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Abstract

Neuroscience imaging data presents unique challenges due to complex geometric structures and
limited data availability. Through three projects, we show how leveraging geometric priors,
foundation models, and curated benchmarks are promising strategies for developing computer
vision techniques for neuroscience. First, using the Frenet-Serret Frame-based Decomposition,
we study how invariances to curvilinear transformations induce data-efficient learning on
point cloud part segmentation tasks. To verify our findings, we create CurviSeg, a synthetic
dataset of 3D curvilinear structures, we curate DenSpineEM, comprised of 70 dendrites
sourced from public electron microscopy datasets, and we evaluate the generalizability of
our method on the IntrA intracranial aneurysm segmentation dataset. Secondly, we propose
TriSAM, adapting the Segment Anything Model for 3D segmentation of blood vessels using
tri-plane seed tracking. We demonstrate the effectiveness of our model on electron microscopy
datasets sourced from mouse, macaque, and human cortical samples. Finally, we establish
WormID-Bench, a benchmark for whole-brain neural activity extraction from C. elegans. We
assess how recent detection, identification, and tracking models perform, with the eventual
goal of promoting progress in reverse engineering the nervous system of the nematode. We
hope that this body of work advances understanding in neuroscience through the lens of
machine learning methodology.
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Chapter 1

Frenet-Serret Frame-based
Decomposition for Part Segmentation
of 3D Curvilinear Structures

This section draws extensively from previous work done in collaboration with the Harvard
Visual Computing Group and Lichtman Lab: Leslie Gu et al. “Frenet-Serret Frame-based
Decomposition for Part Segmentation of 3D Curvilinear Structures”. In: arXiv preprint
arXiv:2404.14435 (2024).

Accurately segmenting 3D curvilinear structures in medical imaging remains challenging
due to their complex geometry and the scarcity of diverse, large-scale datasets for algorithm
development and evaluation. In this paper, we use dendritic spine segmentation as a case study
and address these challenges by introducing a novel Frenet–Serret Frame-based Decomposition,
which decomposes 3D curvilinear structures into a globally smooth continuous curve that
captures the overall shape, and a cylindrical primitive that encodes local geometric properties.
This approach leverages Frenet–Serret Frames and arc length parameterization to preserve
essential geometric features while reducing representational complexity, facilitating data-
efficient learning, improved segmentation accuracy, and generalization on 3D curvilinear
structures. To rigorously evaluate our method, we introduce two datasets: CurviSeg, a
synthetic dataset for 3D curvilinear structure segmentation that validates our method’s key
properties, and DenSpineEM, a benchmark for dendritic spine segmentation, which comprises
4,476 manually annotated spines from 70 dendrites across three public electron microscopy
datasets, covering multiple brain regions and species. Our experiments on DenSpineEM
demonstrate exceptional cross-region and cross-species generalization: models trained on
the mouse somatosensory cortex subset achieve 91.9% Dice, maintaining strong performance
in zero-shot segmentation on both mouse visual cortex (94.1% Dice) and human frontal
lobe (81.8% Dice) subsets. Moreover, we test the generalizability of our method on the
IntrA dataset, where it achieves 77.08% Dice (5.29% higher than prior arts) on intracranial
aneurysm segmentation. These findings demonstrate the potential of our approach for
accurately analyzing complex curvilinear structures across diverse medical imaging fields.
Our dataset, code, and models are available at https://github.com/VCG/FFD4DenSpineEM
to support future research.
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Figure 1.1: Part Segmentation for 3D Curvilinear Structures. Curvilinear structures
from (a) DenSpineEM: Main experimental dataset on dendritic spine segmentation. (b) IntrA:
Intracranial aneurysm segmentation dataset for testing cross-domain generalizability. (c)
CurviSeg: Synthetic dataset for theoretical validation. Colors indicate segmentation labels.

1.1 Introduction

Deep learning-enabled 3D biomedical imaging has driven advancements in both scientific
research (e.g., connectomics [2, 3], protein structure prediction [4, 5]) and as a crucial
tool in medical care (e.g., bone lesion analysis [6, 7, 8], aneurysm detection [9]). While
semantic segmentation algorithms, such as nn-UNet [10], have achieved strong results in
various tasks, the segmentation of 3D curvilinear structures remains challenging due to
their intricate geometry, varying thickness, and complex branching patterns [11]. These
structures, characterized by their elongated, often branching nature following curved paths
in three-dimensional space, are ubiquitous in biological and medical imaging, playing crucial
roles in various systems from neuronal networks to vascular systems [12].

In this paper, we focus on dendritic spine segmentation as a representative task for 3D
curvilinear structure analysis. Dendritic spines, small protrusions on neuronal dendrites, are
crucial for synaptic transmission, and their morphology and density provide vital information
about neuronal connectivity, making accurate segmentation essential for neuroscience re-
search [12]. However, segmentation is challenging due to spines’ high density along dendrites,
complex geometry, variable sizes and shapes, and intricate branching patterns [11]. The lack
of benchmark datasets has led to reliance on simple heuristics without human-annotated
comparisons, limiting the reliability of current methods.

Recent advances, such as deep learning-based workflows [13], joint classification and seg-
mentation methods for 2-photon microscopy images [14], and interactive tools like 3dSpAn [15],
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have improved performance. However, these approaches often require large training datasets
or manual refinement and struggle to generalize across different imaging conditions and spine
morphologies. This underscores the need for more data-efficient methods capable of handling
the complexity of 3D curvilinear structures.

To address these challenges, we propose the Frenet–Serret Frame-based Decomposition
(FFD), which decomposes 3D curvilinear geometries into two components: a globally smooth
C2 continuous curve that captures the overall shape, and a cylindrical primitive that encodes
local geometric properties. This approach leverages Frenet–Serret Frames and arc length
parameterization to preserve essential geometric features while reducing representational com-
plexity. The resultant cylindrical representation facilitates data-efficient learning, improved
segmentation accuracy, and generalization on 3D curvilinear structures.

To validate the effectiveness of our approach, we introduce CurviSeg, a synthetic dataset
for segmentation tasks of 3D curvilinear structures, which serves as a theoretical validation to
verify the key properties of our method. Additionally, we present DenSpineEM, a benchmark
dataset for dendritic spine segmentation, consisting of 4,476 manually annotated dendritic
spines from 70 dendrites across three 3D electron microscopy (EM) image stacks (mouse
somatosensory cortex, mouse visual cortex, and human frontal lobe). Using our decomposition,
models trained on the large subset from the mouse somatosensory cortex achieve high
segmentation performance (91.9% Dice) and demonstrate strong zero-shot generalization on
both the mouse visual cortex (94.1% Dice) and human frontal lobe (81.8% Dice) subsets.
Moreover, we demonstrate the generalizability of our method on the IntrA dataset for
intracranial aneurysm segmentation, where it achieves 77.08% DSC, outperforming the state-
of-the-art by 5.29%, highlighting its effectiveness beyond dendritic spine segmentation to
other medical imaging tasks.

Our contributions include:

• We propose the Frenet–Serret Frame-based Decomposition, decomposing 3D curvilinear
geometries into a smooth C2 curve and cylindrical primitive for efficient learning and
robust segmentation.

• We develop DenSpineEM, a comprehensive benchmark for 3D dendritic spine segmen-
tation, containing 4,476 manually annotated spines from 70 dendrites across three EM
datasets, covering various brain regions and species.

• We introduce CurviSeg, a synthetic dataset for 3D curvilinear structure segmentation,
used to validate our method and as a resource for other analyses.

• Our method achieves high segmentation accuracy with cross-species and cross-region
generalization on dendritic spine segmentation, and surpasses state-of-the-art methods
on intracranial aneurysm segmentation.
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1.2 Related Works

1.2.1 Applications in Medical Imaging

3D Curvilinear Structure Analysis. In the medical domain, curvilinear structures are
prevalent and critical, with applications spanning blood vessel segmentation [16], neuronal
tracing [17], and airway tree extraction [18]. These structures, characterized by their tubular
or filament-like shape, present unique challenges due to their complex geometry and intricate
branching patterns. Traditional methods rely on hand-crafted features, such as the Hessian-
based Frangi vesselness filter [19] and multi-scale line filter [20], which enhance tubular
structures but often struggle with complex geometries and varying scales.

Recent advancements leverage machine learning techniques to improve robustness and
accuracy. Sironi et al. [21] introduced a multi-scale regression approach for centerline
detection, while deep learning methods (e.g., nnU-Net [10] and DeepVesselNet [22]) have
shown superior performance in vessel segmentation tasks. Despite these advances, challenges
persist in the medical domain, including high variability in structure appearance, resolution
limitations, and the scarcity of large-scale annotated datasets [23]. Our work builds upon
these foundations, using dendritic spine segmentation as a compelling example to address
these challenges through our novel Frenet frame-based transformation.

Dendritic Spine Segmentation. Dendrites, with their curvy and elongated structure,
serve as an excellent example for curvilinear structure analysis. Their protrusions, known as
dendritic spines, play a crucial role in neuronal connectivity and plasticity [24]. The segmen-
tation of these spines presents unique challenges across different imaging modalities. In light
microscopy, where spines appear as tiny blobs due to limited resolution, research has focused
on spine location detection [25], semi-automatic segmentation [26], and morphological analysis
[27]. High-resolution electron microscopy (EM) has enabled more precise spine analysis,
leading to two main approaches: morphological operations with watershed propagation [28],
and skeletonization with radius-based classification [29]. However, these methods often rely
on hand-tuned hyperparameters and require all voxels as input, limiting their effectiveness
for large-scale data analysis. The field of dendritic spine segmentation faces two significant
challenges: the lack of comprehensive benchmark datasets for rigorous evaluation, and the
need for effective methods that can handle complex spine geometry in large-scale datasets.
To address these challenges, we introduce both a large-scale 3D dendritic spine segmentation
benchmark and a novel Frenet frame-based transformation method, potentially advancing
curvilinear structure analysis in neuroscience and beyond.

1.2.2 Methodological Foundations

Preliminaries on Frenet-Serret Frame. To understand the geometric properties of
curvilinear structures, we turn to the fundamental concept of the Frenet-Serret frame in
differential geometry. In three-dimensional Euclidean space R3, the Frenet-Serret frame (TNB
frame) of a differentiable curve at a point is a triplet of three mutually orthogonal unit vectors
(i.e., tangent, normal, and binormal) [30]. Specifically, let r(s) be a curve in Euclidean space
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parameterized by arc length s, then the Frenet-Serret frame can be defined by:

T :=
dr

ds
, N :=

dT

ds
/

∥∥∥∥dT

ds

∥∥∥∥ , B := T×N, (1.1)

which satisfies the Frenet-Serret formulas:

dT

ds
= κN,

dN

ds
= −κT + τB,

dB

ds
= −τN, (1.2)

where κ(s) is curvature and τ(s) is torsion, measuring how sharply the curve bends and how
much the curve twists out of a plane.

Originally formulated for physics applications [31], Frenet-Serret Frame has subsequently
been adopted across diverse domains. In robotics and autonomous driving, it facilitates the
optimization of trajectory planning [32]. The computer graphics community utilizes it for
generating swept surface models [33], rendering streamline visualizations [34], and computing
tool paths in CAD/CAM systems [35]. More recently, Frenet frame has been instrumental in
characterizing protein structures in bioinformatics [36], underscoring their adaptability across
varying scales and scientific disciplines. Our work extends this concept to the (bio)medical
domain, specifically for the analysis and segmentation of dendritic spines, where we employ
it to map these 3D curvilinear structures onto a standardized cylindrical coordinate system
while preserving crucial geometric properties.

