Resilience Model Key techniques

BA [13] No cryptography:

Digital signatures:

f < n/3

f < n/2

synchronous Quorum mechanism

BB [12] No cryptography:

Digital signatures:

f < n/3

f < n

synchronous Quorum mechanism

Reliable

Broadcast

[4]

No cryptography f < n/3 synchronous Quorum mechanism

PBFT [16] PKI f < n/3 asynchronous
Quorum mechanism/

view change

BCB [18] PKI f < n/3 synchronous expander graph

Overlay

[27]
PKI f < n asynchronous gossiping/

failure detector

Eventual

consensus

[14]

fair-loss channel f < n/3 asynchronous History variable

Dynamic

PBFT [28]
PKI f < n/3 asynchronous

Quorum mechanism/

view change



15

Chapter 5

Bitcoin/Blockchain

Many practical peer-to-peer systems such as Bitcoin is a dynamic system. Nakamoto

[19] introduces a peer-to-peer version of eletronic cash that allows online pay-

ments to be sent directly from one party to another. This is possible because mes-

sages are broadcast on a best effort basis, and nodes can leave and rejoin the net-

work at will. Due to the success of Bitcoin, blockchain technologies are taking

the world by storm. All nodes in the blockchain have equal status. Theses nodes

achieve consensus by using the prior agreement of the rules and following the

principle of majority dominance.

The blockchain technology is built on top of four fundamental building blocks,

and each block has key properties achieved through specific mechanism: (1) Iden-

tifying the source and destination of a transaction: Users serve from digital iden-

tities called "address" to send and receive transactions. (2) Transactions: Transac-

tions are generated by the sender and broadcasted to the network of peers. Trans-

actions are invalid unless they have been recorded in the public history of transac-

tions, the blockchain; (3) Condition for auto-processing a transaction: The trans-

fer of any value with the blockchian or the execution of any function through the

blockchain should be locked by a logic conditions; (4) Consensus: updates must

be agreed by all parties. Outchakoucht et al. [1] claimed that blockchain combined

with IoT (Internet of Things) is of great importance for blockchain in the future. He

proposed a dynamic and fully distributed security policy based on blockchain. To

make the system more secure, he adopted an authorization process where new



Chapter 5. Bitcoin/Blockchain 16

nodes register, request access to nodes in the blockchain.

In addition to security of blockchain system, we also need to solve Byzantine

Generals Problem in the applications of blockchain. PoW (Proof of Work) is the

consensus algorithm used in bitcoin. Its main idea is to allocate the account-

ing rights and rewards through the hashing power competition among the nodes.

Nodes in the blockchain agree on an ordered set of blocks, each containing mul-

tiple transactions. Furthermore, transactions are grouped into blocks which are

then chained together. A ledger is a data structure that consists of an ordered list

transactions. A blockchain starts with some initial states, and the ledger records

entire history of update operations made to the states. Bitcoin’s hash rate refers

to the amount of computing and process power being contributed to the network

through mining. Hash of the whole data of the previous block, including the hash

pointer to the block before that one, is stored in the hash pointer. Based on the in-

formation of the previous block, the different nodes calculate the specific solution

of a difficult mathematical problem. The first nodes that solves this problem can

create the next block and get a certain amount of bitcoin reward.

Nakamoto [19] used HashCash to design the mathematics problem in bitcoin.

The specific calculations are: (1) Get the difficulty value that is dynamically ad-

justed to the hash rate of the whole network; (2) Collect transactions on the net-

work after the production of the last block; (3) Traverse the current target hash

value from 0 to 232 and calculate the double SHA256 hash value in step 2; (4) If

the node can’t work out the hash value at a certain time, it repeats step two. Since

the newly created block is linked to the blocks in front of it, the length of the chain

is proportional to the amount of workload. All nodes trust the longest chain. If

a Byzantine node wants to tamper with the blockchain, he needs to control more

than 50% of the world’s hashing power to ensure that he can become the first one

to generate the latest block and master the longest chain. PoW works efficiently in

a dynamic system as the difficulty of the mathematics problem is dynamically ad-

justed to the hash rate of the whole network. Unlike other models that have strict



Chapter 5. Bitcoin/Blockchain 17

rules on join/leave protocols in a dynamic system, PoW lets new nodes join easily

but makes it difficult for malicious nodes to attack the system. Hence, the PoW

can effectively help the system reach consensus in a dynamic system.

