
Boston College
Department of Computer Science

Scholar of the College Thesis

submitted for the degree of

Bachelors of Science in Computer Science

A 3-approximation Algorithm for the Min Max

Correlation Clustering Problem

by

Steven Roche

Submission Date: April 16, 2025

Supervisor: Professor Hsin-Hao Su



A 3-approximation Algorithm for the Min Max Correlation Clustering

Problem

Steven Roche

Abstract

In this paper, we give a 3-approximation algorithm to the min max correlation clustering problem.

Given a complete graph, vertices are related by positive and negative edges. A positive edge denotes

similar vertices and a negative edge denotes dissimilar vertices, and the goal is to minimize the l⌐-norm

of disagreements over all vertices. The 3-approximation is possible by observing a structural property

of vertices with degree greater than or equal to 3ω, where ω is our guess of the optimal solution. A

combinatorial argument demonstrates the correctness of the algorithm, which identifies the optimal ω

and has a runtime of O(n2
D logD logn). This runtime includes determining the ω that corresponds to

the optimal objective value over the graph.

1 Introduction

The correlation clustering problem is performed on a complete graph G where edges are labeled as either

"+" or "⨼". These labels denote if vertices are "similar" or "dissimilar", or whether they should be clustered

together or not. Given any clustering of the graph - any partition of the graph - an edge is considered to be

in disagreement if it is a negative edge and its endpoints belong to the same cluster, or if it is a positive edge

and its endpoints belong to di!erent clusters. The total disagreement for a vertex v is denoted by ω(v), which

counts the total number of edges incident to v that are in disagreement. The goal of the correlation clustering

problem is to identify a clustering that minimizes an objective function measuring the disagreement of edges.

Puleo and Milenkovic [13] introduced an objective function aimed at minimizing the lp-norm of

disagreements over all vertices, defined as:

⌊⨅
v≜V

ω(v)p⌊1/p

Notable advancements have been made on the l1-norm [5, 1, 6, 9, 8], which was the original correlation



clustering proposed by Bansal, Blum, and Chawla [2] and seeks to minimize the total number of

disagreements. A recent paper by Cao et al. presented a 1.437-algorithm for the l1-norm [3].

For p = ⌐, the objective focuses on minimizing the maximum disagreement per vertex, known as the

min max correlation clustering problem, which remains less explored and is NP-hard in general [2]. This

problem is of great interest, as the min max correlation clustering problem enables control over the similarity

of clusters. This property distinguishes the l⌐-norm from other norms (such as the l1-norm); the l1-norm

minimizes the total number of clustering errors at the cost of producing individual clusters that have little

similarity. For example, consider a company that wants to ensure a minimum level of quality in the group

of movie or product recommendations given to a user [13]. The l1-norm will minimize the total number of

product mismatches over all users, but some groups of users can receive many recommendations that are

irrelevant to them. The l⌐-norm ensures that the number of irrelevant recommendations given to a group of

users is upper bounded. An interesting example of min max correlation clustering is in gene expression data

analysis; using the similarity of genes and conditions, Cheng and Church noted that gene-condition biclusters

can produce clusters with high coherence [7]. Here, a bicluster refers to a simultaneous clustering of rows

and columns in a matrix. In this particular case, each row of the matrix can correspond to a condition

and each column can correspond to a gene. If genes and conditions form a bipartite graph as described by

Cheng and Church, we can apply a min max correlation clustering algorithm to find groups of related genes

and conditions. Moreover, the error in clusters will be bounded, ensuring all gene-condition clusters have

a guaranteed level of coherence. This may be desirable over using the l1 norm, as it can produce clusters

where the conditions have little correlation to the genes. Other problems that form a bipartite graph fit this

framework. Such an example is described by Puleo and Milenkovic [13]. Suppose viewers are on the left side

of a bipartite graph and movies are on the right, and positive edges represent if a viewer likes the movie and

negative edges represent if a viewer has not seen or dislikes a movie. Then running a min max correlation

clustering problem will identify communities of viewers with similar movie taste. This information has clear

applications in industry, where a company may desire to give movie recommendations to each identified

group of viewers [13].

Turning back to the theory of min max correlation clustering, we review advancements on the problem.

Puleo and Milenkovic [13] proposed an algorithm achieve a 48-approximation ratio, using metric linear

programming followed by rounding. Using the same framework, this was improved to a 7-approximation by

Charikar et al. [4], and Kalhan, Makarychev, and Zhou [12] further reduced it to a 5-approximation.