Computational Approaches for 3D Medical Imaging. 3D shapes in biomedical imaging,
typically derived from CT (Computational Tomography) and EM (Electron Microscopy)
scans, are often represented as voxels on discrete grids. Prior works [37, 38] predominantly
use voxel representations, extending 2D approaches to 3D (e.g., 3D UNet [39]) or employing
sophisticated 3D operators [40]. However, voxel-based methods face challenges with high
memory requirements and limited spatial resolution. Alternatively, point cloud representations
offer a lightweight and flexible approach for 3D shape analysis [41]. They excel in extracting
semantic information [42] and provide higher computational efficiency for large-scale objects.
Given these advantages, our work primarily utilizes point cloud representations for analyzing
3D curvilinear structures.

1.3 Frenet–Serret Frame-based Decomposition

1.3.1 Method Overview

Intuition. Our intuition is based on the observation that curvilinear structures in biological
systems often exhibit tree-like morphologies, with complexity arising from two main aspects:

• Global structure: The overall shape and orientation of the main structure, such as the
elongation and curvature of a dendrite trunk or blood vessels.

• Local geometry: Smaller, often critical elements attached to or variations along the
main structure, such as dendritic spines or vascular bifurcations.

For segmentation tasks, the global structure adds unnecessary complexity, expanding the
learning space and increasing data requirements. Our approach separates these components
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Figure 1.2: Exemplary Pipeline of Dendritic Spine Segmentation using Frenet-
Serret Frame-based Decomposition. The pipeline consists of three main steps: 1)
Decomposition: Converting dense volumes to point clouds in R3, then decomposing into
a C2 curve and a cylindrical primitive (R+ × S1 × R). 2) Segmentation: Performing
point-based segmentation on the cylindrical primitive, leveraging the simplified geometry
for improved accuracy and efficiency. 3) Inverse Decomposition: Reconstructing the
segmented structure back to R3 by combining the cylindrical primitive with the C2 curve.

by decomposing the structure into standardized representations. Such decomposition enables
efficient learning through standardized cylindrical representations that preserve intrinsic
shape information while reducing global variations.

Segmentation Pipeline with FFD. We use dendritic spine segmentation as an exemplar
to demonstrate the application of Frenet–Serret Frame-based Decomposition (FFD) for
segmenting 3D curvilinear structures. As illustrated in Fig. 1.2, our pipeline consists of three
main stages:

• Decomposition: Initially, binary EM volumes are converted to point clouds in R3.
We then perform skeletonization with topological pruning to extract the backbone
(dendrite trunk) skeleton, parametrizing it as a C2 continuous curve. Along this
curve, we calculate Frenet–Serret Frames and reconstruct surrounding point clouds
in a cylindrical coordinate system (Fig. 1.3). This forms a cylindrical primitive in
(R+ × S1 × R), preserving essential local geometries.

• Segmentation: With its reduced learning space, the cylindrical primitive undergoes
data-efficient segmentation, as well as enabling improved generalization across diverse
samples.

• Inverse Decomposition: Finally, we transform the segmented cylindrical primitive and
C2 curve back to the original R3 space, completing the process.

This approach significantly boosts segmentation accuracy and generalization performance
on dendritic spine segmentation task, as demonstrated in our experiments (Sec.1.5.2). In
the following subsections, we provide the mathematical formulation of the decomposition
(Sec.1.3.2), prove its properties (bijectivity and rotation-invariance, Sec.1.3.3), and detail the
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implementation of the pipeline, including skeletonization and discrete Frenet-Serret Frame
calculation (Sec.1.3.4).

1.3.2 Formulation of Frenet-Serret Frame-based Decomposition

Figure 1.3: Frenet-Serret Frame-based Transformation. A key component of FFD
is the transformation that maps point clouds in R3 to cylindrical coordinates (ρ, ϕ, g) in
(R+ × S1 × R). It utilizes the Frenet-Serret Frame (T, N, B) of the curve at Si, the nearest
point to Pi. Left: The point Pi and curve S in a Cartesian coordinate system. ρ: distance

between Si and Pi, ϕ: angle between normal vector N and projection of
−−→
SiPi onto NB-plane,

g: curve arc length to Si. Right: The reconstruction of Pi in a cylindrical coordinate system.

Denote P = {(xi, yi, zi) | i = 1, . . . , n} ⊂ R3 as a point cloud, C as the space of C2 curves
in R3 that form the backbone skeleton of P . We formulate the decomposition:

D : P → C × (R+ × S1 × R)n, (1.3)

as a composition of two mappings: D = S ◦ F , where:

• S : P → C is a skeletonization function that maps the point cloud to a C2 continuous
curve S : [0, L] → R3, parameterized by arc length s ∈ [0, L].

• F : C × P → C × (R+ × S1 × R)n is a Frenet-Serret Frame-based transformation that
reconstruct the point cloud in cylindrical coordinates, defined as:

F(S, P ) = (S, {(ρi, ϕi, gi) | i = 1, . . . , n}), (1.4)

where {(ρi, ϕi, gi) | i = 1, . . . , n} is the reconstructed point cloud in a cylindrical coordinate
system.

Specifically, as depicted in Fig. 1.3, for each point Pi, we determine its closest point on
the curve, Si = S(si), where si = mins∈[0,L] ∥Pi − S(s)∥. Due to the continuity of S, the
closest point is unique for almost all Pi

1. The transformation is then defined as:

ρi = ∥Pi − Si∥, gi =

∫ si

0

∥∥∥∥dS(s)

ds

∥∥∥∥ ds = si,

1For a continuous curve, almost every point in R3 has a unique closest point on the curve. The set of
points with multiple equally closest points (i.e., cut locus) is of measure zero and does not affect the overall
transformation.
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ϕi = arctan 2(vi · bsi ,vi · nsi),

where vi represents the projection of the vector
−−→
SiPi (denoted as ui) onto the normal-binormal

plane, which can be calculated by vi = AiA
T
i ui, where Ai = [nsi ,bsi ] is a column orthogonal

matrix.

1.3.3 Properties of the Decomposition

Properties. The Frenet–Serret Frame-based Decomposition possesses two key properties:
1) Bijectivity : The decomposition is invertible, allowing the cylindrical primitive and backbone
curve to be transformed back to the original space without information loss. 2) Rotation
Invariance: The decomposition is invariant to rotations of the input data, as the cylindrical
primitive is constructed in a standardized coordinate system aligned with the backbone curve.

Benefits. These properties confer the following benefits: 1) Bijectivity enables segmentation
to be performed in the simplified cylindrical space while preserving the ability to map results
back to the original space accurately. 2) Rotation invariance eliminates the need for rotation
augmentation and ensures consistent feature representation regardless of the input orientation.

Proof. To prove the properties of the decomposition D, it suffices to prove the corresponding
properties of F . Given that S : P → C is a fixed mapping for a given point cloud, the
properties of D = F ◦ S are fundamentally determined by F : C × P → C × (R+ × S1 ×R)n.
Therefore, we focus the proof on the Frenet-Serret Frame-based transformation F . For
notational convenience, we use F(P ) to represent F(S, P ) in our proofs, as S is fixed for a
given input.
1) Bijectivity. To prove the transformation is bijective, we need to verify that it’s both
injective and subjective.

• Injectivity: Assume Pt1, Pt2 ∈ P , with F(Pt1) = F(Pt2) = (ρ, ϕ, g). Let St ∈ R3 be

their closest point on the skeleton S. If Pt1 ̸= Pt2, then
−−−→
Pt1Pt2 = δt, δ ̸= 0, where

t is the tangent at St. As S is C2 continuous, ∃ ϵ > 0 sufficiently small and S ′
t ∈ S

such that
−−→
S ′
tSt = ϵt and ∥

−−−→
S ′
tPt1∥2 = ∥

−−−→
StPt1∥2 − ϵ2 + o(ϵ2). Hence d(Pt1, S

′
t) < d(Pt1, St)

, contradicting that St is the closest point to Pt1 on S. Hence, ∀ Pt1, Pt2 ∈ P such that
F(Pt1) = F(Pt2), we have Pt1 = Pt2, i.e., the transformation is injective.

• Surjectivity: As S is C2 continuous, ∀s1, s2 ∈ [0, L] (s1 ̸= s2), we have ∥Ss1 − Ss2∥ > 0.
Hence, ∀Yt = (ρt, ϕt, gt) ∈ R+ × S1 × R, Sst ∈ S can be uniquely determined by

gt =
∫ st
0

∥dS(s)
ds

∥ds. Denote the Frenet-Serret Frame at Sst as (tst ,nst , bst). ∃ δ ∈ (0, ρt),

we have Pt ∈ R3 as
−−−→
SstPt = δ(sinϕtbst + cosϕtnst) +

√
ρ2t − δ2tst , such that F(Pt) = St.

Hence, ∀Yt ∈ R+ × S1 × R, ∃Pt ∈ R3 such that F(Pt) = Yt, i.e., the transformation is
surjective.

2) Rotation Invariance. We prove the rotation invariance of F by showing F(R(Pt)) = F(Pt)
for any Pt ∈ R3 and R ∈ SO(3).

Let Sst be the closest point on S to Pt, (t(st),n(st),b(st)) the Frenet-Serret Frame of S

at Sst , ut =
−−−→
SstPt, At = [n(st),b(st)], and vt = AtA

T
t ut. Under rotation R, the Frenet-Serret
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Figure 1.4: DenSpineEM Dataset. DenSpineEM contains 3 subsets: (a) M50: 50 mouse
somatosensory cortex dendrites, (b) H10: 10 human visual cortex dendrites, (c) M10: 10
mouse visual cortex dendrites.

Frame rotates accordingly: (t′(st),n
′(st),b

′(st)) = (Rt(st), Rn(st), Rb(st)), and u′
t = R(ut),

A′
t = R(At). Hence, v′

t = R(vt). Crucially:

(a) ρ′t = ∥R(Pt) −R(Sst)∥ = ∥Pt − Sst∥ = ρt

(b) g′t = gt

(c) ϕ′
t = arctan 2(R(vt) ·R(b(st)), R(vt) ·R(n(st)))

= arctan 2(vt · b(st),vt · n(st)) = ϕt

(a), (b), and (c) hold because rotation preserves distances, arclength, and dot products, respec-
tively. Thus, F(R(Pt)) = (ρ′t, ϕ

′
t, g

′
t) = (ρt, ϕt, gt) = F(Pt), ensuring consistent transformation

regardless of orientation.

1.3.4 Implementation

Backbone Skeletonization. We first apply the Tree-structure Extraction Algorithm for
Accurate and Robust Skeletons (TEASAR) [43] to extract the initial skeleton from the input
structure. TEASAR begins with a raster scan to locate an arbitrary foreground point,
identifying its furthest point as the root. It then implements Euclidean distance transform
to define a penalty field [44], guiding the skeleton through the target’s center. Dijkstra’s
algorithm is applied to find the path from the root to the most geodesically distant point,
forming a skeleton branch. Visited regions are marked by expanding a circumscribing cube
around the path vertices. This process repeats until all points are traversed. Finally, the
resultant skeleton is smoothed and upsampled via linear interpolation for density assurance.
Although TEASAR effectively extracts initial skeletons, the intricate branching patterns
of curvilinear biological structures can introduce unnecessary complexity into subsequent
analyses. To simplify the topology, we prune minor branches from the extracted skeleton,
preserving the main structure. We then traverse the simplified skeleton to identify individual
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branches, cropping each as separate inputs while allowing overlap between adjacent branches
to maintain continuity. Each cropped branch undergoes our transformation separately,
facilitating focused processing of each branch within the overall structural context. Our
pipeline is flexible for processing both volumetric and point cloud input; we use TEASAR in
this study as it can be applied to both modalities with minor adjustments. Alternatively,
we refer L1-medial skeletonization [45] as a robust approach for relatively small-scale point
cloud data.