The PoS (Proof of Stake) model uses a different process to confirm transac-

tions and reach consensus. PoS is first seen in PPCoin [23], where the digital cur-

rency has the concept of coin age. Coin age is the coin value multiplied by the

time period after it was created. The longer one holds the coin, the more rights

it can get in the network. The accounting rights are allocated based on the for-

mula proofhash<coin age*target, where proofhash is a composed hash value. If a

someone were to attack, he will need to accumulate a large number of coins and

hold them long enough to attack the blockchain. While PoW rewards its miner

for solving complex equations, in PoS, the individual that creates the next block is

based on how much they have ’staked’ based on coin age. A winner who creates

the next block is randomly chosen based on the amount nodes have staked. Nodes

with higher coin age have high chances to be selected. Hence, nodes do not have

to compute a mathematic problem like they do in PoW so PoS helps the system

achieve consensus with less resources wasted.

Besides, PBFT can also be applied as a consensus algorithm in blockchain. The

blockchain using PBFT consists of 3 f + 1 server nodes and each node needs to

collect at least 2 f +1 messages in the communication. This means the blockchain

system can only tolerate 33% malicious nodes. Since the nodes need to communi-

cate with every node to reach the agreement, the scalability is limited. As a result,

PBFT is more suitable for a blockchain system with a small number of nodes.



18

Chapter 6

Conclusion

In conclusion, Byzantine consensus problems are challenging to study but they

have important applications such as Bitcoin. Most early works focused on study-

ing BB/BA protocols under a synchronous setting, which is unrealistic in prac-

tice. By using important techniques such as threshold signature scheme and hav-

ing multiple rounds, Byzantine consensus protocols became more resilient and

robust. To accommodate real life situations where it is not possible to stop the

entire system to allow modification, Byzantine consensus models with different

join/leave protocols in a dynamic system were introduced. For the important ap-

plication of dynamic system−−blockchain, various consensus algorithms includ-

ing Proof-of-Work and Proof-of-Stake have been introduced. Such consensus al-

gorithms in blockchain make it extremely difficult for malicious nodes to attack

the system. With the growing popularity of Bitcoin, the study on Byzantine prob-

lems in a dynamic system will attract more attention.



19

Bibliography

[1] H. Es-samaali A. Outchakoucht and J.P. Leroy. In: International Journal of

Advanced Computer Science and Applications, Vol. 8, No.7, 2017 ().

[2] Michael Ben-Or. “Another advantage of free choice (extended abstract): Com-

pletely asynchronous agreement protocols”. In: In Proceedings of the second

annual ACM symposium on Principles of distributed computing, pages 27–30

(1983).

[3] G. Bracha. “An asynchronous [(n − 1)/3]-resilient consensus protocol”. In:

Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC)

(1984).

[4] G. Bracha and S. Toueg. “Asynchronous consensus and broadcast proto-

cols”. In: Journal of the ACM (1985). DOI: https://doi.org/10.1145/

4221.214134.

[5] M. Bravo, G.Chockler, and A. Gotsman. “Making Byzantine Consensus Live”.

In: 34th International Symposium on Distributed Computing (DISC 2020)

(2020). DOI: 10.4230/LIPIcs.DISC.2020.23.

[6] C. Cachin and S. Tessaro. “Asynchronous verifiable information dispersal”.

In: Asynchronous verifiable information dispersal," 24th IEEE Symposium on

Reliable Distributed Systems (SRDS’05) (2005).