Davies, Moseley, and Newman [10] designed a combinatorial algorithm that achieves a 40-approximation



ratio with a runtime of O(n2
log n), where n = ⌊V ⌊ is the number of vertices in the graph. While it runs

in polynomial time, it has a large approximation factor. The best known approximation ratio to date is 4,

achieved by Heidrich, Irmai, and Andres [11], who also used a combinatorial approach with a runtime of

O(n2 + nD
2), where D is the maximum degree of the graph.

Inspired by the Heidrich et al. paper, we make additional insights that enable a 3-approximation to be

achieved with a runtime of O(n2
D logD log n). This is an advancement in this area of theoretical computer

science, as this is the lowest bound achieved thus far on the min max correlation clustering problem. Note

that throughout the paper, ⌊V ⌊ = n and m denotes the number of positive edges in the graph.

2 Technical Overview

Our primary technical contribution is achieving a new approximation factor of 3. Given an estimate ε for

the optimal objective value, Heidrich et al. [11] observed that when the optimal objective OPT satisfies

OPT ∈ ε, certain neighborhood properties emerge. Specifically, if the neighborhoods of vertices u and v

share at least 2ε elements, u and v must belong to the same cluster in the optimal solution. Conversely, if

u and v di!er by more than 2ε elements, they belong to di!erent clusters.

Building on these properties, they showed that clusters can be determined for vertices with degrees of at

least 4ε. For any vertex x with deg(x) ∋ 4ε, it holds that for every other vertex y, either ⌊N[x]⨽N[y]⌊ ∋ 2ε

or ⌊N[x]!N[y]⌊ ∋ 2ε. Here, N[x] = N(x) ⋋ {x} represents the closed neighborhood of x, and ! is

the symmetric di!erence - or XOR operator. The remaining vertices, which do not meet this high-degree

condition, can be placed in singleton clusters, since their disagreements per vertex are upper-bounded by

their degrees, 4ε. This leads to a clustering with disagreements bounded by 4ε, yielding a 4-approximation

algorithm.

To improve this result and achieve a 3-approximation, we first observe that for any two vertices x and

y with degrees greater than 3ε, it must also hold that either ⌊N[x] ⨽ N[y]⌊ ∋ 2ε or ⌊N[x]!N[y]⌊ ∋ 2ε.

Thus, whether x and y belong to the same cluster is uniquely determined in the optimal solution. As a

result, the clustering induced on these high-degree vertices (those with deg(x) > 3ε) is fully determined.

The remaining challenge is to handle the placement of low-degree vertices, i.e., those with degrees upper

bounded by 3ε. Unlike the high-degree case, it is not immediately clear whether these low-degree vertices

should form singleton clusters or join existing clusters, as including them incorrectly could increase the

disagreement associated with high-degree vertices.

We address this by showing that low-degree vertices can be assigned to high-degree clusters while keeping



the maximum disagreement below 3ε, provided that OPT ∈ ε. A crucial structural insight is that if a low-

degree vertex w belongs to a cluster C in an optimal solution, no vertex v outside C can have a neighborhood

similar to that of w, i.e., ⌊N[v]!N[w]⌊ > 2ε.

Using this structural result, we present the following algorithm, which constructs a clustering with a

maximum disagreement of 3ε. This algorithm is described here with slight modifications to enhance intuition:

1. Form clusters for high-degree vertices by grouping any pair u, v where ⌊N[u]!N[v]⌊ ∈ 2ε.

2. Select an arbitrary vertex u from each high-degree cluster and have it propose to low-degree neighbors

whose neighborhoods closely resemble its own.

3. For each low-degree vertex that receives at least one proposal, arbitrarily accept one proposal and join

the corresponding cluster.

4. Place any remaining low-degree vertices that do not receive a proposal into singleton clusters.

3 Preliminary Definitions

In this paper, a clustering is defined as an object which contains clusters. Clusters are defined as the groups

in which vertices are assigned. Clusterings will be denoted as C throughout this paper, and clusters will be

denoted as C. Let E
+ denote the positive edges in the graph, G.

Definition 1. Given u ≜ G
+ = (V,E+), let N(u) denote the neighbors of u in G

+. Define

N[u] = N(u) ⋋ {u}
Definition 2. Given any clustering C and any vertex u, Cu is defined to be the cluster of C containing u.

Definition 3. Given clustering C, define ωC(x) as the number of disagreements incident to vertex x. More

precisely:

ωC(x) = ⌊Cx \N[x]⌊ + ⌊N[x] \ Cx⌊ = ⌊N[x]!Cx⌊ = ⌊N(x) ! Cx⌊ ⨼ 1

Definition 4. Given a clustering C, the objective function of C, obj(C) = maxu ωC(u), is defined as the

maximum incident disagreements over every vertex u ≜ V , where V is the set of all vertices.