Discrete Frenet-Serret Frame Computation. We compute Frenet-Serret Frames along
the curve to characterize local geometry, addressing both curved and straight segments. For
curved segments, we apply standard Frenet-Serret formulas as defined in Eq. 1.1. To enhance
numerical stability, we employ a curvature threshold ϵ = 1e − 8, identifying near-straight
segments where Frenet-Serret Frames become ill-defined. Our piecewise interpolation scheme
handles straight segments effectively. Between curved parts, we linearly interpolate the
normal vector, while at curve extremities, we propagate the normal from the nearest curved
segment. For globally straight curves, we construct a single normal vector perpendicular
to the tangent using the first non-collinear point and apply it consistently along the entire
curve. To ensure frame orthonormality and further improve numerical stability, we apply
Gram-Schmidt orthogonalization. Our Frenet-Serret Frame computation method is provided
as a Python package2, facilitating seamless integration into various geometric analysis and
computational applications.

1.4 Datasets

1.4.1 CurviSeg Dataset

We introduce the CurviSeg dataset and make use of it for the first experiments in this paper.
CurviSeg is defined as a synthetic dataset of 3D curvilinear structures with additional spherical
objects for point cloud segmentation tasks. The curvilinear structures were generated using
cubic B-spline interpolation of n randomly generated control points, where n ∼ U{5, 10}.
The control points pi ∈ R3 were generated as:

pi = s · ri, i = 1, . . . , n (1.5)

where ri ∼ N (0, I3) are random vectors sampled from a standard 3D normal distribution,
and s ∼ U(1, 3) is a uniform random scaling factor. The B-spline curve C(t) was then defined
as:

C(t) =
n−1∑
i=0

Ni,3(t)pi, t ∈ [0, 1] (1.6)

where Ni,3(t) are cubic B-spline basis functions. This curve was evaluated at 500 equidistant
points {tj}500j=1 to form the skeleton. Points were distributed along this skeleton using a
cylindrical coordinate system. For each skeleton point C(tj), we generated a set of points
xj,k as:

xj,k = C(tj) + r cos(θ)nj + r sin(θ)bj (1.7)

2https://pypi.org/project/discrete-frenet-solver
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Table 1.1: Overview of DenSpineEM Dataset. We build upon 3 EM volumes with
instance segmentation and annotate spine segmentation for 90 dendrites.

Name Tissue Size (µm3) #Dendrites #Spines
DenSpine-M50 Mouse Somatosensory Cortex [47] 50×50×30 50 3,827
DenSpine-M10 Mouse Visual Cortex [48] 30×30×30 10 335
DenSpine-H10 Human Frontal Lobe [48] 30×30×30 10 319

where r ∼ U(0, rs), rs ∼ U(0.3, 0.7) is the slice radius, θ ∼ U(0, 2π), and nj and bj are
the normal and binormal vectors at C(tj), respectively. We added m ∼ U{1, 2, 3} spherical
objects to each structure. Each sphere, centered at cl, was placed tangent to a random point
xj,k on the main structure:

cl = xj,k + (rs + rb)
xj,k −C(tj)

∥xj,k −C(tj)∥
(1.8)

where rb = krs, k ∼ U(1, 2). Points within each sphere were generated as:

yl = cl + rb · u, u ∼ U(S2) (1.9)

where S2 is the unit 2-sphere. The point density was kept consistent between the main
structure and the spheres, calculated based on the total volume and target point count. Each
point was labeled as either part of the main structure (0) or a sphere (1), forming a binary
segmentation problem.

CurviSeg comprises 2500 samples in total, where each sample contains 4096 points. The
dataset is split into 80% training, 10% validation, and 10% testing sets.

1.4.2 DenSpineEM Dataset

We curate a large-scale 3D dendritic spine segmentation benchmark, DenSpineEM, with
saturated manual annotation of three EM image volumes (Fig. 1.4). In total, DenSpineEM
contains 4,520 spine instances from 69 fully segmented dendrites (Tab. 1.1). In comparison,
existing dendrite spine segmentation datasets are either constructed by heuristic spine
extraction methods [28, 29] or lack of thorough annotation [46].

Dataset Construction. We leverage three public EM image volumes with dense dendrite
segmentation to construct the DenSpineEM dataset: one 50 × 50 × 50µm3 volume from the
mouse somatosensory cortex [47], two 30× 30× 30µm3 volumes from the mouse visual cortex
and the human frontal lobe respectively [48] (Tab. 1.1). We refer readers to the reference for
dataset details.
DenSpine-M50. We first curate DenSpine-M50 from [47] as our main dataset due its existing
segmented dendrites (100+) and spines (4,000+) which are analyzed in [46]. However, on
most dendrites, the spine segmentation is not thorough, making it hard to train models for
practical use due to the unknown false negative errors. We pick 50 largest dendrites from the
existing annotation and manually proofread all spine instance segmentation. In the end, we
obtain 3,827 spine instances.
DenSpine-{M10, H10}. To evaluate the generalization performance of the model trained on
DenSpine-M50 across regions and species, we build two additional datasets from AxonEM
image volumes [48]: DenSpine-M10 from another brain region in the mouse and DenSpine-H10
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Table 1.2: FFD Validation on CurviSeg. We evaluate the segmentation performance,
data efficiency, rotation invariance, and computation speed of three models with and without
FFD.

Method Segmentation Performance (DSC %) Computation Speed
Full Data 25% Data Test-time Rot. Train (s/epoch) Inf. (ms/sample)

PointCNN[51] 92.40 84.92 91.32 210.00 119.59
w. FFD 95.42 94.77 95.60 215.40 124.78

PointNet++[52] 87.99 56.91 85.87 75.81 32.34
w. FFD 95.17 94.33 95.18 82.70 38.05

DGCNN[53] 88.95 84.32 86.41 114.11 58.87
w. FFD 95.76 95.63 95.76 122.33 63.06

from the human. Although the AxonEM dataset only provides proofread axon segmentation,
we are thankful to receive saturated segmentation results for both volumes from the authors.
For each of the two volumes, we first pick 10 dendrites with various dendrite types and branch
thicknesses and proofread their segmentation results. Then, we go through these dendrites
and annotate the spine instance segmentation.

Annotation Protocol. For a high-quality ground truth annotation, we segment spines
manually with the VAST software [49] to avoid introducing bias from automatic methods.
To detect errors, we use the neuroglancer software [50] to generate and visualize 3D meshes
of the segmentation of dendrites and spines. Four neuroscience experts were recruited to
proofread and double-confirm the annotation results for spine instance segmentation.

1.4.3 IntrA Dataset

For additional evaluation of our method on intracranial aneurysm segmentation, we utilize the
entire artery subset of the IntrA dataset [54], rather than the more commonly used segment
subset [9]. This subset consists of 103 3D TOF-MRA images containing 114 aneurysms. The
data is provided as surface models in Wavefront OBJ files, derived from original volumetric
images (512 × 512 × 300, 0.496 mm slice thickness). By using full artery models, we present
a more challenging and realistic scenario for aneurysm segmentation. The dataset excludes
aneurysms smaller than 3.00 mm, with sizes ranging from 3.48 to 18.66 mm (Mean: 7.49
mm, SD: 2.72 mm). Most aneurysms are saccular, with one fusiform aneurysm included.

1.5 Experiments and Results

1.5.1 Property Validation with CurviSeg Dataset

We validate FFD on the CurviSeg toyset with three point-based models, using a batch size of
8 on a single A100 GPU, and assess segmentation performance with Dice.

Segmentation Performance. As shown in Tab. 1.2, FFD consistently improved segmenta-
tion performance across all models, with 3.01%∼7.18% increase in DSC.

Data Efficiency. We compared models trained on varying data scales, from 25 to 2000
samples. As shown in Fig. 1.5, models with FFD maintain high, stable performance across all
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Figure 1.5: Data Efficiency Plot of FFD. We compare models trained on varying scales
of data from CurviSeg dataset.

Table 1.3: Segmentation Results on DenSpineEM. CI 95 indicates 95% confidence
interval. The results are calculated by the mean value of each fold.

Method Subset IoU (%) CI 95 (%) DSC (%) CI 95 (%) Spine

Spine Trunk Spine Trunk Spine Trunk Spine Trunk Accuracy (%)

PointNet++[52]
M50 71.1 94.5 65.3 ∼ 76.8 93.5 ∼ 95.6 77.9 97.1 71.8 ∼ 84.0 96.4 ∼ 97.9 84.6 ± 6.44
M10 73.1 88.1 71.1 ∼ 75.2 86.7 ∼ 89.4 81.4 93.5 79.6 ∼ 83.1 92.7 ∼ 94.3 77.2 ± 4.38
H10 64.4 88.6 61.4 ∼ 67.4 87.8 ∼ 89.4 74.6 93.8 72.0 ∼ 77.2 93.4 ∼ 94.3 70.4 ± 5.86

PointNet++ w. FFD
M50 81.1 97.2 77.2 ∼ 85.0 96.3 ∼ 98.0 86.5 98.5 83.3 ∼ 89.7 98.0 ∼ 99.1 88.8 ± 6.14
M10 81.2 94.4 79.5 ∼ 83.0 93.5 ∼ 95.2 87.4 97.1 86.4 ∼ 88.4 96.6 ∼ 97.5 85.6 ± 2.78
H10 74.8 94.5 72.5 ∼ 77.2 93.8 ∼ 95.1 82.2 97.1 80.4 ∼ 84.1 96.7 ∼ 97.5 76.8 ± 6.18

RandLA-Net[55]
M50 18.4 57.1 13.1 ∼ 23.8 43.4 ∼ 68.8 24.1 71.7 18.0 ∼ 30.2 61.8 ∼ 82.0 43.0 ± 18.60
M10 21.6 47.1 17.2 ∼ 26.0 39.3 ∼ 54.8 29.4 63.1 24.4 ∼ 34.4 56.5 ∼ 72.8 48.9 ± 14.17
H10 22.4 54.8 15.7 ∼ 29.1 42.5 ∼ 67.1 30.1 70.0 21.4 ∼ 38.8 59.0 ∼ 81.0 49.1 ± 18.99

RandLA-Net w. FFD
M50 40.1 84.4 20.4 ∼ 59.8 80.2 ∼ 88.7 46.9 91.3 25.1 ∼ 68.7 89.0 ∼ 93.6 48.7 ± 22.00
M10 40.0 77.0 24.9 ∼ 55.2 69.0 ∼ 85.0 48.4 86.7 31.5 ∼ 65.2 81.7 ∼ 91.7 37.1 ± 15.61
H10 37.3 78.7 23.6 ∼ 51.0 73.2 ∼ 84.2 45.3 87.7 29.7 ∼ 60.9 84.4 ∼ 91.0 42.1 ± 20.70

PointTransformer[56]
M50 82.8 97.6 77.5 ∼ 88.1 96.9 ∼ 98.3 88.5 98.8 85.5 ∼ 91.5 98.4 ∼ 99.1 95.7 ± 1.01
M10 80.8 92.1 77.9 ∼ 83.7 91.4 ∼ 92.7 88.8 95.7 87.6 ∼ 89.9 95.4 ∼ 96.1 91.7 ± 1.56
H10 70.7 90.3 69.0 ∼ 72.4 89.9 ∼ 90.7 81.3 94.5 80.1 ∼ 82.4 94.3 ∼ 94.7 81.9 ± 1.58

PointTransformer w. FFD
M50 87.6 98.8 77.4 ∼ 97.8 98.4 ∼ 99.3 91.9 99.4 83.4 ∼ 96.4 99.2 ∼ 99.6 95.7 ± 1.56
M10 89.1 96.0 88.1 ∼ 90.1 95.4 ∼ 96.6 94.1 98.0 93.3 ∼ 94.9 97.6 ∼ 98.3 95.8 ± 0.57
H10 71.2 92.1 70.0 ∼ 72.5 91.7 ∼ 92.6 81.8 95.6 80.7 ∼ 82.9 95.3 ∼ 95.9 83.9 ± 2.04

data regimes, while baseline models experience sharp performance declines as data reduces.
Notably, models with FFD trained on just 25% of the data (500 samples) perform similarly
to those trained on the full dataset.