[7] N. H. Vaidya D. Sakavalas L. Tseng. “Asynchronous Byzantine Approximate

Consensus in Directed Networks”. In: PODC’20: Proceedings of the 39th Sym-

posium on Principles of Distributed Computing (2020).

https://doi.org/https://doi.org/10.1145/4221.214134
https://doi.org/https://doi.org/10.1145/4221.214134
https://doi.org/10.4230/LIPIcs.DISC.2020.23


Bibliography 20

[8] Y. Moses F. Kuhn and R. Oshman. “Coordinated consensus in dynamic net-

works”. In: Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium

on Principles of distributed computing (2011).

[9] M. Fischer and N. Lynch. “A lower bound for the time to assure interactive

consistency”. In: Information processing letters, 14(4):183–186 (1982).

[10] G. Pandurangan J. Augustine and P. Robinson. “Fast Byzantine agreement in

dynamic networks”. In: Proceedings of the 2013 ACM symposium on Princi-

ples of distributed computing (2013).

[11] J. Kramer and J. Magee. “Dynamic Configuration for Distributed Systems”.

In: IEEE Transactions on Software Engineering (1985).

[12] R. Shostak L. Lamport and M. Pease. In: Concurrency: the Works of Leslie

Lamport (2019).

[13] Robert Shostak Leslie Lamport and Marshall Pease. “The Byzantine Gener-

als Problem”. In: (1982).

[14] L.Tseng. “Eventual Consensus: Applications to Storage and Blockchain”. In:

2019 57th Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton) (2019), pp. 840–846. DOI: 10.1109/ALLERTON.2019.8919675..

[15] T. Nowak M. Fugger and M. Schwarz. “Tight Bounds for Asymptotic and Ap-

proximate Consensus”. In: Proceedings of the 2018 ACM Symposium on Prin-

ciples of Distributed Computing (2018).

[16] B. Liskov M.Castro. “Practical Byzantine Fault Tolerance”. In: OSDI (1999).

[17] M.S. Paterson M.J. Fischer N.A. Lynch. “Impossibility of distributed consen-

sus with one faulty process”. In: Journal of the ACM (1985).

[18] A. Momose and L. Ren. “Optimal Communication Complexity of Byzantine

Consensus under Honest Majority”. In: (2020).

[19] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash system”. In: bit-

coin.org (2008).

https://doi.org/10.1109/ALLERTON.2019.8919675.


Bibliography 21

[20] Michael O. Rabin. “Randomized byzantine generals”. In: In Proceedings of

the 24th Annual Symposium on Foundations of Computer Science, pages 403–409

(1983).

[21] M. Reiter. “Secure agreement protocols: Reliable agreement in the presence

of faults”. In: Proc. 2nd ACM Conference on Computer and Communications

Security (1994).

[22] N. Santoro and P. Widmayer. “Agreement in synchronous networks with uniqi-

tous faults”. In: Theor. Comput. Sci (2007).

[23] S.King and S. Nadal. “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-

Stake”. In: (2012).

[24] M. Larrea T. Crain V. Gramoli and M. Raynal. “DBFT: Efficient Leaderless

Byzantine Consensus and its Application to Blockchains”. In: 2018 IEEE 17th

International Symposium on Network Computing and Applications (NCA)

(2018).

[25] B. Weiss U. Schmid and I.Keidar. “Impossibility results and lower bounds

for consensus under link failures”. In: SIAM J.Comput (2009).

[26] M. Segal V. Drabkin R. Friedman. “Efficient Byzantine broadcast in wireless

ad-hoc networks”. In: 2005 International Conference on Dependable Systems

and Networks (DSN’05) (2005).

[27] M. Segal V. Drabkin R. Friedman. “Efficient Byzantine Broadcast in Wireless

ad-hoc Networks”. In: 2005 International Conference on Dependable Systems

and Networks (DSN’05) (2005).

[28] L. Zhiqiang L. Zhen X. Hao L. Yu and G. Dawu. “Dynamic Practical Byzantine

Fault tolerance”. In: 2018 IEEE Conference on Communications and Network

Security (CNS) (2018).


	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Byzantine broadcast problems
	Dynamic Systems
	Bitcoin/Blockchain
	Conclusion
	Bibliography