Lemma 3.1. Let A,B,C be clusters of nodes. Then:

⌊A!C⌊ ∈ ⌊A!B⌊ + ⌊B!C⌊
Proof. Consider (A!B)!(B!C). Due to the associativity of the symmetric di!erence, we attain:

(A!B)!(B!C) = A!(B!B)!C

= A!C

Observe that:

(A!B)!(B!C) < (A!B) ⋋ (B!C)
⟹ ⌊(A!B)!(B!C)⌊ ∈ ⌊(A!B) ⋋ (B!C)⌊ (as X!Y < X ⋋ Y )

Thus, the proof is finished, for:

(A!C) ∈ ⌊(A!B) ⋋ (B!C)⌊ = ⌊(A!B)⌊ + ⌊(B!C)⌊



4 Algorithm

Clustering Algorithm - Algorithm 1

Let Cu denote the cluster containing vertex u. Let Lu denote the cluster in L that contains vertex u. Let

Vhigh denote all v ≜ V such that deg(v) ∋ 3ε and let Vlow = V \Vhigh.

1: function FindClustering(G+ = (V,E+),ε)
⋌ Initialization

2: L = ⨲
3: V1 = Vlow

4: for v ≜ Vhigh do
5: marked[v] ↢ 0

6: end for
7: for u ≜ Vhigh do
8: if marked[u] == 0 then
9: Cu = ⨲

10: for v ≜ Vhigh do
11: if ⌊N[u] ⨽N[v]⌊ > 2ε then
12: Cu ↢ Cu ⋋ {v}.
13: marked[v] ↢ 1

14: end if
15: L ↢ L ⋋ {Cu}
16: end for
17: end if
18: end for
19: for i from 1 to ⌊L⌊ do
20: Choose a node ui ≜ Li

21: Compute R(ui) = {w ≜ Vi ⨽N[ui] ⌊ ⌊N[w]!N[ui]⌊ ∈ 2ε}
22: Ci ↢ Li ⋋R(ui)
23: Vi+1 ↢ Vi \R(ui)
24: end for
25: if for some C ≜ C there exists ui such that ωC(ui) > 3ε then
26: return “OPT > ε”
27: else
28: return C = {Ci}⌊L⌊

i=1 ⋋⨆v≜V⌊L⌊+1{{v}}
29: end if
30: end function

Theorem 4.1. Suppose that OPT ∈ ε, Algorithm 1 outputs a clustering C with obj(C) ∈ 3ε. Recall that V1

is defined to be all vertices with degree less than 3ε.

Proof. Let C⋊ be an optimal solution so obj(C⋊) ∈ ε and let Lu denote the grouping in L that contains

vertex u. We show the following four statements in the proceeding section:

1. (High-Degree Nodes Clustering). For any u such that deg(u) > 3ε, Lu = C
⋊
u ⨽ Vhigh.



2. (No Stealing on Low-Degree Nodes). For any u ≜ Vhigh. Let C
⋊
u be the cluster in the clustering C⋊

such that Lu ⨽ Vhigh = C
⋊
u ⨽ Vhigh. We then have C

⋊
u ⨽ Vi = C

⋊
u ⨽ V1.

3. (Low-Degree Nodes Inclusion). For any grouping L′ in L, let ui be the designated vertex in Algorithm

1 that is in L′. Then, C⋊
ui

⨽N[ui] < Cui
.

4. (Closeness). For any grouping L′ in L, let ui be the designated vertex in Algorithm 1 that is in L′.

Then ⌊N[ui]!Cui
⌊ ∈ ε and ⌊C⋊

ui
!Cui

⌊ ∈ ε.

With the above four theorems, we show obj(C) ∈ 3ε. Let the clustering produced by Algorithm 1 be

denoted C. ⋉v ≜ V such that deg(v) ∈ 3ε, a singleton cluster will su"ce. For all other vertices, we consider

the associated cluster Cui
for a given vertex ui. Let v be any vertex in Cui

; our goal is to show ωC(v) ∈ 3ε.

By High-Degree Nodes Clustering, ⋈C⋊
ui

such that Lui
= C

⋊
ui

⨽ Vhigh.