Rotation Invariance. We began by applying random SE(3) augmentation during test
time. As shown in Tab. 1.2, with FFD, segmentation performance remained unchanged
under rotations while non-FFD models experienced slight drops of 1.08%∼2.54%. We
further conducted a numerical analysis with 1000 SE(3)-augmented samples, comparing the
representations F(P ) and F(PR). The average point-wise L2 distance was ϵ = (6.28×10−26±
9.13 × 10−25), with a maximum distance of 1.85 × 10−23, confirming the rotation invariance.

Computational Efficiency. The application of FFD introduced a marginal increase in
computational cost. For the training set of 2000 samples, FFD resulted in approximately
5.40s ∼ 8.22s increase in training time per epoch and 4.19ms ∼ 5.71ms increase in inference
time per sample, but this trade-off was minor compared to the notable improvements in
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Figure 1.6: Segmentation Results of PointTransformer on DenSpineEM. (a∼b) M50
subset; (c) M10 subset; (d) H10 subset.

segmentation performance.

Bijectivity. To empirically verify bijectivity, we randomly selected 1000 samples from
CurviSeg and applied FFD, D : P → C × (R+ × S1 × R)n, followed by its inverse, D−1 :
C × (R+ × S1 × R)n → P ′. The average point-wise L2 distance between P and P ′ was
ϵ = (8.98± 7.21)× 10−31, with a maximum error of 1.02× 10−29. These results confirm FFD’s
bijectivity within numerical precision limits, demonstrating consistently low reconstruction
errors across all samples.

1.5.2 Benchmark on Dendritic Spine Segmentation

Experiment Setup. We employ 5-fold cross-validation to train models on the M50 subset,
with the M10 and H10 subsets used as test sets to evaluate cross-region and cross-species
generalization, respectively. Given the extreme density of input dendrite volumes—ranging
from 5.59 × 106 to 3.51 × 108 voxels, with an average of 4.82 × 107 and the sparse spine
volume (0.077% to 6.99% of the dendrite), voxel-based models such as nnUNet struggle with
the imbalance and requires prohibitively high memory. To address the density issue, we crop
dendrites along trunk skeletons and convert them into point clouds as individual samples
(Sec. 1.3.4). During training, we randomly sample 30,000 points as input; during inference,
we perform repeated sampling to ensure full point cloud coverage.

Model Choice. We choose 30,000 as the sampling scale as it’s sufficient to preserve spine
geometry and shapes, whereas fewer points risk losing critical information. Although 30,000
points do not constitute a large-scale point cloud, models like DGCNN, PointConv, and
PointCNN encounter OOM issues on 4 NVIDIA A10 GPUs. Consequently, we selected
PointNet++, PointTransformer, and RandLA-Net as baselines for their efficiency with
large-scale point clouds.

Evaluation Metrics. Due to the significant foreground-background imbalance, the task is
defined as binary segmentation, separating the trunk from the spine. Each spine initially
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Figure 1.7: Additional Evaluation on IntrA. Visualization results on 3 cases from IntrA
dataset are showed.

receives a unique label during dataset development; however, for experiments, segmentation
is binarized to mitigate the imbalance. While these binary results can be further refined
into multi-class labels via connected component grouping or clustering (e.g., DBScan), we
evaluate model performance using only binary segmentation results to avoid post-processing
bias. Specifically, we assess segmentation performance using DSC and IoU for both trunk
and spine, with 95% confidence intervals for each metric. Spine prediction accuracy is also
reported, with an individual spine considered correctly predicted if its Recall exceeds 0.7. All
experiments are conducted on 4 NVIDIA A10 GPUs with PyTorch, and detailed settings
along with metric tables for each fold are provided in the GitHub repository.

Results and analysis. We evaluate the segmentation performance on all three DenSpineEM
subsets using models trained on the DenSpineEM-M50 subset.
Quantitative Analysis. We quantitatively evaluate the segmentation performance on the
DenSpineEM dataset, as summarized in Table 1.3. Models with FFD consistently outperform
baselines across all subsets. Specifically, PointTransformer w. FFD achieves the highest spine
IoU and DSC on M50 with 87.6% and 91.9%, respectively, and maintains robust performance
on M10 with a spine IoU of 89.1% and DSC of 94.1%. Even on the challenging H10 dataset,
it attains a spine IoU of 71.2% and DSC of 81.8%, outperforming the baseline. Moreover,
models with FFD exhibit high spine accuracy; for example, PointTransformer w. FFD
achieves 95.7% on M50 and 95.8% on M10. The integration of FFD not only improves mean
performance but also enhances consistency, as indicated by narrower 95% confidence intervals.
For instance, PointNet++ w. FFD increases spine IoU from 71.1% to 81.1% on M50 over
the baseline. Overall, adding FFD effectively enhances the models’ ability to segment spines
accurately, improving both accuracy and generalization.
Qualitative Analysis. For qualitative analysis, we use predictions from the best-performing
model, PointTransformer. We visualize two cases from the M50 dataset and one case each
from M10 and H10 to evaluate generalization, as shown in Fig. 1.6. Models with FFD
consistently outperform the baseline. On the M50 subset, the baseline predictions contain
numerous false negatives, especially on large spines mistaken for trunks ((a), (b)-top), leading
to missed spines after clustering. FFD implicitly adds a trunk skeleton prior, alleviating
this issue and enhancing model robustness. In generalization tests, the model with FFD
maintains robust performance on the M10 subset, while the baseline produces more false
positives ((c)-top). For the H10 subset, where dendrites are longer with denser spines, both
models’ performance degrades. The FFD model includes a few false positives on large spines
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((d)-top) and false negatives on small spines ((d)-bottom), whereas the baseline heavily misses
many spines with excessive false negatives.

1.5.3 Additional Evaluation on Intracranial Aneurysm Segmenta-
tion

Experiment Settings. We evaluated our method on the IntrA dataset using 5-fold cross-
validation on the 103 TOF-MRA samples of the entire artery. The preprocessing pipeline
involved voxelizing the surface model using the fast winding number method [57], skeletonizing
the artery volume with TEASAR [43], pruning skeleton branches (node degree < 2 or edge
length < 20 mm), and cropping the artery into vessel segments. We then applied our
Frenet-Frame-based transformation and followed the two-step baseline method (detection-
segmentation) [54]. For fair comparison with the baseline, we converted voxelized segmentation
results back to surface point clouds before computing the Dice Similarity Coefficient (DSC)
to measure segmentation accuracy.

Result Analysis. Our method achieved a DSC of 77.08% (±18.75%), surpassing the
previous state-of-the-art performance of 71.79% (±29.91%) [54], which demonstrates both
improved accuracy and significantly reduced variability in segmentation results. Fig. 1.7
demonstrates the qualitative superiority of applying to FFD over the baseline. In all three
cases, our method more accurately delineates aneurysm boundaries (blue regions) within
complex arterial structures.

1.6 Conclusion

In this study, we proposed the Frenet–Serret Frame-based Decomposition as an effective
solution for accurately segmenting complex 3D curvilinear structures in (bio)medical imaging.
By decomposing these structures into globally smooth curves and cylindrical primitives, we
achieve reduced representational complexity and enhanced data-efficient learning. Our method
demonstrates exceptional cross-region and cross-species generalization on the DenSpineEM
dataset, which we developed as a comprehensive benchmark for dendritic spine segmentation,
achieving high Dice scores in zero-shot segmentation tasks. Additionally, the significant
performance improvement on the IntrA dataset underscores its versatility across different
medical imaging applications. These results highlight the potential of our approach to advance
the analysis of intricate curvilinear structures.
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Chapter 2

TriSAM: Tri-Plane SAM for zero-shot
cortical blood vessel segmentation in
VEM images

This section draws extensively from previous work done in collaboration with the Harvard
Visual Computing Group and Lichtman Lab: Jia Wan et al. “TriSAM: Tri-Plane SAM for zero-
shot cortical blood vessel segmentation in VEM images”. In: arXiv preprint arXiv:2401.13961
(2024).

While imaging techniques at macro and mesoscales have garnered substantial attention
and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing
intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper,
we address a significant gap in this field of neuroimaging by introducing the first-in-class
public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in
vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals:
adult mouse, macaque, and human. We standardized the resolution, addressed imaging
variations, and meticulously annotated blood vessels through semi-automatic, manual, and
quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed
a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the
powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D
volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the
reliability of certain image planes for tracking while using others to identify potential turning
points. This approach effectively achieves long-term 3D blood vessel segmentation without
model training or fine-tuning. Experimental results show that TriSAM achieved superior
performances on the BvEM benchmark across three species. Our dataset, code, and model
are available online at https://jia-wan.github.io/bvem.

2.1 Introduction

With around 2% of body weight, our brain receives around 20% of blood supply. Most of the
energy and nutrients are consumed by the neurons, and neuron function is sensitive to the blood
supply [61, 62]. The blood supply can even be adjusted following the consumption of brain
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Figure 2.1: Imaging modalities for blood vessel analysis. (a) Both microtomography (µCT) [59]
and light microscopy (LM) [60] can only capture blood vessels in the cortex at the sub-micron
resolution without ultrastructure details. (b) Volume electron microscopy (VEM) can show
unbiased details of the vasculature including all types of cells at a higher resolution.

regions, called neurovascular coupling [63]. Alterations of blood vessel structures are observed
in many brain diseases, e.g., Alzheimer’s and vascular dementia [64]. Thus, blood vessels
in the brain have been extensively investigated with various imaging modalities at different
resolutions (Figure 2.1a). Compared to the macro-level imaging (e.g., CT [59] , MRI [65]) and
mesoscale-level imaging (e.g., light microscopy [60]), volume electron microscopy (VEM) [66]
can further reveal the detailed ultrastructure including all vascular cells (Figure 2.1b) for
in-depth analysis. However, no large-scale annotated VEM dataset exists to develop and
evaluate automated 3D blood vessel segmentation methods.

Traditionally, the imaging methods at the macro and mesoscale are widely used and have
produced a large amount of data, and a variety of image segmentation algorithms, public
datasets, and evaluation methods have been developed [67, 68]. At the microscale level, the
sample size of VEM is normally limited and most image analyses focus on neuron reconstruc-
tion, and blood vessels are largely ignored. Recently, owing to the rapid improvement of
imaging technology, the sample size of VEM is significantly increased covering all the layers
of the cerebral cortex of mouse [69]and human brain [70], as well as the whole brain of fly [71].
Moreover, imaging the whole mouse brain using VEM technology is under planning [72].

Thus, we first curate the BvEM dataset, the largest-to-date public benchmark dataset for
cortical blood vessel segmentation in VEM images to foster segmentation method development.
The raw image volumes are from recent publications, which are the largest for each of the three
mammals: mouse, macaque, and human acquired at different VEM facilities. We downsampled
the volumes to a consistent resolution and performed extensive blood vessel annotation,
including manual proofreading, semi-automatic segmentation error correction, and quality
control, involving multiple rounds of scrutiny by neuroscience experts to ensure accuracy
and completeness. However, on the BvEM dataset, existing 3D blood vessel segmentation
methods suffer from two major challenges: the diversity of the image appearance due to
variations in the imaging pipeline and the complexity of the 3D blood vessel morphology.
Conventional blood vessel segmentation heavily depends on a substantial volume of manually
annotated data, a resource that is notably scarce in the existing literature.

To address these challenges, we propose a zero-shot 3D segmentation method, TriSAM,
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leveraging the recent 2D segmentation foundation model, Segment Anything Model (SAM) [73],
to handle the appearance diversity. To re-purpose SAM for 3D segmentation, we developed a
multi-seed segment tracking framework based upon the video object segmentation method
with SAM [74]. As it is easier to track 2D blood vessel segments along the blood flow direction,
TriSAM selects the best 2D plane for SAM-based tracking and further introduces a recursive
seed sampling strategy that performs tri-plane selection at the potential turning points for
efficiency. The proposed method is similar to Flood-Filling Networks (FFN) [75] by extending
the mask in 3D space. Instead of training a 3D neural network, we utilize SAM for prediction
since it generalize better. Second, FFN densely extends to 3D while the proposed method
extends along the blood vessels. Finally, FFN uses only one seed while we are using growing
seeds for long-term tracking. Experimental results demonstrate that the proposed TriSAM
method significantly outperforms the prior state-of-the-art methods on the proposed BvEM
benchmark across all three species.

2.2 Related Work

Blood vessel segmentation methods. Most existing VEM image segmentation algorithms
were developed for neurons [76] and synapses [77, 78, 79]. The traditional VEM dataset size
is too small to study blood vessel architecture. Recently, with rapid technology improvement,
VEM sample size reached the cubic millimeter scale covering all the layers of cerebral
cortex [70, 69], providing rich details of vasculature structure at scale. However, due to the
lack of efficient and effective automatic methods, the blood vessels were segmented manually
in the human cortex dataset [70]. On another front, automatic blood vessel segmentation
methods have been developed for other image modalities, such as light microscopy and MRI,
at a lower resolution. We refer to [67, 68] for detailed reviews on filter-based methods [80,
81] and deep learning methods [82, 83]. Due to the burden of annotation, efforts have been
made to decrease the need for annotations [84]. In this paper, we propose the first VEM
cortical blood vessel benchmark to foster novel methods.
Segment anything-based methods. As a foundation model for image segmentation, the
recently proposed Segment Anything Model [73] has garnered significant attention and has
been extended to a variety of domains [85, 86, 87, 88] including object tracking [85, 74],
image inpainting [86], image mattting [89], super-resolution [90], 3D point cloud [91], and
image editting [92]. Despite SAM’s remarkable generalization capabilities, it still encounters
some challenges in practical applications, One of these challenges is the huge computation
costs due to the heavyweight image encoder. FastSAM [93] adopted a conventional CNN
detector with an instance segmentation branch for the segment anything task with real-time
speed. MobileSAM [94] proposed decoupled distillation to obtain a small image encoder,
which achieved approximately five times faster speed compared to FastSAM while also being
seven times smaller in size. Therefore the MobileSAM is employed in our proposed method.
Although SAM demonstrates impressive generalization capabilities, it faces challenges in
specialized domains like medical [95, 96] or biological images [97], especially in handling 3D
data. [88] assessed the SAM model’s zero-shot segmentation performance in the context of
digital pathology and showed scenarios where SAM encounters difficulties. [98] extensively
evaluates the SAM for medical image segmentation across 19 diverse datasets, highlighting
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Figure 2.2: The proposed BvEM dataset. We proofread the blood vessel instance segmentation
(displayed in different colors) in the three largest publicly available VEM volumes: (a)
mouse [69], (b) macaque [101], and (c) human [70] samples acquired at different VEM labs.

SAM’s performance variability. To address the domain gap between natural and medical
images, SAM-Adapter [95], SAM-Med2D [99], and Medical SAM Adapter [100] introduced
Adapter modules and trained the Adapter with medical images. They attained good per-
formance on various medical image segmentation tasks. MedSAM [87] adapted SAM with
more than one million medical image-mask pairs and attained accurate segmentation results.
MicroSAM [97] also presented a segment anything model for microscopy by fine-tuning SAM
with microscopy data. Unlike these approaches that require model fine-tuning for adaptation,
our method lifts the blood vessel segmentation capabilities of SAM from 2D images to 3D
volumes without any model fine-tuning.

2.3 BvEM Dataset

2.3.1 Dataset Description

Tissue samples. We built the BvEM dataset upon the largest publicly available VEM image
volumes for three mammal species: visual cortex from an adult mouse [69], superior temporal
gyrus from an adult macaque [101], and temporal lobe from an adult human [70]. Each
volume was acquired with different protocols at different facilities and we refer to respective
papers for more details. As shown in Fig. 2.2, the imaging quality and the appearance
of blood vessels vary drastically across these three volumes, showcasing the cutting-edge
large-scale VEM imaging pipelines.
Image volumes. We processed the original image volumes into a standardized form that
is suitable for benchmarking. We first downsampled all three VEM image volumes to a
near-isotropic resolution (∼200-300 nm) along each dimension, which is a good balance
between rich image details for biological analysis and the nature of capillary diameter. Then,
we trimmed the image boundary of the BvEM-Mouse and BvEM-Human volumes, where the
blood vessels are hard to annotate due to the missing image content.

2.3.2 Dataset Annotation

Initial annotation. The paper on the BvEM-human volume provides a manual proofread
blood vessel segmentation, where many segments are incomplete or disconnected due to
missing annotations. The papers for BvEM-mouse and BvEM-macaque volumes only provide
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Table 2.1: Dataset information. Despite the difference in the scale and the geometry of the
image volume, the largest blood vessel instance (rendered in red) is significantly bigger than
the rest combined. The last column shows the max/total length of the blood vessel instances.

Sample Resolution (nm) Size (voxel) Length: (mm)
Mouse (TEM) 320× 256×256 2495×3571×2495 1.6/1.7
Macaque (SBEM) 240×176×176 450×1271×995 713.3/714.5
Human (MultiSEM) 264×256×256 661×7752×13500 107.2/126.7

dense 3D instance segmentation and we manually selected the blood vessel segments. Due to
the large scale of the BvEM-Mouse and BvEM-Human volumes, we only annotated every 4
slices, where the z-dimension resolution is around 1µm.
Automatic error detection. For the false split errors, which are the majority source of error,
we computed the skeleton of the segmentation and detected all the skeleton endpoints that
do not touch the volume boundary as candidates. For the false merge errors, we computed
the intersection-over-union (IoU) of 2D segments on neighboring slices and detected areas of
small IoU value as candidates.
Manual proofreading. We used the VAST lite software [49] to accelerate the manual
proofreading process by using the provided dense segmentation results as templates. Instead
of manually delineating segments manually, proofreaders can coarsely draw or fill the segment
mask that is snapped to the detailed boundary in the template. Assisted with the 3D blood
vessel visualizations, two neuroscience experts proofread each volume in multiple rounds until
no disagreement.

2.3.3 Dataset Statistics

As shown in Tab. 2.1, the BvEM-Macaque volume has around 0.5G voxels, and the BvEM-
Mouse and BvEM-Human volumes are around 80 and 121 times bigger, respectively. From
the blood vessel instance segmentation annotation, we automatically extracted skeleton
centerlines [102] and computed the length for each blood vessel instance. Due to the hyper-
connectivity nature of cortical blood vessels, the length of the largest instance is around 99%,
95%, and 85% for each volume. The histogram of the blood vessel radius in the proposed
dataset is shown in Figure 2.3. The mouse and the human dataset have similar radius
distributions peaked around capillaries, while the macaque volume has no capillaries.

2.4 Method

2.4.1 Overview

We aim to leverage the 2D generalist Segment Anything Model (SAM) to build a zero-shot
3D VEM blood vessel segmentation method, which can be widely applied to various image
volumes. Given an input seed position, existing SAM-based tracking methods work well when
the blood vessel travels only in one axis. However, in reality, blood vessels not only turn in
alternating directions but also bifurcate, leading to drastic shape and scale changes.
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Instead, we represent the whole connected blood vessel segment that contains the input
seed as a graph, G = (V,E), where each node v ∈ V is a tubular branch segment that does
not bifurcate. Thus, the segmentation problem can be solved with the graph traversal
algorithm. After visiting one node (i.e., running SAM-based tracking methods given the
seed), we sample new seed positions to find neighboring nodes to segment recursively.

Thus, the proposed TriSAM framework has the following three modules: (1) Tri-plane
selection module to pick the best 2D plane to segment the object (Fig. 2.4a); (2) SAM-
based tracking module to predict 2D masks along the selected axis (Fig. 2.4b); (3) Turning
point sampling module to propose potential turning points as new seeds based on existing
segmentation results (Fig. 2.4c) to recursively grow all branches of the blood vessel. Note
that the second module can be any existing SAM-based tracking method.

2.4.2 TriSAM Framework

We first explain the three modules in the TriSAM framework (Fig. 2.4) and then provide the
algorithmic description (Alg. 1). In practice, we sample many initial seeds, run the TriSAM
framework for each seed, and fuse the segmentation results.
Tri-plane selection module. Unlike videos, 3D VEM image volumes I can be segmented
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on 2D planes along different axes, p ∈ {x, y, z}, based on the object morphology. However,
tracking along some axis p can be harder than others due to the irregular shape of the 2D
cross-section of the 3D blood vessels on the corresponding 2D plane Ip. We later verify such
a phenomenon empirically as shown in Table 2.3 in which tracking along the y axis is more
effective than tracking along the x axis for a given seed position.

This module aims to select the best axis p∗ for tracking, given the SAM segmentation
results, SAM(Ip, s), on each tri-plane Ip centered at the seed position s as the approximation
of the blood vessel cross-sections. In theory, the ideal axis for tracking is along the blood flow
direction, where the corresponding 2D image plane is tangent to the blood flow direction
with the smallest cross-section segment area (Fig. 2.4a, xy-plane). In addition, SAM outputs
the probability, PSAM, for the segment result, reflecting the confidence in the naturalness of
its shape. Thus, to combine the two cues above, we pick the axis with the smallest segment
size on the 2D plane and a probability of at least the threshold τ (plane-select in Alg. 1).

p∗ = arg min
p

Area(SAM(Ip, s)), s.t. PSAM(Ip, s) > τ. (2.1)

To avoid an infinite recursion, traditional graph traversal algorithms check if a node
is marked visited. In our case, a tubular branch segment may grow into different blood
vessel segments along different tracking axes, e.g., bifurcation regions. Thus, we mark the
combination of the seed and the tri-plane tracking axis (s, p∗) visited if seed s falls in the
segment that is predicted through tracking along p∗ axis (Visited in Alg. 1). Note that
p∗ = ϕ if no plane is selected and Visited((s, p∗)) is True. To implement the “Visited”
function, we store both the segmentation result and the p∗, which is omitted in Alg. 1 for
simplicity.
SAM-based tracking module. Given the seed position s, the selected tracking axis p∗

and SAM’s initial 2D segment mask, we need to produce a 3D segment by tracking the 2D
mask with SAM in both directions (e.g., x+ and x−). Note that naively propagating the
mask center or bounding box as the SAM prompt for the next image slice leads to poor
segmentation results, as SAM may output segments with inconsistent sizes or shrinking sizes
along the axis respectively. Many existing sophisticated SAM-based tracking methods can be
directly used.

This module aims to provide a simple yet effective approach by generating better SAM
prompts for the next image slice. Empirically, we find prompting SAM with both the
enlarged bounding box and the center of the segment generates better segment tracking
results (SAM-Track in Alg. 1).

prompt = {(x, y), (x, y, γw, γh)}, (2.2)

where (x, y, γw, γh) is the bounding box of the segmentation and γ is the scaling factor. To
ensure the quality of the predicted SAM mask, the proposed tracking module terminates
when the SAM probability for the predicted mask is lower than the threshold τ .
Turning point sampling module. As discussed above, SAM-based tracking module can
not handle blood vessel segments that change directions or bifurcate, where the 2D segment
along the original direction changes drastically. Thus, when the SAM-based tracking module
terminates in the middle of the volume, we need to find turning points as new seeds to track
segments along other directions. Naively, we can densely sample points from the segmentation
result and run the plane-select module to find points that prefer other directions. However,
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Algorithm 1 TriSAM Framework

Require: 3D image volume I and initial seed s0, threshold τ
Initialize the prediction: P = ϕ
Initialize the seed list: S = {s0}
while S ̸= ϕ do

Take s from S
p∗ = plane-select(I, s)
if not Visited(s, p∗) then

seg = SAM-Track(I, s, p∗)
if seg ̸= ϕ then

seeds = TurningPoint-Sample(seg, p∗)
P = P ∪ seg
S = S ∪ seeds

end if
end if

end while
return P

such an approach can be inefficient as most points may prefer the original tracking direction,
and ineffective due to false turning points caused by SAM errors.