Now suppose that v ≜ (C⋊
ui

⨽ Cui
). Then:

ωC(v) = ⌊N[v]!Cui
⌊

∈ ⌊N[v]!C
⋊
ui
⌊ + ⌊C⋊

ui
!Cui

⌊ Lemma 3.1

= ωC⋊(v) + ⌊C⋊
ui
!Cui

⌊
∈ ε + ε = 2ε

Otherwise, suppose that v /≜ (C⋊
ui

⨽ Cui
), implying that v ≜ (Cui

\C⋊
ui
). In this case, v must be a vertex in

R(ui) from Line 21 in Algorithm 1. Therefore, ⌊N[v]!N[ui]⌊ ∈ 2ε, and we get:

ωC(v) = ⌊N[v]!Cui
⌊

∈ ⌊N[v]!N[ui]⌊ + ⌊N[ui]!Cui
⌊ Lemma 3.1

∈ 2ε + ε = 3ε

5 High-Degree Nodes Clustering

Let ε be our guess of OPT, the optimal solution. If ε is an upper bound of OPT, then vertices with degree

greater than 3ε are uniquely clustered in the optimal solution. Our algorithm reproduces this optimal

clustering.



For the following lemmas and theorem, let u, v have degree greater than or equal to 3ε.

Lemma 5.1. If ⌊N[u]⨽N[v]⌊ > 2ε, and C is a clustering where u, v are in di!erent clusters, then obj(C) > ε.

Proof. Assume the conditions hold and let U, V be the respective clusters for u, v. For each x ≜

(N[u] ⨽N[v]), either:

• x ≜ U

• x ≜ V

• x ≜ (U ⋋ V )C
In the first case, one disagreement is added to ωC(v). In the second case, one disagreement is added to ωC(v).
In the third case, one disagreement is added to both ωC(v), ωC(v). Therefore, at least one of the following

holds:

• ωC(v) > ε

• ωC(u) > ε

Hence, obj(C) > ε.

Lemma 5.2. If ⌊N[u]!N[v]⌊ > 2ε, and C is a clustering such that u, v are in the same cluster, then

obj(C) > ε.

Proof. Assume the conditions hold and let C
′ be the cluster containing u, v. For each x ≜ (N[u]!N[v]),

either:

• x ≜ C
′

• x /≜ C
′

Consider the first case, or that x ≜ C
′. Moreover, assume x ≜ N[u]. Then, one disagreement is added

to ωC(v) because x /≜ N[v]. On the other hand, if we assume that x ≜ N[v], one disagreement is still added

to ωC(u) because x /≜ N[u].
So, now consider the second case, or that x /≜ C

′. First, assume x ≜ N[u]. Then, it adds one disagreement

to ωC(u) because x ≜ N[u]. Alternatively, if x ≜ N[v], one disagreement is added to ωC(v) because x ≜ N[v].
In either case, at least one of the following holds, since there are more than 2ε disagreements added:



• ωC(v) > ε

• ωC(u) > ε

Hence, obj(C) > ε.

Theorem 5.1. Assume ε = obj(C⋊). For any u such that deg(u) > 3ε, Lu = C
⋊
u ⨽ Vhigh.

Proof. First, consider any x ≜ Lu. Then, by Algorithm 1, ⌊N[x] ⨽ N[u]⌊ > 2ε. Also, x ≜ Vhigh by the

algorithm, or it would not be in Lu. Considering C
⋊
u , we know that obj(C⋊) ∈ ε. So by inspection of

Lemma 5.1, it must be that x ≜ C
⋊
u . So, x ≜ C

⋊
u ⨽ Vhigh, implying that Lu < C

⋊
u ⨽ Vhigh.

Now consider that x ≜ C
⋊
u ⨽ Vhigh. Then the goal is to show ⌊N[x] ⨽N[u]⌊ > 2ε. Because x, u are in

C
⋊
u and obj(C⋊) ∈ ε, Lemma 5.1 implies that x, u are in the same cluster. Proceeding now to contradiction,

let us assume ⌊N[x] ⨽N[u]⌊ ∈ 2ε. Then, since deg(u), deg(x) > 3ε:

⌊N[x]!N[v]⌊ = ⌊N[x]\N[v]⌊ + ⌊N[v]\N[x]⌊
> (3ε ⨼ 2ε) + (3ε ⨼ 2ε)
> 2ε

Then, Lemma 5.2 says that obj(C⋊) > ε. This is a contradiction, and so it must be that ⌊N[x]⨽N[u]⌊ > 2ε.

Hence, by Algorithm 1, we will have that x ≜ Lu. So, C⋊
u ⨽ Vhigh < Lu.

Therefore, we have Lu = C
⋊
u ⨽ Vhigh.

6 No Stealing on Low-Degree Nodes

Theorem 6.1. Let ui be a designated vertex as denoted in Algorithm 1. For any i, let C⋊
ui

be the cluster in

the clustering C⋊ such that Lui
⨽ Vhigh = C

⋊
ui

⨽ Vhigh. We then have C
⋊
ui

⨽ Vi = C
⋊
ui

⨽ V1.

Before proving this theorem, we prove two lemmas.

Lemma 6.1. Suppose that for any nodes u, v with degree at least 3ε and w ≜ C
⋊
u with deg(w) < 3ε, such

that ⌊N[w] ⨽N[v] ⨽N[u]⌊ = ε + x, x ≜ N0. Also, suppose that C⋊
v ⨽ C

⋊
u = ⨲.

Then, ⌊N[w]!N[u]⌊ ∈ 2(ε ⨼ x).
Proof. Let S = (N[w] ⨽ N[v] ⨽ N[u]). If ⌊S⌊ = ε + x, then we first show that ⌊S ⨽ C

⋊
u ⌊ ∈ ε. Proceeding

to contradiction, assume that ⌊S ⨽ C
⋊
u ⌊ > ε. Because S is bounded by ε + x and by assumption we have



(C⋊
u ⨽C

⋊
v ) = ⨲, it must be that ⌊S ⨽C

⋊
v ⌊ ∈ x and ⌊S\C⋊

v ⌊ > ε. Now, recall that there are ε+ x elements of

N[v] in S. So:

⌊S\C⋊
v ⌊ > ε

⟹ ωC⋊(v) = ⌊N[v]!C
⋊
v ⌊

∋ ⌊N[v]\C⋊
v ⌊

∋ ⌊S\C⋊
v ⌊ S < N[v]

> ε

This contradicts the fact that ωC⋊(w) ∈ ε for any w. Therefore, our original assumption on ⌊S ⨽ C
⋊
u ⌊ is

incorrect, and ⌊S ⨽ C
⋊
u ⌊ ∈ ε.

Now with the facts that ⌊S ⨽ C
⋊
u ⌊ ∈ ε and w ≜ C

⋊
u , we have:

⌊S\C⋊
u ⌊ ∋ x

⌊S\C⋊
w⌊ ∋ x C

⋊
w = C

⋊
u

Each of the vertices in S\C⋊
u can contribute to ωC⋊(u). But each such vertex is in both N[w] and N[u],

and thus they are not in (N[w]!N[u]).

Now, we claim that ⌊N[u]!N[w]⌊ ∈ 2(ε ⨼ x). Proceeding to contradiction, assume otherwise. Recall

that (S\C⋊
w) = (S\C⋊

u) /< (N[w]!N[u]). Let T = (S\C⋊
u).

Then:

ωC⋊(u) = ⌊T ⌊ + ⌊(N[u]!C
⋊
u)\T ⌊

ωC⋊(w) = ⌊T ⌊ + ⌊(N[w]!C
⋊
u)\T ⌊



Summing them:

ωC⋊(u) + ωC⋊(w) = 2⌊T ⌊ + ⌊(N[u]!C
⋊
u)\T ⌊ + ⌊(N[w]!C

⋊
u)\T ⌊

= 2⌊T ⌊ + ⌊(N[u]\T )!C
⋊
u ⌊ + ⌊(N[w]\T )!C

⋊
u ⌊ definition of. T

∋ 2⌊T ⌊ + ⌊(N[u]\T )!(N[w]\T )⌊ Lemma 3.1

∋ 2⌊T ⌊ + ⌊(N[u]!N[w])\T ⌊
∋ 2⌊T ⌊ + ⌊N[u]!N[w]⌊ T /≜ (N[u]!N[w])
> 2x + 2(ε ⨼ x)
> 2ε

Therefore, either ωC⋊(u) > ε or ωC⋊(w) > ε, which is a contradiction on the clustering C⋊.

So, ⌊N[u]!N[w]⌊ ∈ 2(ε ⨼ x).

Lemma 6.2. Let u, v have degree at least 3ε and w ≜ C
⋊
u with deg(w) < 3ε. Let S = (N[w]⨽N[v]⨽N[u]).

Then:

⌊N[w]!N[v]⌊ + ⌊N[w]!N[u]⌊ ∋ ⌊N[v]⌊ + ⌊N[u]⌊ ⨼ 2⌊S⌊
Proof. We first go about showing two set containments, which directly implies the desired statement.