Instead, we design this module to sample turning points around the last point prompt
position from the SAM-based tracking module. We first predict 2D SAM segmentation segp
along the other two directions (p ∈ {x, y, z} \ {p∗}) at the last point prompt position, which
has a high probability of capturing the tangent cross-section of the swerving blood vessel.
Then, we sample K points from each of the 2D segmentation segp with the Farthest Point
Sampling (FPS) method as turning points added to the seed list.

seeds =
⋃

p∈{x,y,z}\{p∗}

FPS(segp, K), (2.3)

where FPS selects well-spaced points from a dataset by starting with a random point and
iteratively adding the farthest point from the current selection. This method ensures good
spatial coverage and uniformity.
TriSAM Framework Algorithm. Given the initial seed s0, the proposed TriSAM frame-
work applies the graph traversal algorithm to segment the whole connected blood vessel
segment (Alg. 1). As either breadth-first-search or depth-first-search works, we use a generic
“list” data structure (S) to store the seeds to visit. At each step, we take out a seed s ∈ S,
predict the tubular branch with the Plane-select and sam-track modules (i.e., visit a
node), and then find its neighboring branches to segment with the turningpoint-sample
module (i.e., add neighbors as new seeds). The TriSAM framework runs recursively until the
seed list S = ϕ.
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2.4.3 Implementation Details

Image Pre-processing. The large-scale datasets have many image artifacts and missing
slices, which degrade the SAM-based tracking results. We utilize the temporal smoothing
method along the z-axis to deflicker the images.
Initial seed generation. Initial seeds can be effectively generated with global color
thresholding since the pixels of blood vessels are brighter than the background. To improve
efficiency, we only keep the center of each connected component as the final seeds.
SAM details. Unless stated otherwise, we use MobileSAM [94] instead of the standard SAM
[73] in all conducted experiments to improve the inference speed. To clean up SAM results,
holes are filled and small connected components are removed through binary morphological
operations.
Hyperparamter selection. As a zero-shot approach, TriSAM sets the hyperparameters to
reasonable values instead of using ground truth data. In later ablation studies, we verify the
robustness of hyperparameters within the reasonable range. For the global color thresholding
for seed generation, η is set to 98 percentile. For SAM-based tracking, the probability
threshold τ is set to 0.8.
Inference. For BvEM-Macaque, we directly predict the whole volume. For others, k ×
1024 × 1024 subvolumes are used since 1024×1024 is the default resolution for SAM where
k = 661 for BvEM-Human and k = 818 for BvEM-Mouse. The subvolume results are later
fused to form the final prediction. All experiments are conducted on an NVIDIA-A100 GPU.

2.5 Experiments

2.5.1 Experimental Settings

Evaluation Metrics. We use the Precision, Recall, and Accuracy metric defined in [103],
where Accuracy = TP

TP+FP+FN
.

Precision =
TP

TP + FP
, (2.4)

Recall =
TP

TP + FN
, (2.5)

Accuracy =
TP

TP + FP + FN
, (2.6)

where TP , FP , and FN are instance-level true positive, false positive, and false negative
respectively. We use instance-level metrics since it is more sensitive to split errors. In
particular, the Hungarian algorithm is used to match ground-truth instances and predicted
instances with negative Accuracy as the cost matrix. We used the whole dataset for evaluation
and computed the score on the largest instance segment of each volume due to its dominating
size.

2.5.2 Benchmark Results

Methods in Comparison. We compare the proposed TriSAM with both zero-shot baselines
and supervised methods. The compared zero-shot methods are global color thresholding
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Table 2.2: Benchmark results on the proposed BvEM dataset. We evaluate the initial blood
vessel annotation to show the significant amount of our proofreading effort.

Method Setting BvEM-Mouse BvEM-Macaque BvEM-Human
Pre Rec Acc Pre Rec Acc Pre Rec Acc

Initial annotation N/A 93.74 36.62 35.74 1.65 23.17 1.57 100.00 25.68 25.68
Color thresholding N/A 86.45 37.32 35.26 95.14 21.65 21.42 41.77 1.92 1.87
MAESTER [104] unsupervised 2.16 18.95 0.94 22.08 40.30 16.64 0.29 5.03 0.27
3D UNet [69] supervised 13.45 0.91 0.67 16.56 86.95 16.16 68.63 2.46 2.43
nnUNET [105] supervised 3.54 49.55 6.59 24.34 29.57 23.74 3.44 23.20 5.86
SAM+IoU tracking[73] zero-shot 63.59 0.27 0.27 74.39 1.89 1.88 18.19 23.58 12.92
TriSAM (ours) zero-shot 84.12 66.75 59.28 78.41 74.97 62.14 31.35 25.57 16.39

TriSAM GTColor Thresholding 3D UNet SAM + IoU Tracking

Figure 2.5: Qualitative results of instance segmentation on the BvEM-Macaque dataset. Dif-
ferent colors represent different instances of blood vessels. The methods of color thresholding
and 3D UNet often produce false positives, meaning they mistakenly identify parts of the
image as blood vessels when they are not. On the other hand, SAM+IoU tracking tends to
miss many blood vessels altogether. Among all the methods tested, TriSAM segmentation
performs the best and is the most accurate in identifying blood vessels.

and SAM+IoU tracking. For color thresholding, we first perform (3D) Gaussian blurring
with σ = 1 on 3D chunks (10×512×512). Then we label all voxels that are 3 standard
derivations above mean as positive. Finally, connected components with less than 1000
voxels are filtered out. For SAM+IoU Tracking, we segment all objects in each z-slice of the
dataset using automatic mask generation. Then we track each blood vessel using the first
labeled slice as seeds. Our simple tracking algorithm finds the mask in the next slice with
maximum IoU with the current slice. If the max IoU is above a threshold, we assign this
mask to the current object and continue tracking. We also tried SAM+IoU tracking with
microSAM [106] weights that have been finetuned on EM images. This model however does
not work well on our dataset. We expect this is because microSAM has been finetuned on
high-resolution EM images and does not generalize to our low-resolution dataset. We further
compare TriSAM with the supervised method 3D U-Net [69]. We use the implementation
from [107]. For supervised methods, we cropped subvolumes at the center of each volume
composing approximately 10% in size. These annotated subvolumes were divided into a 1-1
train-val split.
Results Analysis. The results are shown in Tab. 2.2. First, both the Color Thresholding and
SAM+IoU Tracking methods exhibit significant performance variability across three volumes,
highlighting the diversity of our dataset and the sensitivity of these methods to different species.
Furthermore, both of these unsupervised methods demonstrate relatively poor performance,
underscoring the challenges of the zero-shot setting in the BvEM dataset. Additionally,
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Table 2.3: Ablation studies on different plane selection strategies. The proposed tri-plane
approach achieves the best overall accuracy with comparable speed.

Method Pre. (%) Rec. (%) Acc. (%) Speed (sec)
Single-plane (z) 75.28 48.48 41.82 324
Single-plane (y) 79.37 58.47 50.75 307
Single-plane (x) 69.73 12.14 11.53 345
Single-plane (fusion) 71.78 74.15 57.41 976
Tri-plane 78.41 74.97 62.14 335

the 3D UNet, as a supervised learning approach, also yields subpar results, indicating poor
generalization of models trained with limited data. Finally, TriSAM significantly outperforms
other methods as it not only accurately segments the boundary but also tracks the blood
vessels in the long term.
Qualitative Results. The final instance segmentation results on BvEM-Macaque are shown
in Fig. 2.5. Color thresholding segments bright pixels, inadvertently capturing nuclei cells
while overlooking darker pixels corresponding to blood vessels. Training the 3D UNet model
with limited data results in confusion with background elements. IoU tracking fails to capture
a significant portion of the blood vessel, revealing its ineffectiveness in tracking. TriSAM
prediction emerges as the most accurate method, affirming its effectiveness. We further
visualize the TriSAM’s performance on complex vessel structures in both the mouse and
human datasets in Fig. 2.6. These additional examples demonstrate our method’s ability to
handle challenging cases, including tortuous vessels and U-turns. While performance may
vary depending on vessel complexity, our tri-plane selection strategy effectively adapts to
changes in direction by dynamically choosing optimal viewing planes at potential turning
points.

TriSAM GTTriSAM GT

BvEM-Mouse BvEM-Human

Figure 2.6: 3D visualizations on complex vessel structures from mouse and human datasets.

2.5.3 Ablation Studies

We conducted a comprehensive series of ablation studies exclusively using the BvEM-Macaque
dataset due to the computation constraints.
Oracle analysis. We conduct an oracle analysis to showcase the advantage of the proposed
TriSAM framework for its capability to deal with complicated vascular geometry. For the
SAM-based tracking module in TriSAM, we plug in an oracle 2D segmentation method which
returns the connected component of the ground truth mask containing the prompt. As shown
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in Fig. 2.7b, the TriSAM framework can perfectly segment the whole vasculature with the
oracle 2D segmentation. In comparison (Fig. 2.7a), existing SAM-based video object tracking
methods can only track along one axis, missing bifurcated branches.
Tri-plane selection module. We first compare our method with the single-plane methods
to evaluate the effectiveness of the tri-plane. For the single-plane method, we choose one plane
as the main plane and only track along the chosen plane. The results on the BvEM-Macaque
volume are shown in Tab. 2.3. We have observed significant differences in performance among
the three single-plane methods, with accuracy ranging from 11.53% to 50.75%, depending on
the chosen tracking plane, which indicates the importance of the chosen tracking plane. This
variability can be attributed to the tubular nature of blood vessel extensions within biological
organisms, resulting in the generation of intricate mask shapes in certain planes, while simpler
mask shapes are produced in others. Then we fuse the results of three Single-Plane methods
and attain a higher accuracy of 57.41%, which demonstrates that the segmentation results
from different planes exhibit a high degree of complementarity with each other. Instead,
We see that tri-plane selection exploits the blood vessel 3D structures by tracking along a
suitable plane and attains the highest accuracy of 62.14%.

We visualize the segmentation results with one initial seed on BvEM-Macaque in Fig. 2.8.
The origin point is the seed location. We see that the performance is sensitive to the selection
of the tracking plane. If the plane is not well-selected, the segmentation result can be empty
as the example of tracking along the x-axis shows. The best result is tracking along the y-axis
which is still worse than the proposed method since it considers potential turning points
to leverage the 3D structure. The best result is tracking along the y-axis. However, it still
falls short of the proposed method’s performance, as the latter takes into account potential
turning points to exploit the 3D structure and perform long-term tracking.
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Table 2.4: Ablation study results on the choice of SAM models. The MobileSAM model
achieves better performance with faster inference speed and smaller model size.

Backbone Pre (%) Rec (%) Acc (%) Speed Parameters
SAM [73] 77.65 66.03 55.48 1535s 615M
MobileSAM [94] 78.41 74.97 62.14 335s 9.66M

Table 2.5: Ablation studies on different seed sampling strategies. The proposed recursive
seed sampling approach achieves the best overall accuracy with comparable speed.