Observe, by definition that:

(N[w]!N[v]) ⋋ (N[w]!N[u]) = (N[v]\N[w]) ⋋ (N[w]\N[v]) ⋋ (N[w]\N[u]) ⋋ (N[u]\N[w])
We now focus on two of the terms. See that:

(N[v]\N[w]) ⋋ (N[w]\N[u]) = (N[v]\(N[v] ⨽N[w])) ⋋ (N[w]\(N[w] ⨽N[u]))
Consider some x ≜ (N[v]\S). We show that:

(N[v]\S) < (N[v]\N[w]) ⋋ (N[w]\N[u])
⟹ ⌊N[v]⌊ ⨼ ⌊S⌊ < ⌊N[v]\N[w]⌊ + ⌊N[w]\N[u]⌊



Take such an x. If we suppose x ≜ (N[v]\N[w]), we are done. If we instead suppose that x /≜ (N[v]\N[w]),
then x ≜ N[w]. This is because x ≜ N[v] and x /≜ (N[v]\N[w]). Thus, x ≜ N[w] also. With this, we get:

x ≜ N[w] ⨽N[v]
x /≜ N[u] x /≜ S

⟹ x ≜ N[w]\N[u]
Therefore, we obtain the set inclusion. Now considering the other case, that x ≜ (N[u]\S), a similar

argument shows that:

(N[u]\S) < (N[w]\N[v]) ⋋ (N[u]\N[w])
⟹ ⌊N[u]⌊ ⨼ ⌊S⌊ ∈ ⌊N[w]\N[v]⌊ + ⌊N[u]\N[w]⌊

So we have shown the set containment, giving the sought after implication:

⌊N[v]⌊ +N[u] ⨼ 2⌊S⌊ ∈ ⌊N[v]\N[w]⌊ + ⌊N[w]\N[u]⌊ + ⌊N[w]\N[v]⌊ + ⌊N[u]\N[w]⌊
= ⌊N[v]!N[w]⌊ + ⌊N[u]!N[w]⌊

Now we are in a position to prove Theorem 6.1.

Proof. Let ui be as in Algorithm 1. Choose uj ≜ (V \V1) so that deg(v) ∋ 3ε and C
⋊
ui

⨽ C
⋊
uj

= ⨲. Let

deg(w) < 3ε and ⌊S⌊ ∈ ε. Then, using Lemma 6.2.:

⌊N[uj]!N[w]⌊ + ⌊N[w]!N[ui]⌊ ∋ ⌊N[uj]⌊ + ⌊N[ui]⌊ ⨼ 2⌊S⌊
∋ 3ε + 3ε ⨼ 2ε

∋ 4ε

We know that ⌊N[w]!N[ui]⌊ ∈ 2ε by Algorithm 1. This implies that ⌊N[w]!N[uj]⌊ > 2ε. and w cannot

be ’stolen’ by uj during the algorithm for ⌊S⌊ ∈ ε.

The other case is that ⌊S⌊ ∈ ε + t, for some t ∋ 0. It su"ces to show that w /≜ R(uj). Using the result



Figure 1: Venn Diagram of Lemma 6.2

of Lemma 6.2:

⌊N[w]!N[uj]⌊ + ⌊N[w]!N[ui]⌊ ∋ ⌊N[uj]⌊ + ⌊N[ui]⌊ ⨼ 2⌊S⌊
⟹ ⌊N[w]!N[uj]⌊ + ⌊N[w]!N[ui]⌊ ∋ 3ε + 3ε ⨼ 2(ε + t)
⟹ ⌊N[w]!N[uj]⌊ + ⌊N[w]!N[ui]⌊ ∋ 2(2ε ⨼ t)

Then, Lemma 6.1 informs us that ⌊N[ui]!N[w]⌊ ∈ 2(ε ⨼ t). Hence, ⌊N[w]!N[uj]⌊ > 2ε.

Because in all cases we observe that ⌊N[w]!N[uj]⌊ > 2ε, w cannot be ’stolen’ by uj during the

algorithm. Thus, all w ≜ C
⋊
ui

with deg(w) < 3ε will be clustered into the appropriate cluster Cui
. Thus, we

know for any w ≜ (C⋊
ui

⨽ V1), then w ≜ (C⋊
ui

⨽ Vi) because w cannot be selected to join any R(uj) when

C
⋊
uj

/= C
⋊
ui

and i /= j. So we have:

C
⋊
ui

⨽ V1 < C
⋊
ui

⨽ Vi

Then, because Vi < V1, we observe that:

C
⋊
ui

⨽ Vi < C
⋊
ui

⨽ V1



Hence, we derive C
⋊
ui

⨽ V1 = C
⋊
ui

⨽ Vi.

7 Low-Degree Nodes Inclusion

Theorem 7.1. For any grouping L′ in L, take ui as denoted in Algorithm 1. Then, C⋊
ui

⨽N[ui] < Cui
.

Proof. Let h ≜ (C⋊
ui

⨽N[ui]). If h = ui, then ui ≜ Cui
by definition. If otherwise, assume deg(h) ∋ 3ε and

h /= u. By Theorem 5.1, for ε = obj(C⋊), Lui
= C

⋊
ui

⨽ Vhigh. Now, h ≜ C
⋊
ui

and h ≜ Vhigh, implying that

h ≜ Lui
. Thus, by line 22 in Algorithm 1, h ≜ Cui

. So we attain:

C
⋊
ui

⨽N[ui] < Cui

8 Closeness

From the above arguments, for v ≜ V such that deg(v) ∋ 3ε, we know v ≜ C
⋊
v and v ≜ Cv This follows from

Theorem 5.1, since Lv = C
⋊
v ⨽ Vhigh. Let ui be as denoted in Algorithm 1. The following shows that for

vertices of lower degree, the symmetric di!erence between N[ui], Cui
, and C

⋊
ui

is ’small’, i.e. less than or

equal to ε.

Theorem 8.1. For any grouping L′ in L, let ui be the node in L′ with maximum degree. Then

⌊N[ui]!Cui
⌊ ∈ ε and ⌊C⋊

ui
!Cui

⌊ ∈ ε.

Proof. We begin with ⌊N[ui]!Cui
⌊ ∈ ε. First, we show (N[ui]\Cui

) < (N[ui]\C⋊
ui
). From Theorem 7.1,

we have C
⋊
ui

⨽N[ui] < Cui
. So:

N[ui]\Cui
< N[ui]\(C⋊

ui
⨽N[ui]) = N[ui]\C⋊

ui
(8.1)

Therefore:

⌊Vlow ⨽ (N[ui]!Cui
)⌊ = ⌊Vlow ⨽ (N[ui] \ Cui

)⌊ + ⌊Vlow ⨽ (Cui
\N[ui])⌊

= ⌊Vlow ⨽ (N[ui] \ Cui
)⌊ (Vlow ⨽ Cui

) < N[ui], Alg. 1, line 21-22

∈ ⌊Vlow ⨽ (N[ui] \ C⋊
ui
)⌊ (8.1)

∈ ⌊Vlow ⨽ (N[ui]!C
⋊
ui
)⌊



Also, since C
⋊
ui

⨽ Vhigh = Cui
⨽ Vhigh, it must be the case that

⌊(N[ui]!Cui
) ⨽ Vhigh⌊ = ⌊(N[ui]!C

⋊
ui
) ⨽ Vhigh⌊(8.2)

Now, putting the above together:

⌊N[ui]!Cui
⌊ = ⌊(N[ui]!Cui

) ⨽ Vlow⌊ + ⌊(N[ui]!Cui
) ⨽ Vhigh⌊

∈ ⌊(N[ui]!C
⋊
ui
) ⨽ Vlow⌊ + ⌊(N[ui]!C

⋊
ui
) ⨽ Vhigh⌊ (8.2)

= ⌊N[ui]!C
⋊
ui
⌊ ∈ ε ui ≜ C

⋊
ui

and ωC⋊(u) ∈ ε

Figure 2: ⌊N[ui]!Cui
⌊ ∈ ⌊N[ui]!C

⋊
ui
⌊



Moving on to the next part of the proof, we show ⌊C⋊
ui
!Cui

⌊ ∈ ε.

⌊C⋊
ui
!Cui

⌊ = ⌊Vlow ⨽ (C⋊
ui
!Cui

)⌊ C
⋊
i ⨽ Vhigh

= Cui
⨽ Vhigh

= ⌊Vlow ⨽ (C⋊
ui

\ Cui
)⌊ + ⌊Vlow ⨽ (Cui

\C⋊
ui
)⌊ by symm. di!

= ⌊Vlow ⨽ (⌋C⋊
ui

⨽N[u]⌋ \ Cui
)⌊ + ⌊Vlow ⨽ (⌋C⋊

ui
\N[ui]⌋ \ Cui

)⌊ + ⌊Vlow ⨽ (Cui
\C⋊

ui
)⌊

by Partition Theorem

= ⌊Vlow ⨽ (⌋C⋊
ui

⨽N[ui]⌋ \ Cui
)⌊ + ⌊Vlow ⨽ (C⋊

ui
\N[ui])⌊ + ⌊Vlow ⨽ (Cui

\C⋊
ui
)⌊ Vlow ⨽ Cui

< N[ui]
(Alg 1., line 21-22)

= ⌊Vlow ⨽ (C⋊
ui

\N[ui])⌊ + ⌊Vlow ⨽ (Cui
\C⋊

ui
)⌊ C

⋊
ui

⨽N[ui] < Cui

(Thm 7.1)
∈ ⌊Vlow ⨽ (C⋊

ui
\N[ui])⌊ + ⌊Vlow ⨽ (N[ui]\C⋊

ui
)⌊ Vlow ⨽ Cui

< N[ui]
= ⌊Vlow ⨽ (C⋊

ui
!N[ui])⌊ by symm. di!