Strategy Pre. (%) Rec. (%) Acc. (%) Speed (sec)
Naive 79.37 58.47 50.75 307
Dense sampling 86.94 24.84 23.95 2001(↑ 552%)
Recursive sampling 78.41 74.97 62.14 335 (↑ 9%)

SAM-based tracking module. We examine the effect of different SAM variants, i.e.,
MobileSAM, on the TriSAM performance. As shown in Tab. 2.4, the inference time of
MobileSAM is 22% of the original SAM which confirms that MobileSAM significantly
improves the inference speed. Moreover, the performance of MobileSAM is even better than
the original SAM, possibly because the distilled small model is less prone to overfitting to
the original natural image domain.
Turning point sampling module. To perform long-term tracking and fully leverage the 3D
blood vessel structure, we introduced recursive seed sampling by considering potential turning
points. To validate its effectiveness, we report the results on the BvEM-Macaque volume
in Tab. 2.5 where the runtime comparison for segmentation prediction on the entire BvEM-
Macaque data is also included. Compared to the baseline without recursive seed sampling
“naive” and dense seed sampling “dense”, the proposed method achieves the best performance
with less than 10% running time increase. One naive baseline is to remove the recursive seed
sampling component and not consider any potential turning points. This strategy is simple
and fast but it fails to exploit the 3D shape prior leading to poor performance. Another
strategy is to select the best plane for every tracking step/slice, which densely performs SAM
segmentation on each step across three planes. Therefore, the performance is limited. The
proposed method achieves the best performance with less than 10% running time increase on
the BvEM-Macaque dataset. Unfortunately, it significantly increases the computation cost.
Compared to our method, DenseSAM’s running time is 5.97 times longer since it needs to
segment 3 planes for every tracking step. However, we were surprised to observe that the
performance of the Dense Redirection strategy was even worse. This could be attributed to
the frequent axis changes potentially leading to the omission of certain parts of the blood
vessel and causing splitting errors.
Tri-plane dynamics. We delve deeper into the plane dynamics in Fig. 2.9 and 2.10. The
majority of the selected plane predominantly tracks along the y-axis. This observation aligns
with the experimental results presented in Tab.2.3, where it is evident that a single plane
tracking with the y-axis outperforms the z-axis and x-axis. This is because the blood vessel
flows mainly along the y-axis in the test volume. In Fig. 2.11, we explore the size dynamics
using various methods, where the mean derivation is shown in parentheses. The size variation
observed with our proposed method is relatively smaller compared to tracking along the
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Figure 2.12: Ablation study results on hyperparameters η and τ .
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Figure 2.13: Failure cases of the SAM-based tracking module.

y-axis and significantly less than when tracking along the z-axis and x-axis.
Hyperparameters. We compute the accuracy of TriSAM with varying hyperparameters for
seed generation (η) and SAM-based tracking module (τ). As shown in Fig. 2.12, TriSAM’s
performance is robust within the reasonable range of hyperparameters.

2.5.4 Failure Cases

The main source of error in the proposed TriSAM framework is the SAM-based tracking
module, where SAM can not produce accurate 2D mask given the prompt. For the false
negative case (Fig. 2.13a), SAM predicts an empty mask when the shape and appearance
of the blood vessels are complex (e.g., conjunction point) for all three axes. For the false
positive case (Fig. 2.13b), SAM falsely segment the neighboring region with the blood vessel
due to the similar image appearance.

2.6 Conclusion

In this paper, we contribute the largest-to-date public benchmark, the BvEM dataset, for
cortical blood vessel segmentation in 3D VEM images. We also developed a zero-shot blood
vessel segmentation method, TriSAM, based on the powerful SAM model, offering an efficient
and accurate approach for segmenting blood vessels in VEM images. With tri-plane selection,
SAM-based tracking, and recursive seed sampling, our TriSAM effectively exploits the 3D
blood vessel structure and attains superior performance compared with existing zero-shot
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and supervised technologies on BvEM across three species, marking a critical step towards
unlocking the mysteries of neurovascular coupling and its implications for brain health and
pathology. With the availability of the BvEM dataset and the TriSAM method, researchers
are now equipped with valuable tools to drive breakthroughs in VEM-based cortical blood
vessel segmentation and further our understanding of the brain’s intricate vascular network.
By addressing a significant gap in the field of neuroimaging, we have laid the foundation
for advancing the understanding of cerebral vasculature at the microscale and its intricate
relationship with neural function.
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Chapter 3

WormID-Bench: A Benchmark for
Whole-Brain Activity Extraction in C.
elegans

This section draws extensively from previous work done in collaboration with the NYU
Neuroinformatics Lab: Jason Adhinarta et al. “WormID-Benchmark: Extracting Whole-
Brain Neural Dynamics of C. elegans At the Neuron Resolution”. In: bioRxiv (2025),
pp. 2025–01.

The nematode C. elegans is a premier model organism for studying neural circuit function
due to its fully mapped connectome and genetically identifiable neurons. Recent advances in
3D light microscopy and fluorescent protein tagging have enabled whole-brain imaging at
single-neuron resolution. However, extracting meaningful neural dynamics from these high-
resolution recordings requires addressing three fundamental challenges: (i) accurate detection
of individual neurons in fluorescence images, (ii) precise identification of neuron classes based
on anatomical and colorimetric cues, and (iii) robust tracking of neurons over time in calcium
imaging videos. To systematically evaluate these challenges, we introduce WormID-Bench,
a large-scale, multi-laboratory dataset comprising 118 worms from five distinct research
groups, along with standardized evaluation metrics for detection, identification, and tracking.
Our benchmark reveals that existing computational approaches show substantial room
for improvement in sensitivity, specificity, and generalization across diverse experimental
conditions. By providing an open and reproducible benchmarking framework1, WormID-
Bench aims to accelerate the development of high-throughput and scalable computational
tools for whole-brain neural dynamics extraction in C. elegans, setting the stage for broader
advancements in functional connectomics.

3.1 Introduction

The ability to robustly resolve whole-brain activity at single-neuron resolution remains
a major challenge in neuroscience. Caenorhabditis elegans (C. elegans) serves as a pow-
erful model system due to its fully mapped connectome and well-characterized neuronal

1https://github.com/focolab/WormND
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Figure 3.1: WormID-Bench. We benchmark each step of the computational pipeline to
extract neural dynamics of in vivo C. elegans from microscopy images.

classes [109, 110]. Recent advances in 3D light-sheet microscopy and fluorescent genetic
labeling (NeuroPAL) [111] enable the tracking of neuronal activity across the entire nervous
system. However, a key bottleneck is the development of reliable computational methods to
identify the activity for each neuron, which involves neuron detection and identification from
multichannel NeuroPAL images, and neuron tracking from calcium images across diverse
experimental conditions.

Automating these tasks has seen limited success; the dense distribution of similar-colored
neurons and non cellular structure makes detection and identification challenging. And
neural dynamics can make accurate tracking difficult, as the brightness and appearance
of neurons can vary widely over time based on their firing activity [112]. Worse still, the
imaging data is diverse in image format and appearance, biological variability, and batch
effects across different labs and experimental setups [113, 114, 115, 116, 117, 118]. Recently
WormID [119] curated several publicly available datasets with complete or semi-complete
ground truth annotations that span multiple imaging setups and laboratories. However, there
remains a lack of clearly defined tasks, standardized evaluation metrics, and benchmarks for
state-of-the-art computer vision methods in worm neural dynamics extraction.

To address this, we introduce WormID-Benc to evaluate whole-brain neural dynamics
extraction in C. elegans in Fig. 3.1 . Our benchmark provides (1) a structured evaluation
protocol for neuron detection, identification, and tracking; (2) reproducible metrics and rank-
ing procedures to ensure fair and unbiased model evaluation; (3) comprehensive benchmark
results on the WormID dataset.

3.2 Related Work

We limit our review to light microscopy which is standard for in vivo live imaging.
3D Cell Detection Benchmarks. 3D cell detection is always the first step for any neuron-
level imaging-related task. Previously Alwes et al. [120] collected and annotated volumes of
3D images of histone fluorescent protein expression in Parhyale. Another valuable resource is
jGCaMP8 transgenic mice dataset, which applies two-photon imaging to record neurons in
mouse visual cortex [121]. However, there are few large-scale datasets that cover neuronal
volumes in C. elegans [122] with comprehensive annotations for cell detection, identification,
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Table 3.1: Summary of WormID-Bench datasets and their parameters. #DET, #ID, and
#TRAJ represent the average number of annotated neuron for detection, identification, and
trajectory across samples respectively.

Dataset resolution
(µm/px)

3D NeuroPAL 3D Calcium Video
#samples #DET #ID #samples #frames #TRAJ

NP [111] 0.21×0.21× 0.75 10 193 190 × × ×
HL [124] 0.33 ×0.33× 1.0 9 119 64 × × ×
SF [125] 0.54 ×0.54× 0.54 38 70 70 × × ×
EY [116] 0.27 ×0.27× 1.5 21 177 175 21 961 177
KK [126] 0.32 ×0.32× 1.5 9 154 154 9 1646 155
SK1 [119] 0.16 ×0.16× 11 21 111 48 4 1500 108
SK2 [119] 0.32 ×0.32× 0.751 10 173 49 2 3000 131

and cell tracking. Unlike previous datasets, C. elegans microscopy images tend to have lower
resolution and have a more non-cellular structure, making the segmentation task challenging.
3D Neuron Identification Benchmarks. Neuron identification from fluorescent microscopy
images is notoriously difficult. While NeuroPAL method [111] deterministically colors every
neuron a stereotyped fluorescent barcode in C. elegans, which is identical across all stages of
development for all individuals. The color code and relatively fixed position between neurons
greatly simplify the identification problem by reducing the number of potential labels for a
neuron.
3D Cell Tracking Benchmarks. The popular Cell Tracking Challenge [123] consists of
ten 3D time-lapse microscopy datasets with various non-neuron cells. It provides dense
segmentation annotations at each time frame, along with tracking annotations that indicate
correspondences between frames and cell-splitting events. For neural dynamics extraction,
annotating cell center points is sufficient, while minimizing significant manual labeling labor.
To our knowledge, the 36 worms video dataset we are using is the only dataset with annotations
for neuron subtype identities, their tracked positions, and their neural activity.

3.3 Dataset

For this benchmark, we use the WormID corpus of NeuroPAL and calcium imaging datasets
curated in Sprague et al. [119], consisting of seven datasets from five different labs comprised
of 118 total worms (Tab. 3.1). Further details can be found at WormID.org and in Sprague
et al. [119].
Data Selection. For the detection and identification (ID) tasks, we omit 14 worms that
contain significant non-linear deformities or color artifacts since many of the models we test
assume that inputs are roughly aligned along the principal axes of the worm body and rely
on color information. This leaves 104 remaining datasets that we use to train and benchmark
each of the detection and ID approaches. For the tracking task, we omit 38 worm videos in
SF [125] which does not provide enough information to extract ground truth annotations.
Data Split. Most previous approaches to the tasks outlined here typically only train and
test on a small subset of data, usually all collected by one lab, limiting the generalizability of

1Videos in SK1 and SK2 have varying z-resolutions and we refer to [119] for details.
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these approaches. We split the datasets into five equal groups with balanced representation
from each dataset. For each task, we perform 5-fold cross-validation and report results across
multiple metrics. For the ID tasks, the whole NP dataset, which is the standard reference
dataset for NeuroPAL imaging, is used for training all groups but is not used in evaluation.
Thus, we report an average of cross-validated metrics across 104 worms for the detection
task, 94 worms for the ID task, and 36 worms for the tracking task.