∈ ⌊C⋊
ui
!N[ui]⌊

∈ ε obj(C⋊) = ε

9 Runtime Analysis

Calculating Vlow on line 3 of Algorithm 1 requires iterating over all v ≜ V to check the degree of each

vertex. This takes O(m), where m = ⌊E+⌊. This also gives us Vhigh. To complete line 11, where we check

⌊N[u] ⨽N[v]⌊ > 2ε. For any h ≜ V , we represent N[h] as a binary tree. This is achieved by giving every

vertex a number that corresponds to its identity and constructing the binary tree using these identity values.

Using a data structure such as a red-black tree, creating all the balanced trees takes O(n logD), as each

vertex has at most D neighbors and there are n vertices.

Let the maximum degree in V be D. Given any x ≜ N[v], checking if x ≜ N[u] takes O(logD) because

u has at most D neighbors. Hence, calculating ⌊N[u] ⨽ N[v]⌊ takes O(D logD). We pre-calculate this

⋉u, v ≜ V , taking O(n2
D logD). This will gives us everything needed for line 11.

Now we consider the runtime of lines 19 through 24, which is dominated by line 21. Observe that for



any u, v ≜ V , we have:

⌊N[u]!N[v]⌊ = deg(u) + deg(v) + 2 ⨼ ⌊N[u] ⨽N[v]⌊
Therefore, calculating ⌊N[u]!N[v]⌊ relies on calculating ⌊N[u]⨽N[v]⌊, which takes O(1) because we pre-

calculated this earlier. We also maintain a bitmask for V1, which iteratively becomes each Vi in the algorithm

with deletion taking O(1) via hashing into the bitmask. Then, finding whether w ≜ Vi for each w ≜ N[ui]
takes O(D). Therefore, the running time of line 21 is:

O(D) +O(1) = O(D)
Thus, the total runtime of these lines takes:

O(⌊L⌊D) = O(nD)
The remaining lines 15-29 take O(n2) to check the disagreement on each vertex. Therefore, the total

running time of Algorithm 1 is O(n2
D logD). Taking into account a binary search on ε, the total runtime

required to find a 3-approximation is O(n2
D logD log n).

References

[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking and

clustering. J. ACM, 55(5):23:1–23:27, 2008. 1

[2] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning, 56(1-3):89–113,

2004. 2

[3] Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl. Understanding

the cluster linear program for correlation clustering. In Proceedings of the 56th Annual ACM Symposium on

Theory of Computing (STOC), pages 1605–1616, 2024. 2

[4] Moses Charikar, Neha Gupta, and Roy Schwartz. Local guarantees in graph cuts and clustering. In Integer

Programming and Combinatorial Optimization (IPCO), pages 136–147, 2017. 2

[5] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information. Journal

of Computer and System Sciences, 71(3):360 – 383, 2005. 1

[6] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal LP rounding



algorithm for correlation clustering on complete and complete k-partite graphs. In Proceedings of the 47th

Annual ACM Symposium on Theory of Computing (STOC), pages 219–228, 2015. 1

[7] Yizong Cheng and George Church. Biclustering of expression data. In Proceedings of the International

Conference of Intelligent Systems for Molecular Biology, volume 8, pages 93–103, 2000. 2

[8] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding error via

preclustering: A 1.73-approximation for correlation clustering. In 64rd IEEE Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 2023. to appear. 1

[9] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with sherali-adams. In

63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 651–661. IEEE, 2022. 1

[10] Sami Davies, Benjamin Moseley, and Heather Newman. Fast combinatorial algorithms for min max correlation

clustering. In International Conference on Machine Learning, pages 7205–7230. PMLR, 2023. 2

[11] Holger SG Heidrich, Jannik Irmai, and Bjoern Andres. A 4-approximation algorithm for min max correlation

clustering. In AISTATS, pages 1945–1953, 2024. 3

[12] Sanchit Kalhan, Konstantin Makarychev, and Timothy Zhou. Correlation clustering with local objectives. In

Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019. 2

[13] Gregory J. Puleo and Olgica Milenkovic. Correlation clustering and biclustering with locally bounded errors.

IEEE Trans. Inf. Theory, 64(6):4105–4119, 2018. 1, 2