3.4 Benchmark

3.4.1 Task 1: 3D Neuron Detection in 3D NeuroPAL Volumes

Objective. The first step is to detect neurons in the NeuroPAL volumes while distinguishing
them from non-neural cells and structures of the nematode. Due to the lack of visible
cell boundaries and the low-resolution of the images, each neuron was annotated with the
center point instead of the mask. This is particularly challenging due to the presence of
background artifacts, variability in fluorescence intensity, and differences in imaging setups
across laboratories.
Evaluation Metrics. We use evaluation metrics from the OCELOT Cell Detection Chal-
lenge [127], primarily the mean F1-score, along with precision and recall. Since our neuron
annotations are point-based, we introduce a distance threshold to assess detection accuracy.
A detection is considered correct if it falls within distance dth of a ground truth neuron;
otherwise it is a false positive. If multiple ground truth neurons are within dth, the nearest
one is matched. To account for varying proximity requirements, we evaluate at two distance
thresholds: dth ∈ {3µm, 6µm}, roughly 1-2 times the nucleus diameter, which ensures spatial
accuracy and alignment with calcium imaging for cell tracking.
Baseline Models. Neuron detection methods can be categorized into point-based and
mask-based approaches. Point-based methods predict a heatmap of neuron center locations,
with peak detection algorithms used to extract precise coordinates, such as nn-UNet adopted
for heatmap regression [105]. Mask-based methods leverage pre-trained generalist models,
such as CellPose [128] and microSAM [129], to segment neuron regions. The centroid of each
masked object is extracted as its cell coordinate.

3.4.2 Task 2: 3D Neuron Identification in 3D NeuroPAL Volumes

Objective. The 302-neuron nervous system of C. elegans is eutelic, meaning each neuron
has a consistent identity across individuals. The computational task involves the 302-way
classification for each detected neuron center in a 3D NeuroPAL image volume. Despite its
stereotyped nervous system, neuron identification is challenging due to natural variability
in cell positions for different individuals, body distortion during movement, color overlap
for several neurons, and imaging inconsistencies between different labs. Moreover, the input
detection results can have missed neurons or false positives, and some neurons remain difficult
to distinguish even for experts.
Evaluation Metrics. We adopted the standard classification accuracy to measure the
proportion of correctly labeled neuron centers in test images. The accuracy is reported for
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both top-1 and top-5 ranked assignments. Based on the number of neurons labeled, datasets
are categorized into low and high label counts, as fewer labels typically yield higher accuracy
since the easiest neurons are identified first. In contrast, fully labeled datasets tend to have
lower accuracy due to the ambiguity of harder-to-identify neurons.
Baseline Models. Neuron identification methods fall into two main categories: alignment-
based and classification-based approaches. Alignment-based methods perform non-rigid
point cloud registration to align predicted neuron positions with a reference template. Tech-
niques such as Coherent Point Drift (CPD) [130] are commonly used, followed by neuron
label assignment using the Hungarian algorithm [131] or a learned statistical atlas [115].
Classification-based methods train machine learning models to directly predict neuron identi-
ties. Examples include a transformer-based approach [132] and a graph-based conditional
random fields model [124]. For learning-based methods, we evaluate both pre-trained and
fine-tuned models to assess their generalization across datasets.

3.4.3 Task 3: 3D Neuron Tracking in 3D Calcium Videos

Objective. The task involves tracking neurons across video frames and estimating activity
from image intensity. Neuron tracking is challenging due to biological noise, deformations,
missing neurons, and variability in data collection across labs. Previous methods have used
pose registration to align neurons under deformation of the worm body. Additionally, inactive
neurons may be undetectable in the calcium images while remaining visible under fluorescent
channels invariant to excitation.
Evaluation metrics. We adopted the evaluation metrics from the Cell Tracking Chal-
lenge [123], specifically Detection Accuracy (DET) and Tracking Accuracy (TRA). TRA
is based on the Acyclic Oriented Graph Matching measure [133], which computes the edit-
distance between graphs, robustly handling cases where tracks are split or swapped. As in
Task 1, setting a distance threshold is crucial to assessing detection and tracking accuracy.
Therefore, we apply two distance thresholds, dth ∈ {3µm, 6µm}.
Baseline methods. Neuron tracking methods can be classified into matching-based and
propagation-based approaches. Matching-based methods detect neuron center points in
individual video frames and establish correspondences across frames. Matches are determined
using integer linear programming (ILP) [134] or directly predicted by a feed-forward neural
network. Propagation-based methods estimate optical flow to compute dense voxel-level
correspondences between neighboring frames. Neuron center points are then propagated from
the previous frame to the current frame by following these correspondences [135].

3.5 Results

For each task, we report 5-fold cross-validation results with the standard deviation to alleviate
the bias from the data split.
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Table 3.2: Neuron detection results (Task 1). We report metrics using two different distance
thresholds for for both pre-trained and re-trained (†) models.

Method dth=3µm dth=6µm
Precision Recall F1 Precision Recall F1

CellPose [128] 0.45±0.02 0.58±0.01 0.47±0.01 0.50±0.03 0.66±0.01 0.53±0.02
Micro-SAM [129] 0.41±0.01 0.43±0.02 0.39±0.01 0.50±0.01 0.53±0.03 0.47±0.01
nn-UNet† [105] 0.75±0.03 0.70±0.02 0.71±0.02 0.80±0.03 0.75±0.02 0.76±0.01

Figure 3.2: Qualitative neuron detection results (Task 1). (a) A zoomed-in NeuroPAL
image, (b) ground truth detection points overlaid, (c) nn-UNet detection results showing true
positives, false positives, and false negatives, and (d) whole volume visualization of ground
truth and nn-UNet prediction in 3D.

3.5.1 Task 1: 3D Neuron Detection in 3D NeuroPAL Volumes

Quantitative results. We evaluated pre-trained amd retrained detection models, establish-
ing a baseline for comparison in Tab. 3.2. CellPose used two-channel images to match its
pretraining setup, achieving better out-of-the-box performance than pretrained Micro-SAM.
nn-UNet outperformed all models, highlighting the effectiveness of fine tuning point-based
method for neuron detection.
Qualitative results. As shown in Fig. 3.2 , most errors occur in regions with densely packed
neurons of similar colors. The false negative errors in yellow are often due to low intensity or
contrast of ground truth neurons blending into background noise. The false positive errors
in red are often caused by non-neuronal cells or background noise in the image that are
misclassified into neurons.

CellPose and Micro-SAM are not natively designed for 3D volumetric NeuroPAL images
with color, which presents challenges in directly adapting these methods to such data. Despite
this, the pre-trained models produce reasonable results, achieved through the post-hoc
stitching of 2D segmentation maps.

3.5.2 Task 2: 3D Neuron Identification in 3D NeuroPAL Volumes

Quantitative results. As shown in Tab. 3.3, all methods have higher accuracy with a low
number of labels compared to a high number of labels. Since identification is a classification
task, performance improves when there are more candidate choices, which explains the
higher accuracy in Top-5 compared to Top-1. The traditional methods (CPD, Statistical
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Table 3.3: Neuron identification results (Task 2). Mean top-1 and top-5 accuracies are
reported for both pre-trained and re-trained (†) models.

Method Low #ID labels (easy) High #ID labels (hard) Overall
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CPD [130] 0.39±0.15 0.65±0.14 0.39±0.09 0.67±0.10 0.39±0.14 0.65±0.13
Stats. Atlas [115] 0.40±0.12 0.64±0.12 0.41±0.08 0.72±0.05 0.41±0.11 0.66±0.11
Stats. Atlas† [115] 0.66±0.14 0.89±0.07 0.54±0.06 0.79±0.06 0.62±0.13 0.86±0.08
fDNC [132] 0.52±0.04 0.73±0.04 0.29±0.07 0.50±0.09 0.45±0.03 0.66±0.03
fDNC† [132] 0.60±0.14 0.79±0.11 0.38±0.16 0.61±0.20 0.53±0.18 0.74±0.17
CRF ID [124] 0.59±0.20 0.84±0.19 0.47±0.07 0.73±0.05 0.55±0.18 0.81±0.17
CRF ID† [124] 0.81±0.09 0.95±0.05 0.57±0.06 0.78±0.04 0.74 ±0.14 0.89±0.09

Figure 3.3: Qualitative neuron identification results (Task 2). (a) We divide the samples into
low and high number of ID labels for fine-grained analysis. We show (b) one image from the
original 3D NeuroPAL volume, (c) the ground truth label by human experts, and (d) the
prediction result by fDNC. The wrong prediction (e.g. ASGL) comes from a nearby neuron
with a similar color (AWAL).

Atlas) have relatively lower accuracy than the deep learning methods (CRF ID, fDNC) when
they are not finetuned on all datasets. However, there is a significant improvement in their
performance after retraining on the full datasets, especially for the CRF ID, which has the
best performance among all methods.
Qualitative results. As shown in Fig. 3.3, a common source of errors is misclassification due
to nearby neurons with similar colors, particularly in methods that rely solely on positional
information. The CPD method, which lacks additional information, serves as a baseline for
comparison. In contrast, the other three methods improve accuracy by incorporating color
and prior probability distributions, enabling more reliable neuron identification. The fDNC
method applys a transformer network for matching but is sensitive to worm body orientation
during pre-processing, likely contributing to its lower accuracy. The Statistical Atlas method
uses a statistical model, while the CRF ID method utilizes a graphical model, leveraging
structured prior knowledge for improved performance. The high accuracy of both methods
after re-training demonstrates the importance of training on diverse datasets.

3.5.3 Task 3: 3D Neuron Tracking in 3D Calcium Videos

Quantitative results. As shown in Table 3.4, Ultrack consistently outperforms 3DeeCell-
Tracker in both detection (DET) and tracking (TRA) accuracy across distance thresholds.
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Table 3.4: Neuron tracking results (Task 3). We report
metrics using two different distance thresholds using 5-fold
cross-validation.

Method dth=3µm dth=6µm
DET TRA DET TRA

3DeeCellTracker [126] 0.38±0.06 0.36±0.06 0.42±0.08 0.40±0.07
Ultrack [134] 0.70±0.04 0.66±0.05 0.81±0.05 0.78±0.05

Table 3.5: Tracking results
with sampled oracle detections
with [126] at dth=3µm.

Oracle % TRA

100 0.99
80 0.74
60 0.52

Although both methods use the same StarDist detections, Ultrack benefits from additional
ultrametric contours maps. To assess the impact of detection quality on tracking performance,
we input ground truth detections at 100%, 80%, and 60% to 3DeeCellTracker. As expected,
the DET metric matches the sampling percentage. As shown in Table 3.5, 3DeeCellTracker
significantly improves with better detections, highlighting the need for more accurate detection
methods to enhance overall tracking performance.

3.6 Limitation and Discussion

WormID-Bench provides a structured framework for benchmarking whole-brain neural dy-
namics extraction in C. elegans, yet several limitations persist. Despite its diverse dataset, it
may not fully encompass the range of experimental conditions and imaging setups used across
different research groups, potentially introducing domain gaps that affect model generalization.
Additionally, existing detection, identification, and tracking methods exhibit inconsistent
performance across setups, highlighting the need for more robust, domain-adaptive approaches.
Another critical challenge is the cascading error propagation across tasks—errors in neuron
detection can lead to misidentifications, which subsequently compromise tracking perfor-
mance, amplifying inaccuracies at each stage. Future work should explore end-to-end learning
pipelines that mitigate these dependencies through joint optimization strategies. Furthermore,
while the benchmark promotes standardized evaluation, enhancements such as active learning
for dataset expansion, the integration of spatial-temporal priors, and leveraging foundation
models could further improve generalization across laboratories.
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“A joint classification and segmentation approach for dendritic spine segmentation
in 2-photon microscopy images”. In: 2015 IEEE 12th International Symposium on
Biomedical Imaging (ISBI) (2015), pp. 797–800.

[15] Subhadip Basu, Nirmal Das, Ewa Baczynska, Monika Bijata, André Zeug, Dariusz M
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